浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1703-1712.DOI: 10.3969/j.issn.1004-1524.2022.08.14
许申平(), 张燕, 梁芳, 蒋素华, 牛苏燕, 崔波, 袁秀云*(
)
收稿日期:
2021-10-22
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
袁秀云
作者简介:
*袁秀云,E-mail: yuanxiuyun@zznu.edu.cn基金资助:
XU Shenping(), ZHANG Yan, LIANG Fang, JIANG Suhua, NIU Suyan, CUI Bo, YUAN Xiuyun*(
)
Received:
2021-10-22
Online:
2022-08-25
Published:
2022-08-26
Contact:
YUAN Xiuyun
摘要:
E类MADS-box是花器官发育分子模型中必不可少的基因,通过突变体研究其表达模式将为深入理解兰科植物花器官的分子机理与完善花发育调控理论提供依据。采用RACE(rapid-amplification of cDNA ends)技术从蝴蝶兰花瓣中克隆了一个E类MADS-box基因PhaSEP3(GenBank登录号为MZ436812),并采用实时荧光定量PCR(qRT-PCR)分析了该基因在蝴蝶兰不同组织和5种突变体中的表达水平。结果表明,该基因cDNA全长为1 236 bp,具有753 bp的开放阅读框(ORF),可编码250个氨基酸,其C端具有SEPⅠ和SEPⅡ基序。系统进化分析显示,该基因编码蛋白质与蝴蝶兰属的PeSEP3和AGL9亲缘关系最近。组织特异表达分析表明,PhaSEP3基因主要在生殖器官和授粉后子房中表达;在不同突变体中,PhaSEP3基因在侧萼唇瓣化突变体的萼片和唇瓣中表达水平显著升高;在退化雄蕊瓣化突变体的侧瓣、唇瓣和子房中表达水平显著降低,在蕊柱中的表达水平显著升高;在侧瓣唇瓣化突变体的侧瓣和唇瓣中表达水平显著升高;在侧瓣退化突变体的侧瓣中表达水平显著降低,而在蕊柱和子房中表达水平显著升高;在侧瓣雄化突变体中,该基因的表达水平在萼片和侧瓣中均显著升高。分析认为,PhaSEP3基因主要调控蝴蝶兰花器官各轮组织与授粉后子房的发育,在突变体花器官中,PhaSEP3类基因可能与其他花发育基因互作参与花器官形态的发育调控。该研究结果为进一步理解兰科植物花器官多样性的调控机理提供了资料。
中图分类号:
许申平, 张燕, 梁芳, 蒋素华, 牛苏燕, 崔波, 袁秀云. 蝴蝶兰PhaSEP3基因的克隆及其在突变体中的表达[J]. 浙江农业学报, 2022, 34(8): 1703-1712.
XU Shenping, ZHANG Yan, LIANG Fang, JIANG Suhua, NIU Suyan, CUI Bo, YUAN Xiuyun. Cloning of PhaSEP3 gene in Phalaenopsis and its expression in floral organ mutants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1703-1712.
图2 蝴蝶兰突变体花器官 A,内山姑娘;B,S1024;C,火鸟;D,富乐夕阳;E,婚宴。
Fig.2 Mutant flower organs of Phalaenopsis A, Ney Shai Gu Niang; B, Red Coral S1024; C, Sogo Beach; D, Fuller's Sunset; E, Wedding Promenade.
引物类别 Primer category | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') |
---|---|---|
保守片段扩增 | SEP-F | GMTGAAGAKGATYGAGAACAAGA |
Conserved fragment amplification | SEP-R | TAGCTGGTCRAGCATSAACTG |
3'RACE | outer | AGCAATTAGAGAGGCAACTGGAC |
inner | ATCAAGGGAGACCCAGAATAGTC | |
5'RACE | outer | TCTTTGCAAGGCTTCTACTCTGGA |
inner | TACTTGTGTTGCTGCAGAACTCG | |
ORF扩增 | ORF-F | ATGGGAAGAGGGAGAGTGGAG |
ORF amplification | ORF-R | CATAATGTAATAAGGGGGAAAGCC |
qRT-PCR | qSEP-F | GAGCCCTAAAGATAAGGTTTGAGG |
qSEP-R | ACTGTTGAAGTAGTCGCCGTTG | |
内参基因 | Act-F | GCAGCATGAAGATCAAGGTGG |
Reference genes | Act-R | GCCTTAGAAATCCACATCTGTTG |
表1 引物信息
Table 1 Information of primers
引物类别 Primer category | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') |
---|---|---|
保守片段扩增 | SEP-F | GMTGAAGAKGATYGAGAACAAGA |
Conserved fragment amplification | SEP-R | TAGCTGGTCRAGCATSAACTG |
3'RACE | outer | AGCAATTAGAGAGGCAACTGGAC |
inner | ATCAAGGGAGACCCAGAATAGTC | |
5'RACE | outer | TCTTTGCAAGGCTTCTACTCTGGA |
inner | TACTTGTGTTGCTGCAGAACTCG | |
ORF扩增 | ORF-F | ATGGGAAGAGGGAGAGTGGAG |
ORF amplification | ORF-R | CATAATGTAATAAGGGGGAAAGCC |
qRT-PCR | qSEP-F | GAGCCCTAAAGATAAGGTTTGAGG |
qSEP-R | ACTGTTGAAGTAGTCGCCGTTG | |
内参基因 | Act-F | GCAGCATGAAGATCAAGGTGG |
Reference genes | Act-R | GCCTTAGAAATCCACATCTGTTG |
图3 蝴蝶兰PhaSEP3基因扩增 A,保守片段扩增;B,3' RACE;C,5' RACE;D,开放读码框扩增。1,保守片段;2,3' RACE片段;3,5' RACE片段;4,开放阅读框片段;M,DL2000 分子量标记。
Fig.3 Amplification of PhaSEP3 gene in Phalaenopsis A, Conserved region amplification; B, 3' RACE; C, 5' RACE; D, ORF amplification. 1, Conserved region fragment; 2, Fragment of 3' RACE; 3, Fragment of 5' RACE; 4, Fragment of ORF; M, DL2000 marker.
图7 PhaSEP3基因在蝴蝶兰花器官突变体中的表达 A,S1024;B,内山姑娘;C,火鸟;D,婚宴;E,富乐夕阳;*表示差异显著(P<0.05)。
Fig.7 Expression of PhaSEP3 in floral organ mutants of Phalaenopsis A, Red Coral S1024; B, Ney Shai Gu Niang; C, Sogo Beach; D, Wedding Promenade; E, Fuller's Sunset; * indicated significant difference (P<0.05).
[1] |
MONDRAGÓN-PALOMINO M, THEISSEN G. Conserved differential expression of paralogous DEFICIENS-and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’[J]. The Plant Journal: for Cell and Molecular Biology, 2011, 66(6): 1008-1019.
DOI URL |
[2] | SU C L, CHEN W C, LEE A Y, et al. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite[J]. PLoS One, 2013, 8(11): e80462. |
[3] | PAN Z J, CHENG C C, TSAI W C, et al. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth[J]. Plant & Cell Physiology, 2011, 52(9): 1515-1531. |
[4] |
HSU H F, HSU W H, LEE Y I, et al. Model for perianth formation in orchids[J]. Nature Plants, 2015, 1: 15046.
DOI URL |
[5] |
HSU H F, CHEN W H, SHEN Y H, et al. Multifunctional evolution of B and AGL6 MADS box genes in orchids[J]. Nature Communications, 2021, 12: 902.
DOI URL |
[6] | 李成儒, 董钠, 李笑平, 等. 兰科植物花发育调控MADS-box基因家族研究进展[J]. 园艺学报, 2020, 47(10): 2047-2062. |
LI C R, DONG N, LI X P, et al. A review of MADS-box genes, the molecular regulatory genes for floral organ development in Orchidaceae[J]. Acta Horticulturae Sinica, 2020, 47(10): 2047-2062. (in Chinese with English abstract) | |
[7] |
WANG S L, VISWANATH K K, TONG C G, et al. Floral induction and flower development of orchids[J]. Frontiers in Plant Science, 2019, 10: 1258.
DOI URL |
[8] |
王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6): 1149-1158.
DOI |
WANG Y, MU Y X, WANG J. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149-1158. (in Chinese with English abstract) | |
[9] |
PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783): 200-203.
DOI URL |
[10] |
DITTA G, PINYOPICH A, ROBLES P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Current Biology, 2004, 14(21): 1935-1940.
DOI URL |
[11] |
MOREL P, CHAMBRIER P, BOLTZ V, et al. Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-box transcription factor superclade[J]. The Plant Cell, 2019, 31(12): 3033-3056.
DOI URL |
[12] | 相元萍, 黄云彤, 贺洪军, 等. 羽衣甘蓝SEPALLATA-like基因的系统发育与表达分析[J]. 生物工程学报, 2020, 36(11): 2398-2412. |
XIANG Y P, HUANG Y T, HE H J, et al. Phylogenetic and expression analysis of SEPALLATA-like gene in Brassica oleracea L. var. Acephala[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2398-2412. (in Chinese with English abstract) | |
[13] |
LIN Z Y, CAO D D, DAMARIS R N, et al. Genome-wide identification of MADS-box gene family in sacred Lotus(Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development[J]. BMC Plant Biology, 2020, 20(1): 497.
DOI URL |
[14] | 谢小杰, 余海霞, 范志毅, 等. 芒果SEPALLATA3基因的生物信息学与表达分析[J]. 热带作物学报, 2021, 42(9): 2487-2493. |
XIE X J, YU H X, FAN Z Y, et al. Bioinformatics and expression analysis of SEPALLATA3 in Mango[J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2487-2493. (in Chinese with English abstract) | |
[15] |
SLUGINA M A, DYACHENKO E A, KOCHIEVA E Z, et al. Structural and functional diversification of SEPALLATA genes TM5 and RIN in tomato species (section Lycopersicon)[J]. Doklady Biochemistry and Biophysics, 2020, 492(1): 152-158.
DOI URL |
[16] |
ZHANG S S, LU S J, YI S S, et al. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia[J]. Planta, 2017, 245(2): 439-457.
DOI URL |
[17] |
CALLENS C, TUCKER M R, ZHANG D B, et al. Dissecting the role of MADS-box genes in monocot floral development and diversity[J]. Journal of Experimental Botany, 2018, 69(10): 2435-2459.
DOI URL |
[18] |
TEO Z W N, ZHOU W, SHEN L S. Dissecting the function of MADS-box transcription factors in orchid reproductive development[J]. Frontiers in Plant Science, 2019, 10: 1474.
DOI URL |
[19] |
PAN Z J, CHEN Y Y, DU J S, et al. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes[J]. The New Phytologist, 2014, 202(3): 1024-1042.
DOI URL |
[20] | 袁秀云, 田云芳, 蒋素华, 等. 朵丽蝶兰MADS-box基因DtpsMADS1的克隆与表达特性[J]. 植物研究, 2014, 34(1): 53-61. |
YUAN X Y, TIAN Y F, JIANG S H, et al. Cloning and expression analysis of DtpsMADS1 gene from doritaenopsis hybrid[J]. Bulletin of Botanical Research, 2014, 34(1): 53-61. (in Chinese with English abstract) | |
[21] | 袁秀云, 许申平, 王莹博, 等. 蝴蝶兰PhalPI基因的克隆及在花器官突变体中的表达分析[J]. 植物研究, 2017, 37(3): 416-423. |
YUAN X Y, XU S P, WANG Y B, et al. Cloning of PhalPI gene from Phalaenopsis and its expression in floral organ mutants[J]. Bulletin of Botanical Research, 2017, 37(3): 416-423. (in Chinese with English abstract) | |
[22] |
袁秀云, 许申平, 雷志华, 等. 蝴蝶兰PhAG1b基因的克隆及在突变体花器官中的表达分析[J]. 核农学报, 2018, 32(3): 438-447.
DOI |
YUAN X Y, XU S P, LEI Z H, et al. Cloning of PhAG1b gene from Phalaenopsis and its expression in floral organ mutants[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(3): 438-447. (in Chinese with English abstract) | |
[23] | 袁秀云, 许申平, 雷志华, 等. 蝴蝶兰C类花器官发育基因PhAG1a的克隆及表达分析[J]. 热带作物学报, 2017, 38(12): 2294-2301. |
YUAN X Y, XU S P, LEI Z H, et al. Cloning and expression of the class C floral organ identity gene PhAG1a from Phalaenopsis[J]. Chinese Journal of Tropical Crops, 2017, 38(12): 2294-2301. (in Chinese with English abstract) | |
[24] | THOMSON B, WELLMER F. Molecular regulation of flower development[J]. Current Topics in Developmental Biology, 2019, 131: 185-210. |
[25] |
STEWART D, GRACIET E, WELLMER F. Molecular and regulatory mechanisms controlling floral organ development[J]. The FEBS Journal, 2016, 283(10): 1823-1830.
DOI URL |
[26] |
WU D, LIANG W Q, ZHU W W, et al. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice[J]. Plant Physiology, 2017, 176(2): 1646-1664.
DOI URL |
[27] |
IMMINK R G H, TONACO I A N, DE FOLTER S, et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation[J]. Genome Biology, 2009, 10(2): R24.
DOI URL |
[28] |
HUGOUVIEUX V, SILVA C S, JOURDAIN A, et al. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis[J]. Nucleic Acids Research, 2018, 46(10): 4966-4977.
DOI URL |
[29] | ACRI-NUNES-MIRANDA R, MONDRAGÓN-PALOMINO M. Expression of paralogous SEP-, FUL-, AG-and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers[J]. Frontiers in Plant Science, 2014, 5: 76. |
[30] |
XIANG L, CHEN Y, CHEN L P, et al. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f[J]. Physiologia Plantarum, 2018, 162(3): 353-369.
DOI URL |
[31] |
MITOMA M, KANNO A. The greenish flower phenotype of Habenaria radiata (Orchidaceae) is caused by a mutation in the SEPALLATA-like MADS-box gene HrSEP-1[J]. Frontiers in Plant Science, 2018, 9: 831.
DOI URL |
[32] |
ZHANG T, ZHAO Y F, JUNTHEIKKI I, et al. Dissecting functions of SEPALLATA-like MADS box genes in patterning of the pseudanthial inflorescence of Gerbera hybrida[J]. New Phytologist, 2017, 216(3): 939-954.
DOI URL |
[33] | KAUFMANN K, MUIÑO J M, JAUREGUI R, et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower[J]. PLoS Biology, 2009, 7(4): e1000090. |
[34] |
KOBAYASHI K, YASUNO N, SATO Y, et al. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene[J]. The Plant Cell, 2012, 24(5): 1848-1859.
DOI URL |
[35] |
SEYMOUR G B, RYDER C D, CEVIK V, et al. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue[J]. Journal of Experimental Botany, 2011, 62(3): 1179-1188.
DOI URL |
[36] |
IRELAND H S, YAO J L, TOMES S, et al. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening[J]. The Plant Journal, 2013, 73(6): 1044-1056.
DOI URL |
[37] | QI X L, LIU C L, SONG L L, et al. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening[J]. Plant Science, 2020, 301: 110634. |
[38] |
LI J J, LI F, QIAN M, et al. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits[J]. Plant Science, 2017, 257: 63-73.
DOI URL |
[1] | 李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008. |
[2] | 贾小平, 王振山, 朱学海, 杨德智, 寇淑君, 刘星星. 糜子矮秆突变体“819”矮秆基因的遗传学分析[J]. 浙江农业学报, 2020, 32(1): 20-27. |
[3] | 张博, 贾小平, 杨德智, 赵渊, 戴凌峰, 寇淑君, 张小梅, 侯典云, 朱学海. 糜子矮秆突变体778农艺性状调查及其对GA的敏感性分析[J]. 浙江农业学报, 2019, 31(5): 688-694. |
[4] | 汪燕, 石海春, 余学杰, 赵长云, 柯永培. 玉米细胞核雄性不育突变体K305ms的生理生化分析[J]. 浙江农业学报, 2018, 30(8): 1281-1287. |
[5] | 徐秀红, 吕桂华, 郭国锦, 陈坚剑. 玉米高无机磷突变体的选育和特性研究[J]. 浙江农业学报, 2018, 30(8): 1288-1294. |
[6] | 肖姗姗,赵虎,孙叶芳,戴余有*. 小兰屿蝴蝶兰(Phalaenopsis equestris)NAC转录因子家族的全基因组序列鉴定及其进化分析[J]. 浙江农业学报, 2016, 28(7): 1156-. |
[7] | 方敏彦1,章明2,孔维亮1. 体胚诱变结缕草属突变体形态特征及生长特性评价[J]. 浙江农业学报, 2016, 28(2): 269-. |
[8] | 程晨1,2,王晶1,2,原文霞1,2,李冬月1,2,杨勇1,2,严成其1,2,陈剑平1,2,*. 水稻类病变突变体中抗病相关基因的研究进展[J]. 浙江农业学报, 2015, 27(7): 1294-. |
[9] | 孙出1,2,童杰鹏1,王艳1,潘平川3,沈圣泉1,*. 水稻早衰突变体R7954(els)发育理化性质和亚显微结构特征[J]. 浙江农业学报, 2015, 27(10): 1685-. |
[10] | 任三娟,童杰鹏,王艳,沈圣泉*. 水稻小穗退化突变体spd\|hp73幼穗分化发育动态研究 [J]. 浙江农业学报, 2014, 26(5): 1151-. |
[11] | 金杨;王月;于诗莹;陈析丰;马伯军*. 水稻类病变突变体spl5胚性悬浮细胞系的构建[J]. , 2013, 25(3): 0-460. |
[12] | 唐宁安;牛晓伟;张跃建;寿伟松;范敏;*. 西瓜专化型尖孢镰刀菌FonSIX6缺失突变体的构建[J]. , 2013, 25(2): 0-292. |
[13] | 田丹青;葛亚英;刘晓静;潘刚敏;沈晓岚;潘晓韵;郁永明*. 外源ABA对低温胁迫下蝴蝶兰叶片生理指标的影响[J]. , 2013, 25(1): 0-72. |
[14] | 邓衍福;陈芝娟;程晓非;章鹏程;胡凤;施农农*. 建兰花叶病毒TGB1和TGB2基因的原核表达[J]. , 2012, 24(6): 0-1049. |
[15] | 张为宏;朱廷恒;汪琨;崔志峰*. 一株灰葡萄孢细胞壁完整性缺陷突变株的分子鉴定和表型分析[J]. , 2012, 24(4): 0-636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||