[1] |
WANG W Y, CHEN W S, CHEN W H, et al. Influence of abscisic acid on flowering in Phalaenopsis hybrida[J]. Plant Physiology and Biochemistry, 2002, 40(1): 97-100.
|
[2] |
HSIAO Y Y, PAN Z J, HSU C C, et al. Research on orchid biology and biotechnology[J]. Plant and Cell Physiology, 2011, 52(9): 1467-1486.
|
[3] |
CHUGH S, GUHA S, RAO I U. Micropropagation of orchids: a review on the potential of different explants[J]. Scientia Horticulturae, 2009, 122(4): 507-520.
|
[4] |
ENDO M, IKUSIMA I. Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant[J]. Plant and Cell Physiology, 1989, 30(1): 43-47.
|
[5] |
BLANCHARD M G, RUNKLE E S. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids[J]. Journal of Experimental Botany, 2006, 57(15): 4043-4049.
|
[6] |
WANG Y T. Average daily temperature and reversed day/night temperature regulate vegetative and reproductive responses of a Doritis pulcherrima Lindley hybrid[J]. HortScience, 2007, 42(1): 68-70.
|
[7] |
AN S K, KIM Y J, KIM K S. Optimum heating hour to maintain vegetative growth and inhibit premature inflorescence initiation of six-month and one-year-old Phalaenopsis hybrids[J]. Horticulture, Environment, and Biotechnology, 2013, 54(2): 91-96.
|
[8] |
NEWTON L A, RUNKLE E S. High-temperature inhibition of flowering of Phalaenopsis and doritaenopsis orchids[J]. HortScience, 2009, 44(5): 1271-1276.
|
[9] |
LEE H B, AN S K, KIM K S. Inhibition of premature flowering by intermittent high temperature treatment to young Phalaenopsis plants[J]. Horticulture, Environment, and Biotechnology, 2015, 56(5): 618-625.
|
[10] |
CHEN W H, TSENG Y C, LIU Y C, et al. Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite[J]. Plant Cell Reports, 2008, 27(10): 1667-1675.
|
[11] |
PARADISO R, MAGGIO A, DE PASCALE S. Moderate variations of day/night temperatures affect flower induction and inflorescence development in Phalaenopsis[J]. Scientia Horticulturae, 2012, 139: 102-107.
|
[12] |
LOPEZ R G, RUNKLE E S. Environmental physiology of growth and flowering of orchids[J]. HortScience, 2005, 40(7): 1969-1973.
|
[13] |
WANG Y T. Phalaenopsis orchid light requirement during the induction of spiking[J]. HortScience, 1995, 30(1): 59-61.
|
[14] |
GUO W J, LIN Y Z, LEE N. Photosynthetic light requirements and effects of low irradiance and daylength on Phalaenopsis amabilis[J]. Journal of the American Society for Horticultural Science, 2012, 137(6): 465-472.
|
[15] |
HÜCKSTÄDT A B, TORRE S. Irradiance during vegetative growth phase affects production time and reproductive development of Phalaenopsis[J]. European Journal of Horticultural Science, 2013, 78(4): 160-168.
|
[16] |
LIU Y C, LIU C H, LIN Y C, et al. Effect of low irradiance on the photosynthetic performance and spiking of Phalaenopsis[J]. Photosynthetica, 2016, 54(2): 259-266.
|
[17] |
LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[M]// Methods in Enzymology. Amsterdam: Elsevier, 1987: 350-382.
|
[18] |
MORRIS D L. Quantitative determination of carbohydrates with dreywood’s anthrone reagent[J]. Science, 1948, 107(2775): 254-255.
|
[19] |
ZAPATA C, DELÉENS E, CHAILLOU S, et al. Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.)[J]. Journal of Plant Physiology, 2004, 161(9): 1031-1040.
|
[20] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
|
[21] |
NOBEL P S. Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants[J]. New Phytologist, 1991, 119(2): 183-205.
|
[22] |
许申平, 曾兰婷, 叶庆生. 长期增施CO2对蝴蝶兰生长与开花的影响[J]. 园艺学报, 2015, 42(8): 1599-1605.
|
|
XU S P, ZENG L T, YE Q S. Effects of long-term elevated CO2 on growth and flowering in Phalaenopsis[J]. Acta Horticulturae Sinica, 2015, 42(8): 1599-1605. (in Chinese with English abstract)
|
[23] |
DODD A N, BORLAND A M, HASLAM R P, et al. Crassulacean acid metabolism: plastic, fantastic[J]. Journal of Experimental Botany, 2002, 53(369): 569-580.
|
[24] |
CEUSTERS J, BORLAND A M, GODTS C, et al. Crassulacean acid metabolism under severe light limitation: a matter of plasticity in the shadows?[J]. Journal of Experimental Botany, 2011, 62(1): 283-291.
|
[25] |
WU P H, LIU C H, TSENG K M, et al. Low irradiance alters carbon metabolism and delays flower stalk development in two orchids[J]. Biologia Plantarum, 2013, 57(4): 764-768.
|
[26] |
LÜTTGE U. Ecophysiology of crassulacean acid metabolism (CAM)[J]. Annals of Botany, 2004, 93(6): 629-652.
|
[27] |
LEE H B, JEONG S J, LIM N H, et al. Correlation between carbohydrate contents in the leaves and inflorescence initiation in Phalaenopsis[J]. Scientia Horticulturae, 2020, 265: 109270.
|
[28] |
QIN Q P, KAAS Q, ZHANG C, et al. The cold awakening of Doritaenopsis ‘Tinny tender’ orchid flowers: the role of leaves in cold-induced bud dormancy release[J]. Journal of Plant Growth Regulation, 2012, 31(2): 139-155.
|
[29] |
KATAOKA K, SUMITOMO K, FUDANO T, et al. Changes in sugar content of Phalaenopsis leaves before floral transition[J]. Scientia Horticulturae, 2004, 102(1): 121-132.
|
[30] |
韦莉, 彭方仁, 王世博, 等. 蝴蝶兰‘V31’花芽分化的形态观察及几种代谢产物含量的变化[J]. 园艺学报, 2010, 37(8): 1303-1310.
|
|
WEI L, PENG F R, WANG S B, et al. Morphology and changes of several metabolites content during flower bud differentiation in Phalaenopsis[J]. Acta Horticulturae Sinica, 2010, 37(8): 1303-1310. (in Chinese with English abstract)
|
[31] |
YU S M, LO S F, HO T H D. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling[J]. Trends in Plant Science, 2015, 20(12): 844-857.
|
[32] |
许申平, 张燕, 袁秀云, 等. 依据显微结构及光合特性探讨蝴蝶兰花芽分化的时期[J]. 园艺学报, 2020, 47(7): 1359-1368.
|
|
XU S P, ZHANG Y, YUAN X Y, et al. Explore the key period of floral determination based on the microstructure and photosynthetic characteristics in Phalaenopsis[J]. Acta Horticulturae Sinica, 2020, 47(7): 1359-1368. (in Chinese with English abstract)
|
[33] |
CHO A R, CHUNG S W, KIM Y J. Flowering responses under elevated CO2 and graded nutrient supply in Phalaenopsis Queen Beer ‘Mantefon’[J]. Scientia Horticulturae, 2020, 273: 109602.
|
[34] |
CHO A R, SONG S J, CHUNG S W, et al. CO2 enrichment with higher light level improves flowering quality of Phalaenopsis queen beer ‘mantefon’[J]. Scientia Horticulturae, 2019, 247: 356-361.
|
[35] |
JEONG S J, LEE H B, AN S K, et al. High temperature stress prior to induction phase delays flowering initiation and inflorescence development in Phalaenopsis queen beer ‘Mantefon’[J]. Scientia Horticulturae, 2020, 263: 109092.
|
[36] |
HOGEWONING S W, BOOGAART S A J, TONGERLO E, et al. CAM-physiology and carbon gain of the orchid Phalaenopsisin response to light intensity, light integral and CO2[J]. Plant, Cell & Environment, 2021, 44(3): 762-774.
|
[37] |
SAKANISHI Y, IMANISHI H, ISHIDA G. Effect of temperature on growth and flowering of Phalaenopsis amabilis[J]. Bulletin of the University of Osaka Prefecture, B, 1980, 32: 1-9.
|