浙江农业学报 ›› 2023, Vol. 35 ›› Issue (10): 2364-2377.DOI: 10.3969/j.issn.1004-1524.20221324
彭丹丹1(
), 陈大刚1, 徐开未1, 游浩宇1, 杨然1, 廖慧苹2, 陈远学1,*(
)
收稿日期:2022-09-13
出版日期:2023-10-25
发布日期:2023-10-31
作者简介:彭丹丹(1992—),女,陕西汉中人,硕士,讲师,研究方向为植物逆境生理与分子生物学。E-mail: Diana-peng@hotmail.com
通讯作者:
*陈远学,E-mail: 基金资助:
PENG Dandan1(
), CHEN Dagang1, XU Kaiwei1, YOU Haoyu1, YANG Ran1, LIAO Huiping2, CHEN Yuanxue1,*(
)
Received:2022-09-13
Online:2023-10-25
Published:2023-10-31
摘要:
为探究椰糠复合基质对猕猴桃砧木幼苗生长的影响,本试验以对萼猕猴桃幼苗为研究材料,设置7个不同配比基质处理,即在泥炭∶珍珠岩=1∶1(体积比)的基础上,椰糠的添加比例(体积比)分别为100%、80%、60%、40%、20%、0和33.33%(分别标记为T1、T2、T3、T4、T5、T6和T7处理),并以当地猕猴桃园区的土壤作为对照(CK),通过分析复配基质的理化性状及猕猴桃砧木幼苗的生长状况,并结合主成分分析的方法对植株幼苗的叶绿素相对含量、生物量、根冠比、根系特征及养分含量等指标进行综合分析与评价,拟筛选出培育猕猴桃砧木幼苗适宜的基质配方。结果表明:(1)与对照相比,复配基质理化性状得到显著改善,基质养分含量显著提高,随椰糠体积比减小,基质容重、持水孔隙、全氮含量、碱解氮含量、有效磷含量逐渐增大,总孔隙度、通气孔隙、大小孔隙比、有机质含量、速效钾含量、pH值及电导率(EC)逐渐降低;(2)复配基质处理下猕猴桃砧木幼苗的生长状况及养分含量均显著优于CK,植株株高、茎粗、各时期叶绿素相对含量、干物质积累、根冠比、总根长、总根表面积及总根体积随椰糠添加比例的减小呈先增大后降低的趋势,在椰糠体积比为20%(T5处理)达最大值,植株N、P、K含量与复配基质养分供应一致,根中N、P含量最高,K则主要分布于叶片,不同配比基质应用效果综合评价依次为T5>T6>T7>T4>T3>T2>T1>CK,T5处理得分最高,植株生长表现最好;(3)基质总孔隙度、持水孔隙、全氮含量、碱解氮含量及有效磷含量与猕猴桃砧木幼苗各生长指标呈极显著正相关关系,而基质容重及pH值与植株幼苗各生长指标呈极显著负相关关系。综上,基质的理化性状对猕猴桃砧木幼苗的生长具有较大的影响,适宜的椰糠配比能有效改善基质的理化特性,显著促进猕猴桃砧木幼苗地上、地下部的生长,提高植株各部位养分含量,以20%椰糠的体积比复合基质最为适宜,可作为培育猕猴桃砧木幼苗较优的基质配方。
中图分类号:
彭丹丹, 陈大刚, 徐开未, 游浩宇, 杨然, 廖慧苹, 陈远学. 椰糠复合基质对猕猴桃砧木幼苗生长及根系特征的影响[J]. 浙江农业学报, 2023, 35(10): 2364-2377.
PENG Dandan, CHEN Dagang, XU Kaiwei, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of coconut-bran compound substrate on the growth and root characteristics of kiwifruit rootstock seedlings[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2364-2377.
| 供试原料 Material | 容重 Bulk density/ (g· cm-3) | 总孔隙度 Total porosity/% | 通气孔隙 Aeration porosity/ % | 持水孔隙 Water- holding porosity/ % | 气水比 Air water ratio | 有机质 含量 Organic matter content/ % | 全氮 含量 Total nitrogen content/ % | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷 含量 Available phosphorus content/ (mg·kg-1) | 速效钾 含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 椰糠 | 0.12 | 73.16 | 29.93 | 43.24 | 0.69 | 82.36 | 0.42 | 358.57 | 161.52 | 8 854.48 | 5.88 | 1.60 |
| Coconut-bran | ||||||||||||
| 泥炭Peat | 0.15 | 80.32 | 5.85 | 74.47 | 0.08 | 67.99 | 0.77 | 1 125.82 | 302.28 | 1 619.90 | 5.23 | 0.73 |
| 珍珠岩 | 0.07 | 64.65 | 31.40 | 33.24 | 0.95 | 0.84 | 0 | 3.44 | 14.18 | 688.63 | 7.80 | 0 |
| Pearlite |
表1 原料基质的理化性质
Table 1 Physical and chemical properties of substrate materials
| 供试原料 Material | 容重 Bulk density/ (g· cm-3) | 总孔隙度 Total porosity/% | 通气孔隙 Aeration porosity/ % | 持水孔隙 Water- holding porosity/ % | 气水比 Air water ratio | 有机质 含量 Organic matter content/ % | 全氮 含量 Total nitrogen content/ % | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷 含量 Available phosphorus content/ (mg·kg-1) | 速效钾 含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 椰糠 | 0.12 | 73.16 | 29.93 | 43.24 | 0.69 | 82.36 | 0.42 | 358.57 | 161.52 | 8 854.48 | 5.88 | 1.60 |
| Coconut-bran | ||||||||||||
| 泥炭Peat | 0.15 | 80.32 | 5.85 | 74.47 | 0.08 | 67.99 | 0.77 | 1 125.82 | 302.28 | 1 619.90 | 5.23 | 0.73 |
| 珍珠岩 | 0.07 | 64.65 | 31.40 | 33.24 | 0.95 | 0.84 | 0 | 3.44 | 14.18 | 688.63 | 7.80 | 0 |
| Pearlite |
| 处理 Treatment | 物料构成Material composition/% | ||
|---|---|---|---|
| 椰糠Coconut bran | 泥炭Peat | 珍珠岩Perlite | |
| T1 | 100 | 0 | 0 |
| T2 | 80 | 10 | 10 |
| T3 | 60 | 20 | 20 |
| T4 | 40 | 30 | 30 |
| T5 | 20 | 40 | 40 |
| T6 | 0 | 50 | 50 |
| T7 | 33.33 | 33.33 | 33.33 |
表2 复配基质物料体积比
Table 2 The compound substrate in different volume ratio
| 处理 Treatment | 物料构成Material composition/% | ||
|---|---|---|---|
| 椰糠Coconut bran | 泥炭Peat | 珍珠岩Perlite | |
| T1 | 100 | 0 | 0 |
| T2 | 80 | 10 | 10 |
| T3 | 60 | 20 | 20 |
| T4 | 40 | 30 | 30 |
| T5 | 20 | 40 | 40 |
| T6 | 0 | 50 | 50 |
| T7 | 33.33 | 33.33 | 33.33 |
图1 不同复配基质的物理性质 不同小写字母表示不同处理间差异显著(P <0.05)。下同。
Fig.1 Physical properties of different compound substrate Different lowercase letters indicate significant differences among the different treatment at the 0.05 probability level. The same as below.
| 处理编号 Treatment | 有机质含量 Organic matter content/% | 全氮含量 Total nitrogen content/% | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
|---|---|---|---|---|---|---|---|
| T1 | 82.36±0.78 a | 0.42±0.01 e | 358.57±48.21 f | 161.52±3.42 e | 8 854.48±74.61 a | 5.88±0.08 b | 1.60±0.07 a |
| T2 | 71.68±1.13 b | 0.46±0.01 d | 826.44±36.19 e | 228.15±1.95 d | 8 117.78±76.77 b | 5.78±0.16 b | 1.42±0.08 b |
| T3 | 65.77±1.85 c | 0.48±0.01 cd | 907.15±23.90 d | 232.12±2.95 cd | 5 183.28±110.67 c | 5.58±0.04 c | 1.22±0.04 c |
| T4 | 55.52±2.04 d | 0.49±0.02 bc | 962.54±28.38 c | 235.06±2.10 bc | 3 590.3±148.68 d | 5.48±0.08 cd | 0.92±0.04 d |
| T5 | 47.12±2.04 f | 0.51±0.02 ab | 1 049.54±64.53 b | 239.61±3.92 b | 2 194.16±54.26 f | 5.42±0.08 d | 0.72±0.04 f |
| T6 | 40.40±2.33 g | 0.52±0.01 a | 1 114.59±43.56 a | 247.74±9.34 a | 1 054.48±69.16 g | 5.38±0.11 d | 0.50±0.01 g |
| T7 | 52.75±1.24 e | 0.50±0.02 ab | 1 003.60±29.75 bc | 237.13±2.04 bc | 2 748.1±68.76 e | 5.46±0.09 cd | 0.80±0.01 e |
| CK | 1.77±0.20 h | 0.09±0.01 f | 115.16±3.46 g | 16.08±0.79 f | 172.73±6.14 h | 7.58±0.08 a | 0.12±0.04 h |
表3 不同复配基质的化学性质
Table 3 Chemical properties of different compound substrates
| 处理编号 Treatment | 有机质含量 Organic matter content/% | 全氮含量 Total nitrogen content/% | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
|---|---|---|---|---|---|---|---|
| T1 | 82.36±0.78 a | 0.42±0.01 e | 358.57±48.21 f | 161.52±3.42 e | 8 854.48±74.61 a | 5.88±0.08 b | 1.60±0.07 a |
| T2 | 71.68±1.13 b | 0.46±0.01 d | 826.44±36.19 e | 228.15±1.95 d | 8 117.78±76.77 b | 5.78±0.16 b | 1.42±0.08 b |
| T3 | 65.77±1.85 c | 0.48±0.01 cd | 907.15±23.90 d | 232.12±2.95 cd | 5 183.28±110.67 c | 5.58±0.04 c | 1.22±0.04 c |
| T4 | 55.52±2.04 d | 0.49±0.02 bc | 962.54±28.38 c | 235.06±2.10 bc | 3 590.3±148.68 d | 5.48±0.08 cd | 0.92±0.04 d |
| T5 | 47.12±2.04 f | 0.51±0.02 ab | 1 049.54±64.53 b | 239.61±3.92 b | 2 194.16±54.26 f | 5.42±0.08 d | 0.72±0.04 f |
| T6 | 40.40±2.33 g | 0.52±0.01 a | 1 114.59±43.56 a | 247.74±9.34 a | 1 054.48±69.16 g | 5.38±0.11 d | 0.50±0.01 g |
| T7 | 52.75±1.24 e | 0.50±0.02 ab | 1 003.60±29.75 bc | 237.13±2.04 bc | 2 748.1±68.76 e | 5.46±0.09 cd | 0.80±0.01 e |
| CK | 1.77±0.20 h | 0.09±0.01 f | 115.16±3.46 g | 16.08±0.79 f | 172.73±6.14 h | 7.58±0.08 a | 0.12±0.04 h |
图2 不同基质配比下猕猴桃砧木幼苗各时期叶绿素SPAD值变化 不同小写字母表示同一处理下的平均值在不同处理间差异显著(P <0.05)。
Fig.2 Changes of chlorophyll SPAD value of kiwifruit rootstock seedling leaves in different periods under different compound substrate treatments Different lowercase letters indicate the mean value of the same treatment were significantly different among different treatments at the 0.05 probability level.
图3 不同基质配比下猕猴桃砧木幼苗株高、茎粗、干物质积累及根冠比
Fig.3 Plant length, stem diameter, dry matter accumulation and root shoot ratio of kiwifruit rootstock seedlings under different compound substrate treatments
图5 不同基质配比对猕猴桃砧木幼苗各部位的养分含量的影响
Fig.5 Effects of different compound substrate treatments on nutrient contents in different parts of kiwifruit rootstock seedlings
图6 基质理化性质与猕猴桃砧木幼苗生长性状的相关性分析
Fig.6 Correlation analysis between physical and chemical properties of substrate and growth characteristics of kiwifruit rootstock seedlings BD, Bulk density; TP, Total porosity; AP, Aeration porosity; WP, Water-holding porosity; AWR, The ratio of aeration porosity (AP) to water-holding porosity (WP); OM, Organic matter; TN, Total nitrogen; AN, Alkali hydrolyzable nitrogen; AP, Available phosphorus; AK, Available potassium; PH, Plant height; SD, Stem diameter; DW, Dry matter weight; RSR, Root shoot ratio; SPAD, Chlorophyll SPAD value; ChTRL, Total root length; TRSA, Total root surface area; TRV, Total root volume; ARD, Average root diameter; RN, The nitrogen content in roots; RP, The phosphorus content in roots; LK, The potassium content in leaves. The same as below.
| 主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累积贡献率 Cumulative contribution rate/% |
|---|---|---|---|
| PC1 | 8.756 | 72.966 | 72.966 |
| PC2 | 2.135 | 17.788 | 90.754 |
| PC3 | 0.424 | 3.536 | 94.290 |
| PC4 | 0.277 | 2.310 | 96.600 |
| PC5 | 0.130 | 1.079 | 97.679 |
| PC6 | 0.084 | 0.701 | 98.381 |
| PC7 | 0.072 | 0.596 | 98.977 |
| PC8 | 0.053 | 0.446 | 99.423 |
| PC9 | 0.025 | 0.205 | 99.628 |
| PC10 | 0.021 | 0.171 | 99.799 |
| PC11 | 0.018 | 0.147 | 99.946 |
| PC12 | 0.006 | 0.054 | 100.000 |
表4 不同基质配比下猕猴桃砧木幼苗生长性状的主成分方差贡献
Table 4 Principal component variance contribution of growth characteristics of kiwifruit rootstock seedlings under different compound substrate treatments
| 主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累积贡献率 Cumulative contribution rate/% |
|---|---|---|---|
| PC1 | 8.756 | 72.966 | 72.966 |
| PC2 | 2.135 | 17.788 | 90.754 |
| PC3 | 0.424 | 3.536 | 94.290 |
| PC4 | 0.277 | 2.310 | 96.600 |
| PC5 | 0.130 | 1.079 | 97.679 |
| PC6 | 0.084 | 0.701 | 98.381 |
| PC7 | 0.072 | 0.596 | 98.977 |
| PC8 | 0.053 | 0.446 | 99.423 |
| PC9 | 0.025 | 0.205 | 99.628 |
| PC10 | 0.021 | 0.171 | 99.799 |
| PC11 | 0.018 | 0.147 | 99.946 |
| PC12 | 0.006 | 0.054 | 100.000 |
| 指标 Index | 主成分载荷矩阵 Principal component loading matrix | 主成分特征向量 Principal component feature vector | ||
|---|---|---|---|---|
| PC1 | PC2 | PC1 | PC2 | |
| 株高PH (X1) | 0.860 | 0.435 | 0.087 | 0.079 |
| 茎粗SD (X2) | 0.746 | 0.613 | 0.047 | 0.167 |
| 干物质积累量DW(X3) | 0.959 | 0.223 | 0.128 | -0.023 |
| 根冠比RSR (X4) | 0.118 | -0.871 | 0.125 | -0.381 |
| 叶绿素含量 | 0.906 | 0.322 | 0.108 | 0.025 |
| SPAD (X5) | ||||
| 总根长RL (X6) | 0.967 | -0.131 | 0.173 | -0.172 |
| 总根表面积 | 0.984 | -0.008 | 0.161 | -0.123 |
| RAS (X7) | ||||
| 总根体积RV (X8) | 0.983 | 0.101 | 0.147 | -0.077 |
| 平均根直径 | 0.568 | 0.647 | 0.014 | 0.203 |
| ARD (X9) | ||||
| 根氮含量RN (X10) | 0.817 | 0.480 | 0.074 | 0.103 |
| 根磷含量RP (X11) | 0.961 | 0.163 | 0.136 | -0.048 |
| 叶钾含量LK (X12) | -0.164 | -0.923 | 0.085 | -0.368 |
表5 不同基质配比下猕猴桃砧木幼苗生长性状的主成分载荷矩阵、特征向量
Table 5 Principal component loading matrix and eigenvector of growth characteristics of kiwifruit rootstock seedlings under different compound substrate treatments
| 指标 Index | 主成分载荷矩阵 Principal component loading matrix | 主成分特征向量 Principal component feature vector | ||
|---|---|---|---|---|
| PC1 | PC2 | PC1 | PC2 | |
| 株高PH (X1) | 0.860 | 0.435 | 0.087 | 0.079 |
| 茎粗SD (X2) | 0.746 | 0.613 | 0.047 | 0.167 |
| 干物质积累量DW(X3) | 0.959 | 0.223 | 0.128 | -0.023 |
| 根冠比RSR (X4) | 0.118 | -0.871 | 0.125 | -0.381 |
| 叶绿素含量 | 0.906 | 0.322 | 0.108 | 0.025 |
| SPAD (X5) | ||||
| 总根长RL (X6) | 0.967 | -0.131 | 0.173 | -0.172 |
| 总根表面积 | 0.984 | -0.008 | 0.161 | -0.123 |
| RAS (X7) | ||||
| 总根体积RV (X8) | 0.983 | 0.101 | 0.147 | -0.077 |
| 平均根直径 | 0.568 | 0.647 | 0.014 | 0.203 |
| ARD (X9) | ||||
| 根氮含量RN (X10) | 0.817 | 0.480 | 0.074 | 0.103 |
| 根磷含量RP (X11) | 0.961 | 0.163 | 0.136 | -0.048 |
| 叶钾含量LK (X12) | -0.164 | -0.923 | 0.085 | -0.368 |
| 处理编号 Tratment | PC1 | PC2 | 综合评分 Composite score | 排名 Ranking |
|---|---|---|---|---|
| T1 | -0.921 | -1.118 | -0.871 | 7 |
| T2 | -0.296 | -1.218 | -0.433 | 6 |
| T3 | 0.211 | -0.968 | -0.018 | 5 |
| T4 | 0.419 | -0.187 | 0.272 | 4 |
| T5 | 1.194 | 0.275 | 0.920 | 1 |
| T6 | 0.844 | 0.999 | 0.794 | 2 |
| T7 | 0.572 | 0.905 | 0.578 | 3 |
| CK | -2.023 | 1.310 | -1.243 | 8 |
表6 不同基质配比下猕猴桃砧木幼苗生长性状的综合评价
Table 6 Comprehensive evaluation of growth characteristics of kiwifruit rootstock seedlings under different compound substrate treatments
| 处理编号 Tratment | PC1 | PC2 | 综合评分 Composite score | 排名 Ranking |
|---|---|---|---|---|
| T1 | -0.921 | -1.118 | -0.871 | 7 |
| T2 | -0.296 | -1.218 | -0.433 | 6 |
| T3 | 0.211 | -0.968 | -0.018 | 5 |
| T4 | 0.419 | -0.187 | 0.272 | 4 |
| T5 | 1.194 | 0.275 | 0.920 | 1 |
| T6 | 0.844 | 0.999 | 0.794 | 2 |
| T7 | 0.572 | 0.905 | 0.578 | 3 |
| CK | -2.023 | 1.310 | -1.243 | 8 |
| [1] | WARRINGTON I J, WESTON G C. Kiwifruits: science and management[M]. Auckland: Ray Richards Publisher, 1990: 183-204. |
| [2] | 黄诚, 周长春, 李伟. 猕猴桃的营养保健功能与开发利用研究[J]. 食品科技, 2007, 32(4): 51-55. |
| HUANG C, ZHOU C C, LI W. Nutrition and health care function of kiwi fruit and its processing technique[J]. Food Science and Technology, 2007, 32(4): 51-55. (in Chinese with English abstract) | |
| [3] | 齐秀娟, 郭丹丹, 王然, 等. 我国猕猴桃产业发展现状及对策建议[J]. 果树学报, 2020, 37(5): 754-763. |
| QI X J, GUO D D, WANG R, et al. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science, 2020, 37(5): 754-763. (in Chinese with English abstract) | |
| [4] | WEBSTER A D. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity[J]. New Zealand Journal of Crop and Horticultural Science, 1995, 23(4): 373-382. |
| [5] | 陈锦永, 方金豹, 齐秀娟, 等. 猕猴桃砧木研究进展[J]. 果树学报, 2015, 32(5): 959-968. |
| CHEN J Y, FANG J B, QI X J, et al. Research progress on rootstock of kiwifruit[J]. Journal of Fruit Science, 2015, 32(5): 959-968. (in Chinese with English abstract) | |
| [6] | GJELOSHI G, THOMAI T, VRAPI H. Influence of supporter substrate on the rooting percentage of kiwifruit cuttings (Actinide Delicious Cv. Hayward)[J]. International Refereed Journal of Engineering and Science, 2014, 3 (12): 10-14. |
| [7] | 李雪, 李红莉, 逄宏扬. 不同基质对软枣猕猴桃扦插育苗的影响[J]. 中国林副特产, 2021(6): 6-7. |
| LI X, LI H L, PANG H Y. Effects of different substrates on cutting seedling of Actinidia arguta Siet.et Zucc[J]. Forest by-Product and Speciality in China, 2021(6): 6-7. (in Chinese with English abstract) | |
| [8] | 朱世东, 徐文娟, 赵国荣. 多功能营养型蔬菜无土栽培基质的特性研究[J]. 应用生态学报, 2002, 13(4): 425-428. |
| ZHU S D, XU W J, ZHAO G R. Characteristics of functional and nutritious soilless culture substrate for vegetables[J]. Chinese Journal of Applied Ecology, 2002, 13(4): 425-428. (in Chinese with English abstract) | |
| [9] | 邵兴华, 熊佳文, 季天委. 无土栽培常用营养液及应用综述[J]. 东北农业科学, 2018, 43(2): 40-43. |
| SHAO X H, XIONG J W, JI T W. A review on soilless culture solutions and their application[J]. Journal of Northeast Agricultural Sciences, 2018, 43(2): 40-43. (in Chinese with English abstract) | |
| [10] | BOLDRIN A, HARTLING K R, LAUGEN M, et al. Environmental inventory modelling of the use of compost and peat in growth media preparation[J]. Resources, Conservation and Recycling, 2010, 54(12): 1250-1260. |
| [11] | 张婧, 吴慧, 程云霞, 等. 椰糠复合基质对番茄穴盘幼苗生长效应的综合评价[J]. 土壤通报, 2021, 52(5): 1156-1164. |
| ZHANG J, WU H, CHENG Y X, et al. Comprehensive evaluation of the growth effect of coconut-bran compound substrate on tomato plug seedling[J]. Chinese Journal of Soil Science, 2021, 52(5): 1156-1164. (in Chinese with English abstract) | |
| [12] | ABAD M, NOGUERA P, PUCHADES R, et al. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants[J]. Bioresource Technology, 2002, 82(3): 241-245. |
| [13] | 代惠洁, 纪祥龙, 杜迎刚. 椰糠替代草炭作番茄穴盘育苗基质的研究[J]. 北方园艺, 2015(9): 46-48. |
| DAI H J, JI X L, DU Y G. Study on substitution of peat with coconut chaff as substrates on growth of tomato seedlings[J]. Northern Horticulture, 2015(9): 46-48. (in Chinese with English abstract) | |
| [14] | 汪佳维, 王华磊, 王灿彬, 等. 蚯蚓粪、椰糠复配基质对三七种苗生长的影响[J]. 中国土壤与肥料, 2022(5): 107-115. |
| WANG J W, WANG H L, WANG C B, et al. Effects of earthworm dung and coconut bran composite substrate on the growth of Panax notoginseng seedlings[J]. Soil and Fertilizer Sciences in China, 2022(5): 107-115. (in Chinese with English abstract) | |
| [15] | 张天天, 赵远方, 韩莹琰, 等. 椰糠和蛭石混配基质对生菜幼苗生长的影响[J]. 北京农学院学报, 2019, 34(2): 42-46. |
| ZHANG T T, ZHAO Y F, HAN Y Y, et al. Effects of coir and vermiculite mixed substrate on the growth of lettuce seedlings[J]. Journal of Beijing University of Agriculture, 2019, 34(2): 42-46. (in Chinese with English abstract) | |
| [16] | 邱志豪, 汤柔颖, 韩莹琰, 等. 椰糠与蛭石混配基质理化性状及其对生菜生长的影响[J]. 北京农学院学报, 2019, 34(4): 62-65. |
| QIU Z H, TANG R Y, HAN Y Y, et al. Physicochemical properties of coir dust and vermiculite mixed substrate and its effect on lettuce growth[J]. Journal of Beijing University of Agriculture, 2019, 34(4): 62-65. (in Chinese with English abstract) | |
| [17] | 任志雨, 郜永博. 椰糠珍珠岩基质的体积对黄瓜幼苗生长和质量的影响[J]. 江苏农业科学, 2018, 46(15): 87-89. |
| REN Z Y, GAO Y B. Effects of coir dust and perlite substrate volume on growth and quality of cucumber seedlings[J]. Jiangsu Agricultural Sciences, 2018, 46(15): 87-89. (in Chinese) | |
| [18] | 曾斌, 何科佳, 龚碧涯, 等. 栽培基质添加椰糠和锯末对盆栽蓝莓生长的影响[J]. 中国南方果树, 2019, 48(4): 87-90. |
| ZENG B, HE K J, GONG B Y, et al. Effects of adding coir and saw dust to culture medium on growth of ‘Legacy’ blueberry in pot[J]. South China Fruits, 2019, 48(4): 87-90. (in Chinese) | |
| [19] | 张真真, 邱立军, 郭卫东. 不同栽培基质对蓝莓果实品质的影响[J]. 浙江农业科学, 2022, 63(2): 310-317. |
| ZHANG Z Z, QIU L J, GUO W D. Effect of different culture medium on blueberry fruit quality[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(2): 310-317. (in Chinese) | |
| [20] | 田河, 师校欣, 杜国强, 等. 基质及营养液对苹果矮砧组培苗移栽后生长的影响[J]. 北方园艺, 2013(6): 8-11. |
| TIAN H, SHI X X, DU G Q, et al. Effect of substrate and nutrient solution supplied on growth of plantlets of apple dwarf rootstocks in vitro[J]. Northern Horticulture, 2013(6): 8-11. (in Chinese with English abstract) | |
| [21] | VERŠIČ S, KOCSIS L, PULKO B. Influence of substrate pH on root growth, biomass and leaf mineral contents of grapevine rootstocks grown in pots[J]. Journal of Agricultural Science and Technology, 2016, 18: 483-490. |
| [22] | SONNEVELD C, VOOGT W. Nutrient solutions for soilless cultures[M]// Plant Nutrition of Greenhouse Crops. Dordrecht: Springer Netherlands, 2009: 257-275. |
| [23] | 郭世荣. 无土栽培学[M]. 2版. 北京: 中国农业出版社, 2011. |
| [24] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [25] | 李志辉, 罗平. SPSS常用统计分析教程: SPSS 22.0中英文版[M]. 4版. 北京: 电子工业出版社, 2015. |
| [26] | 吴澎, 贾朝爽, 范苏仪, 等. 樱桃品种果实品质因子主成分分析及模糊综合评价[J]. 农业工程学报, 2018, 34(17): 291-300. |
| WU P, JIA C S, FAN S Y, et al. Principal component analysis and fuzzy comprehensive evaluation of fruit quality in cultivars of cherry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 291-300. (in Chinese with English abstract) | |
| [27] | 王斌会. 多元统计分析及R语言建模[M]. 4版. 广州: 暨南大学出版社, 2016. |
| [28] | 周璐瑶, 赵士文, 杜清洁, 等. 不同花生壳基质配比对西瓜生长、产量和品质的影响[J]. 中国瓜菜, 2022, 35(6): 29-34. |
| ZHOU L Y, ZHAO S W, DU Q J, et al. Peanut shell substrate ratio affects growth, yield and quality of watermelon[J]. China Cucurbits and Vegetables, 2022, 35(6): 29-34. (in Chinese with English abstract) | |
| [29] | 张莹莹, 孙周平, 刘广晶, 等. 根区通气方式对番茄根际气体环境及基质理化性质的影响[J]. 西北农业学报, 2011, 20(4): 106-110. |
| ZHANG Y Y, SUN Z P, LIU G J, et al. Effect of different root-zone aeration methods on tomato media characteristic[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(4): 106-110. (in Chinese with English abstract) | |
| [30] | 郭世荣. 固体栽培基质研究、开发现状及发展趋势[J]. 农业工程学报, 2005, 21(S2): 1-4. |
| GUO S R. Research progress, current exploitations and developing trends of solid cultivation medium[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 1-4. (in Chinese with English abstract) | |
| [31] | 张硕, 余宏军, 蒋卫杰. 发酵玉米芯或甘蔗渣基质的黄瓜育苗效果[J]. 农业工程学报, 2015, 31(11): 236-242. |
| ZHANG S, YU H J, JIANG W J. Seedling effects of corncob and bagasse composting substrates in cucumber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 236-242. (in Chinese with English abstract) | |
| [32] | 李彩霞, 林碧英, 杨玉凯, 等. 椰糠、蚯蚓粪复合基质对茄幼苗生长的影响[J]. 江苏农业科学, 2019, 47(2): 145-148. |
| LI C X, LIN B Y, YANG Y K, et al. Effect of coconut bran and earthworm feces compound matrix on growth of eggplant seedlings[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 145-148. (in Chinese) | |
| [33] | 李谦盛, 郭世荣, 李式军. 基质EC值与作物生长的关系及其测定方法比较[J]. 中国蔬菜, 2004 (1): 70 - 71. |
| LI Q S, GUO S R, LI S J. Relationship between matrix EC value and crop growth and the comparison of determination methods[J]. China Vegetables, 2004 (1): 70-71. (in Chinese) | |
| [34] | 康红梅, 张启翔, 唐菁. 栽培基质的研究进展[J]. 土壤通报, 2005, 36(1): 124-127. |
| KANG H M, ZHANG Q X, TANG J. Research advances on growth media[J]. Chinese Journal of Soil Science, 2005, 36(1): 124-127. (in Chinese with English abstract) | |
| [35] | 黄春辉, 曲雪艳, 刘科鹏, 等. ‘金魁’猕猴桃园土壤理化性状、叶片营养与果实品质状况分析[J]. 果树学报, 2014, 31(6): 1091-1099. |
| HUANG C H, QU X Y, LIU K P, et al. Analysis of soil physicochemical properties, leaf nutrients and fruit qualities in the orchards of ‘Jinkui’ kiwifruit (Actinidia deliciosa)[J]. Journal of Fruit Science, 2014, 31(6): 1091-1099. (in Chinese with English abstract) | |
| [36] | 王保平, 周静, 史向远, 等. 不同配比杏鲍菇渣基质对西瓜生长及光合特性的影响[J]. 北方园艺, 2021(21): 8-15. |
| WANG B P, ZHOU J, SHI X Y, et al. Effects of different proportion of Pleurotus eryngii residue substrates on growth and photosynthetic characteristics of watermelon[J]. Northern Horticulture, 2021(21): 8-15. (in Chinese with English abstract) | |
| [37] | HARTUNG W, ZHANG J H, DAVIES W J. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil?[J]. Journal of Experimental Botany, 1994, 45(2): 221-226. |
| [38] | 刘晚苟, 何泳怡, 谢海容, 等. 设施砂壤土容重对番茄幼苗生长和根系构型的影响[J]. 园艺学报, 2015, 42(7): 1313-1320. |
| LIU W G, HE Y Y, XIE H R, et al. Effects of bulk density of sandy loam soil on seedling growth and root architecture of tomato plants in greenhouse[J]. Acta Horticulturae Sinica, 2015, 42(7): 1313-1320. (in Chinese with English abstract) | |
| [39] | 朱根海, 张荣铣. 叶片含氮量与光合作用[J]. 植物生理学通讯, 1985, 21(2): 9-12. |
| ZHU G H, ZHANG R X. Leaf nitrogen content and photosynthesis[J]. Plant Physiology Communications, 1985, 21(2): 9-12. (in Chinese) | |
| [40] | 杨虎, 戈长水, 应武, 等. 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响[J]. 植物营养与肥料学报, 2014, 20(3): 580-587. |
| YANG H, GE C S, YING W, et al. Effect of shading on leaf SPAD values and the characteristics of photosynthesis and morphology of rice canopy[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 580-587. (in Chinese with English abstract) | |
| [41] | FARRISH K W. Spatial and temporal fine-root distribution in three Louisiana forest soils[J]. Soil Science Society of America Journal, 1991, 55(6): 1752-1757. |
| [42] | FAN J W, DU Y L, TURNER N C, et al. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil[J]. Plant and Soil, 2015, 392(1/2): 215-226. |
| [43] | 韦兰英, 上官周平. 黄土高原白羊草、沙棘和辽东栎细根比根长特性[J]. 生态学报, 2006, 26(12): 4164-4170. |
| WEI L Y, SHANGGUAN Z P. Specific root length characteristics of three plant species, Bothriochloa ischaemum, Hippophae rhamnoidess and Quercus liaotungensis in the Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(12): 4164-4170. (in Chinese with English abstract) | |
| [44] | TRACY S R, BLACK C R, ROBERTS J A, et al. Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.)[J]. Environmental and Experimental Botany, 2013, 91: 38-47. |
| [45] | 崔晓明, 张亚如, 张晓军, 等. 土壤紧实度对花生根系生长和活性变化的影响[J]. 华北农学报, 2016, 31(6): 131-136. |
| CUI X M, ZHANG Y R, ZHANG X J, et al. Effects of soil compaction on root growth and activity of peanut[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(6): 131-136. (in Chinese with English abstract) | |
| [46] | PETICILA A, SCAETEANU G V, MADJAR R, et al. Fertilization effect on mineral nutrition of Actinidia deliciosa(kiwi) cultivated on different substrates[J]. Agriculture and Agricultural Science Procedia, 2015, 6: 132-138. |
| [47] | 王建. 猕猴桃树体生长发育,养分吸收利用与累积规律[D]. 杨凌: 西北农林科技大学, 2008. |
| WANG J. The growth, nutrients uptake, utilization and accumulation in kiwifruit tree[D]. Yangling: Northwest A & F University, 2008. (in Chinese with English abstract) |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 刘国敏, 郑虚, 廖玉娇, 覃叶欣, 覃维治. 嫁接对低温胁迫下马铃薯苗抗寒性的影响[J]. 浙江农业学报, 2025, 37(8): 1615-1623. |
| [3] | 赵福康, 梅欢, 张晓莹, 傅巧娟. 秀珍菇菌渣用作杂交兰组培苗栽培基质的可行性[J]. 浙江农业学报, 2025, 37(8): 1716-1722. |
| [4] | 谈亚丽, 高梦祥, 李晓洁, 周英杰, 熊健, 曾子琦, 李啸, 杨华. 湖北省主栽核桃在不同采收期的品质[J]. 浙江农业学报, 2025, 37(7): 1459-1468. |
| [5] | 江振蓝, 陈付勋, 罗双飞, 罗烨琴, 沙晋明. 基于多光谱变换和主成分分析的土壤全铁含量随机森林模型反演[J]. 浙江农业学报, 2025, 37(7): 1521-1532. |
| [6] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [7] | 邹俊燕, 王筠竹, 赵婉秋, 尹志浩, 杜建科, 孙崇波. 兰科植物原球茎和类原球茎研究进展[J]. 浙江农业学报, 2025, 37(6): 1372-1389. |
| [8] | 岳丽, 庄红梅, 祖力皮牙·买买提, 王佳敏, 毛红艳, 张英仙, 尼格尔热依·亚迪卡尔, 于明. 基于主成分分析与聚类分析的芜菁肉质根质地品质综合评价[J]. 浙江农业学报, 2025, 37(5): 1057-1071. |
| [9] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [10] | 吴昊霖, 王淑珍, 朱祝军, 何勇. 基于近红外光谱技术和机器学习模型的基质氮含量快速检测[J]. 浙江农业学报, 2025, 37(5): 1159-1171. |
| [11] | 胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190. |
| [12] | 刘思彤, 侯宇, 潘家荃, 周桦楠, 崔亮, 万博, 于涛. 甘薯对低温胁迫的生理响应及耐寒性评价[J]. 浙江农业学报, 2025, 37(4): 767-778. |
| [13] | 任安琪, 黄依然, 万映伶, 刘燕. 生长素对芍药花茎表型和解剖结构的影响[J]. 浙江农业学报, 2025, 37(3): 591-602. |
| [14] | 徐汇镔, 朱洁, 周朝生, 胡园, 陆荣茂. 基于响应面分析的养殖水产品中高风险喹诺酮类抗生素残留及其基质效应研究[J]. 浙江农业学报, 2025, 37(3): 689-700. |
| [15] | 谈静如, 胡齐赞, 岳智臣, 陶鹏, 雷娟利, 李必元, 赵彦婷, 臧运祥. 基于叶绿素荧光参数的苗用型大白菜耐热性综合评价体系[J]. 浙江农业学报, 2025, 37(2): 288-299. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||