浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 847-857.DOI: 10.3969/j.issn.1004-1524.20240254
杜颂1,2(), 汤涛2, 程曦2, 赵学平2, 张春荣2, 梁晓宇3, 王萌3, 张震4, 李永成1, 章程辉1,*(
)
收稿日期:
2024-03-19
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
杜颂(1999—),男,山东泰安人,硕士研究生,研究方向为农产品质量与安全。E-mail: zhudinger@126.com
通讯作者:
*章程辉,E-mail: zchlm@hainanu.edu.cn
基金资助:
DU Song1,2(), TANG Tao2, CHENG Xi2, ZHAO Xueping2, ZHANG Chunrong2, LIANG Xiaoyu3, WANG Meng3, ZHANG Zhen4, LI Yongcheng1, ZHANG Chenghui1,*(
)
Received:
2024-03-19
Online:
2025-04-25
Published:
2025-05-09
摘要: 砜吡草唑是新型异唑类芽前除草剂,已被登记在小麦上使用,但其主要代谢物M-1和M-3对土壤环境的风险尚不明确。本研究使用黑土、褐土、红土3种理化性质不同的土壤,研究了不同理化条件对砜吡草唑及其主要代谢物消解性的影响,以及砜吡草唑及其主要代谢物对土壤酶活的影响。结果表明,M-1和M-3在不同土壤中的消解速率低于母体,3种土壤培养120 d后,砜吡草唑的消解速率为12.3%~38.0%;M-1的消解速率为3.8%~4.6%;M-3的消解率为4.6%~21.0%。砜吡草唑易在高pH值和有机质含量高的土壤(黑土)中消解,M-1易在高阳离子交换量的土壤(黑土)中消解,M-3易在低pH值和有机质含量低的土壤(红土)中消解。土壤阳离子交换量和pH值是影响M-1和M-3消解的主要因素。同时,M-1和M-3均在母体消解过程中逐渐累积,3种土壤中M-1和M-3的总累积量分别占砜吡草唑消解总量的41.0%、27.2%、32.6%。M-1易在有机质含量高的环境中生成,而M-3易在高pH值环境中生成。对土壤酶活性的影响研究发现,砜吡草唑母体及其代谢物M-1和M-3对土壤酸性磷酸酶、β-葡萄糖苷酶、脲酶和脱氢酶等均具有明显的活性抑制作用,而且代谢物的抑制作用要强于母体。因此,在评估砜吡草唑对土壤的潜在风险时,需综合考虑砜吡草唑及其代谢物的生态风险,为农药的合理使用提供科学依据。
中图分类号:
杜颂, 汤涛, 程曦, 赵学平, 张春荣, 梁晓宇, 王萌, 张震, 李永成, 章程辉. 砜吡草唑及其主要代谢物在土壤中的消解和对土壤酶活性的影响研究[J]. 浙江农业学报, 2025, 37(4): 847-857.
DU Song, TANG Tao, CHENG Xi, ZHAO Xueping, ZHANG Chunrong, LIANG Xiaoyu, WANG Meng, ZHANG Zhen, LI Yongcheng, ZHANG Chenghui. Exploring the degradation and soil enzyme impact of pyroxasulfone and its main metabolites in soils[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 847-857.
实验基质 Experimental soil | 来源 Source | pH值 pH value | 有机质含量 Organic matter content/(g·kg-1) | 阳离子交换量 Cation exchange capacity (CEC)/(cmol·kg-1) | 土壤质地 Soil texture |
---|---|---|---|---|---|
褐土Brown soil (S1) | 河北Hebei | 6.58 | 12.0 | 12.8 | 壤土Loam |
红土Red soil (S2) | 湖南Hunan | 4.60 | 5.51 | 13.4 | 黏壤土Clay loam |
黑土Black soil (S3) | 吉林Jilin | 7.90 | 35.7 | 28.9 | 粉黏壤土Powdery clay loam |
表1 土壤理化参数
Table 1 Soil physical and chemical properties
实验基质 Experimental soil | 来源 Source | pH值 pH value | 有机质含量 Organic matter content/(g·kg-1) | 阳离子交换量 Cation exchange capacity (CEC)/(cmol·kg-1) | 土壤质地 Soil texture |
---|---|---|---|---|---|
褐土Brown soil (S1) | 河北Hebei | 6.58 | 12.0 | 12.8 | 壤土Loam |
红土Red soil (S2) | 湖南Hunan | 4.60 | 5.51 | 13.4 | 黏壤土Clay loam |
黑土Black soil (S3) | 吉林Jilin | 7.90 | 35.7 | 28.9 | 粉黏壤土Powdery clay loam |
时间 Time/min | 甲醇 Methanol/% | 0.1%甲酸水 0.1% formic acid water/% | 流速 Flow velocity/ (mL·min-1) |
---|---|---|---|
0.01 | 40 | 60 | 0.25 |
0.5 | 65 | 35 | 0.25 |
1.5 | 95 | 5 | 0.25 |
3.4 | 95 | 5 | 0.25 |
3.5 | 40 | 60 | 0.25 |
6.0 | 40 | 60 | 0.25 |
表2 液相色谱梯度洗脱参数
Table 2 Liquid chromatography gradient elution parameters
时间 Time/min | 甲醇 Methanol/% | 0.1%甲酸水 0.1% formic acid water/% | 流速 Flow velocity/ (mL·min-1) |
---|---|---|---|
0.01 | 40 | 60 | 0.25 |
0.5 | 65 | 35 | 0.25 |
1.5 | 95 | 5 | 0.25 |
3.4 | 95 | 5 | 0.25 |
3.5 | 40 | 60 | 0.25 |
6.0 | 40 | 60 | 0.25 |
农药 Pesticide | 母离子 Parent ion (m/z) | 定量离子对 Quantitative ion pair(m/z) | 定性离子对 Qualitative ion pair(m/s) | Q1偏转电压 Q1 deflection voltage/V | 碰撞气能量 Collision gas energy/eV | Q3偏转电压 Q3 deflection voltage/V |
---|---|---|---|---|---|---|
砜吡草唑Pyroxasulfone | 392.1 | 229.1 | 179.1 | -11;-11 | -17;-32 | -17;-13 |
代谢物M-1 Metabolite-1 | 309 | 259 | 195 | 23; 12 | 21; 17 | 22; 12 |
代谢物M-3 Metabolite-3 | 258.9 | 165.05 | 214.95 | 13; 10 | 16; 8 | 17; 14 |
表3 质谱检测参数
Table 3 Mass spectrometry detection parameters
农药 Pesticide | 母离子 Parent ion (m/z) | 定量离子对 Quantitative ion pair(m/z) | 定性离子对 Qualitative ion pair(m/s) | Q1偏转电压 Q1 deflection voltage/V | 碰撞气能量 Collision gas energy/eV | Q3偏转电压 Q3 deflection voltage/V |
---|---|---|---|---|---|---|
砜吡草唑Pyroxasulfone | 392.1 | 229.1 | 179.1 | -11;-11 | -17;-32 | -17;-13 |
代谢物M-1 Metabolite-1 | 309 | 259 | 195 | 23; 12 | 21; 17 | 22; 12 |
代谢物M-3 Metabolite-3 | 258.9 | 165.05 | 214.95 | 13; 10 | 16; 8 | 17; 14 |
农药 Pesticide | 土壤类型 Soil type | 标准曲线 Standard curve | R2 |
---|---|---|---|
砜吡草唑 | S1 | y=67 112.9x + 7 247.6 | 0.999 8 |
Pyroxasulfone | S2 | y=66 899.9x + 8 900.6 | 0.999 7 |
S3 | y=68 601.5x + 1 637.3 | 0.999 8 | |
代谢物M-1 | S1 | y=20 178.3x + 631.1 | 0.999 9 |
Metabolite-1 | S2 | y=20 030.3x-299.4 | 0.999 8 |
S3 | y=20 866.0x + 770.6 | 0.999 9 | |
代谢物M-3 | S1 | y=84 350.3x + 16 146.0 | 0.999 8 |
Metabolite-3 | S2 | y=82 986.9x + 15 028.5 | 0.999 8 |
S3 | y=84 780.0x + 17 830.3 | 0.999 9 |
表4 砜吡草唑、M-1和M-3在3种土壤中的标准曲线
Table 4 Standard curves of pyroxasulfone, M-1 and M-3 in three soils
农药 Pesticide | 土壤类型 Soil type | 标准曲线 Standard curve | R2 |
---|---|---|---|
砜吡草唑 | S1 | y=67 112.9x + 7 247.6 | 0.999 8 |
Pyroxasulfone | S2 | y=66 899.9x + 8 900.6 | 0.999 7 |
S3 | y=68 601.5x + 1 637.3 | 0.999 8 | |
代谢物M-1 | S1 | y=20 178.3x + 631.1 | 0.999 9 |
Metabolite-1 | S2 | y=20 030.3x-299.4 | 0.999 8 |
S3 | y=20 866.0x + 770.6 | 0.999 9 | |
代谢物M-3 | S1 | y=84 350.3x + 16 146.0 | 0.999 8 |
Metabolite-3 | S2 | y=82 986.9x + 15 028.5 | 0.999 8 |
S3 | y=84 780.0x + 17 830.3 | 0.999 9 |
农药 Pesticide | 土壤类型 Soil type | 添加浓度 Additive concentration/ (mg·kg-1) | 平均回收率 Average recovery Rate/% | RSD/% |
---|---|---|---|---|
砜吡草唑 | S1 | 0.2 | 96 | 3.5 |
Pyroxasulfone | 2 | 97 | 3.3 | |
S2 | 0.2 | 93 | 2.7 | |
2 | 95 | 1.5 | ||
S3 | 0.2 | 95 | 1.7 | |
2 | 98 | 1.3 | ||
代谢物M-1 | S1 | 0.2 | 95 | 2.0 |
Metabolite-1 | 2 | 90 | 0.5 | |
S2 | 0.2 | 86 | 1.4 | |
2 | 87 | 2.3 | ||
S3 | 0.2 | 91 | 1.8 | |
2 | 92 | 1.0 | ||
代谢物M-3 | S1 | 0.2 | 94 | 1.6 |
Metabolite-3 | 2 | 87 | 1.5 | |
S2 | 0.2 | 92 | 1.0 | |
2 | 89 | 2.3 | ||
S3 | 0.2 | 88 | 1.7 | |
2 | 86 | 2.8 |
表5 砜吡草唑、M-1和M-3在3种土壤中的添加回收率和RSD
Table 5 Recovery rate and RSDs of pyroxasulfone, M-1 and M-3 in three soils
农药 Pesticide | 土壤类型 Soil type | 添加浓度 Additive concentration/ (mg·kg-1) | 平均回收率 Average recovery Rate/% | RSD/% |
---|---|---|---|---|
砜吡草唑 | S1 | 0.2 | 96 | 3.5 |
Pyroxasulfone | 2 | 97 | 3.3 | |
S2 | 0.2 | 93 | 2.7 | |
2 | 95 | 1.5 | ||
S3 | 0.2 | 95 | 1.7 | |
2 | 98 | 1.3 | ||
代谢物M-1 | S1 | 0.2 | 95 | 2.0 |
Metabolite-1 | 2 | 90 | 0.5 | |
S2 | 0.2 | 86 | 1.4 | |
2 | 87 | 2.3 | ||
S3 | 0.2 | 91 | 1.8 | |
2 | 92 | 1.0 | ||
代谢物M-3 | S1 | 0.2 | 94 | 1.6 |
Metabolite-3 | 2 | 87 | 1.5 | |
S2 | 0.2 | 92 | 1.0 | |
2 | 89 | 2.3 | ||
S3 | 0.2 | 88 | 1.7 | |
2 | 86 | 2.8 |
图2 砜吡草唑(a)、M-1(b)及M-3(c)在3种土壤中消解 S1,褐土;S2,红土;S3,黑土。下同。
Fig.2 Degradation of pyroxasulfone (a), M-1(b) and M-3(c) in three soils S1, Brown soil; S2, Red soil; S3, Black soil. The same as below.
农药 Pesticide | 土壤类型 Soil type | 回归方程 Regression equation | R2 | t1/2/d |
---|---|---|---|---|
砜吡草唑 | S1 | Ct=1.783e-0.002 54t | 0.977 8 | 272.8 |
Pyroxasulfone | S2 | Ct=1.768e-0.000 81t | 0.764 4 | 855.7 |
S3 | Ct=1.789e-0.004 75t | 0.925 8 | 145.9 | |
代谢物M-1 | S1 | Ct=1.792e-0.000 31t | 0.848 8 | 2 236.0 |
Metabolite-1 | S2 | Ct=1.747e-0.000 30t | 0.961 8 | 2 310.5 |
S3 | Ct=1.715e-0.000 43t | 0.873 5 | 1 612.0 | |
代谢物M-3 | S1 | Ct=1.844e-0.001 11t | 0.879 3 | 624.5 |
Metabolite-3 | S2 | Ct=1.798e-0.001 87t | 0.981 5 | 370.7 |
S3 | Ct=1.793e-0.000 34t | 0.787 8 | 2 038.7 |
表6 砜吡草唑、M-1及M-3在不同土壤中的消解线性回归方程及半衰期
Table 6 Degradation linear regression equation and half-life of pyroxasulfone, M-1 and M-3 in different soils
农药 Pesticide | 土壤类型 Soil type | 回归方程 Regression equation | R2 | t1/2/d |
---|---|---|---|---|
砜吡草唑 | S1 | Ct=1.783e-0.002 54t | 0.977 8 | 272.8 |
Pyroxasulfone | S2 | Ct=1.768e-0.000 81t | 0.764 4 | 855.7 |
S3 | Ct=1.789e-0.004 75t | 0.925 8 | 145.9 | |
代谢物M-1 | S1 | Ct=1.792e-0.000 31t | 0.848 8 | 2 236.0 |
Metabolite-1 | S2 | Ct=1.747e-0.000 30t | 0.961 8 | 2 310.5 |
S3 | Ct=1.715e-0.000 43t | 0.873 5 | 1 612.0 | |
代谢物M-3 | S1 | Ct=1.844e-0.001 11t | 0.879 3 | 624.5 |
Metabolite-3 | S2 | Ct=1.798e-0.001 87t | 0.981 5 | 370.7 |
S3 | Ct=1.793e-0.000 34t | 0.787 8 | 2 038.7 |
农药 Pesticide | 土壤性质 Soil properties | 回归方程 Regression equation | R2 |
---|---|---|---|
砜吡草唑 | pH值pH value | y=0.132 4x+2.165 2 | 0.996 1 |
Pyroxasulfone | 有机质含量 | y=0.012 9x+1.552 5 | 0.869 0 |
Organic matter content | |||
CEC | y=0.1x+1.523 3 | 0.206 0 | |
代谢物M-1 | pH值pH value | y=0.004 4x+1.691 2 | 0.083 8 |
Metabolite-1 | 有机质含量 | y=0.001 1x+1.682 | 0.441 3 |
Organic matter content | |||
CEC | y=0.025x+1.713 3 | 0.986 8 | |
代谢物M-3 | pH值pH value | y=-0.086 1x+1.032 2 | 0.983 8 |
Metabolite-3 | 有机质含量 | y=-0.007 7x+1.443 7 | 0.717 4 |
Organic matter content | |||
CEC | y=-0.04x+1.5 | 0.076 9 |
表7 砜吡草唑、M-1及M-3的土壤消解浓度和土壤理化性质线性关系分析
Table 7 Correlation between soil residue concentrations and soil properties of pyroxasulfone, M-1 and M-3
农药 Pesticide | 土壤性质 Soil properties | 回归方程 Regression equation | R2 |
---|---|---|---|
砜吡草唑 | pH值pH value | y=0.132 4x+2.165 2 | 0.996 1 |
Pyroxasulfone | 有机质含量 | y=0.012 9x+1.552 5 | 0.869 0 |
Organic matter content | |||
CEC | y=0.1x+1.523 3 | 0.206 0 | |
代谢物M-1 | pH值pH value | y=0.004 4x+1.691 2 | 0.083 8 |
Metabolite-1 | 有机质含量 | y=0.001 1x+1.682 | 0.441 3 |
Organic matter content | |||
CEC | y=0.025x+1.713 3 | 0.986 8 | |
代谢物M-3 | pH值pH value | y=-0.086 1x+1.032 2 | 0.983 8 |
Metabolite-3 | 有机质含量 | y=-0.007 7x+1.443 7 | 0.717 4 |
Organic matter content | |||
CEC | y=-0.04x+1.5 | 0.076 9 |
图4 砜吡草唑、M-1及M-3对黑土土壤酶活性的影响 同一时间不同处理间没有相同小写字母表示组间差异显著(P<0.05)。
Fig.4 Effects of pyroxasulfone, M-1 and M-3 on soil enzyme activity in black soil The bars with different letters at the same time indicate the significant difference in different treatments(P<0.05).
[1] | TANETANI Y, KAKU K, KAWAI K, et al. Action mechanism of a novel herbicide, pyroxasulfone[J]. Pesticide Biochemistry and Physiology, 2009, 95(1): 47-55. |
[2] | KHALIL Y, FLOWER K, SIDDIQUE K H M, et al. Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin[J]. PLoS One, 2018, 13(12): e0208274. |
[3] | JHALA A J, SINGH M, SHERGILL L, et al. Very long chain fatty acid-inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future[J]. Weed Technology, 2024, 38: e1. |
[4] | 曲明静, 曲春娟, 高兴祥, 等. 40%砜吡草唑悬浮剂的除草活性及对花生的安全性评价[J]. 植物保护, 2024, 50(1): 295-303. |
QU M J, QU C J, GAO X X, et al. Herbicidal activity of pyroxasulfone 40% SC on weeds and its safety evaluation on peanuts[J]. Plant Protection, 2024, 50(1): 295-303. (in Chinese with English abstract) | |
[5] | ZHANG J J, NIU Y J, MA C, et al. Accumulation and metabolism of pyroxasulfone in tomato seedlings[J]. Ecotoxicology and Environmental Safety, 2023, 254: 114765. |
[6] | WANG Y H, MEN J N, ZHENG T, et al. Impact of pyroxasulfone on sugarcane rhizosphere microbiome and functioning during field degradation[J]. Journal of Hazardous Materials, 2023, 455: 131608. |
[7] | 顾闻. 砜吡草唑在土壤和水环境中的环境行为特性研究[D]. 南京: 南京农业大学, 2017. |
GU W. Study on environmental behavior characteristics of fenpyrad in soil and water environment[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract) | |
[8] | Minnesota Department of Agriculture. Pyroxasulfone[R/OL]. Minnesota: Minnesota Department, 2012. (2013-03-26). https://www.mda.state.mn.us/sites/default/files/inline-files/nair-pyroxasulfone.pdf |
[9] | Australian Pesticides and Veterinary Medicines Authority. Public Release Summary on the Evaluation of the New Active PYROXASULFONE in the Product SAKURA® 850 WG HERBICIDE[R]. Canberra: Australian Government. 2011. https://www.apvma.gov.au/node/13976. |
[10] | CHAI T T, ZHAO H L, YANG S M, et al. Different transformation of carbosulfan to its higher toxic metabolites in pakchoi (Brassica campestris ssp.) and cucumber (Cucumissativus L.) after field application[J]. International Journal of Environmental Analytical Chemistry, 2015, 95(12): 1124-1133. |
[11] | WU M, LI G L, LI P F, et al. Assessing the ecological risk of pesticides should not ignore the impact of their transformation byproducts-The case of chlorantraniliprole[J]. Journal of Hazardous Materials, 2021, 418: 126270. |
[12] | SINCLAIR C J, BOXALL A B A. Assessing the ecotoxicity of pesticide transformation products[J]. Environmental Science & Technology, 2003, 37(20): 4617-4625. |
[13] | LI Z J. Improving screening model of pesticide risk assessment in surface soils: Considering degradation metabolites[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112490. |
[14] | FERNANDES G, APARICIO V C, DE GERÓNIMO E, et al. Epilithic biofilms as a discriminating matrix for long-term and growing season pesticide contamination in the aquatic environment: Emphasis on glyphosate and metabolite AMPA[J]. Science of the Total Environment, 2023, 900: 166315. |
[15] | TAN X P, NIE Y X, MA X M, et al. Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics[J]. Science of the Total Environment, 2021, 770: 144500. |
[16] | 闫雷, 李晓亮, 秦智伟, 等. 农药对土壤酶活性影响的研究进展[J]. 农机化研究, 2009, 31(11): 223-226. |
YAN L, LI X L, QIN Z W, et al. Research advance of influence of pesticides on enzyme activities in soil[J]. Journal of Agricultural Mechanization Research, 2009, 31(11): 223-226. (in Chinese with English abstract) | |
[17] | DU Z K, ZHU Y Y, ZHU L S, et al. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities[J]. Ecotoxicology and Environmental Safety, 2018, 164: 571-578. |
[18] | 马爱军, 何任红, 蒋新宇, 等. 毒死蜱与乙草胺单一污染和复合污染对土壤酶活性及微生物生物量碳的影响[J]. 生态与农村环境学报, 2008, 24(2): 57-60. |
MA A J, HE R H, JIANG X Y, et al. Effects of single and combined pollution of chlorpyrifos and acetochlor on soil enzyme activity and microbial biomass carbon[J]. Journal of Ecology and Rural Environment, 2008, 24(2): 57-60. (in Chinese with English abstract) | |
[19] | ZHANG Y, HU Y, AN N, et al. Short-term response of soil enzyme activities and bacterial communities in black soil to a herbicide mixture: Atrazine and Acetochlor[J]. Applied Soil Ecology, 2023, 181: 104652. |
[20] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会.化学农药环境安全评价试验准则第1部分:土壤降解试验: GB/T 31270.1—2014[S]. 北京: 中国标准出版社, 2015. |
[21] | 李娜, 黄金, 耿玉清, 等. 青海湖湖滨不同土地类型土壤酶活性的研究[J]. 北京林业大学学报, 2019, 41(10): 49-56. |
LI N, HUANG J, GENG Y Q, et al. Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 49-56. (in Chinese with English abstract) | |
[22] | 李旭, 焉莉, 王继岩, 等. 吉林省水稻种植区不同土壤类型的微生物多样性差异及影响因子研究[J/OL]. 四川农业大学学报.(2022-11-24). https://kns.cnki.net/kcms2/article/abstract?v=uQzRnDzoTXEZX3o8QxbCyUcAUShnN-tVsZEKwIJhDAxzuUzr4dYNVv3dCgKQo7Ea9AC-cugUlZ-lFhwrePgAl71CASF_vEmRZHnCmCDQXl5CB8XTYX2-rHGGXwiW1eFBmryEid5l4cP86i2egQVQk6Lf-1r35DaYoPFwD4_nJPeEVGLV8btTp87c-wpU1mKbs&uniplatform=NZKPT&language=CHS |
LI X, YIAN L, WANG J Y, et al. Study on microbial diversity differences and influencing factors of different soil types in rice growing areas of Jilin Province[J/OL]. Journal of Sichuan Agricultural College. (2022-11-24). https://kns.cnki.net/kcms2/article/abstract?v=uQzRnDzoTXEZX3o8-QxbCyUcAUShnNtVsZEKwIJhDAxzuUzr4dYNVv3dCgKQo7-Ea9AC-cugUlZ-lFhwrePgAl71CASF_vEmRZHnCmCDQXl5-CB8XTYX2-rHGGXwiW1eFBmryEid5l4cP86i2egQVQk6Lf-1r35DaYoPFwD4_nJPeEVGLV8btTp87c-wpU1mKbs&uniplatform=NZKPT&language=CHS (in Chinese with English abstract) | |
[23] | 中华人民共和国农业农村部. 农作物中农药残留试验准则:NY·T788—2018[S].北京: 中国农业出版社, 2018. |
[24] | SANCHEZ W, BURGEOT T, PORCHER J M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept[J]. Environmental Science and Pollution Research, 2013, 20(5): 2721-2725. |
[25] | 程超. 两种农药单独及与纳米TiO2复合暴露对土壤微生物的毒性效应[D]. 泰安: 山东农业大学, 2022. |
CHENG C. Toxic effects of two pesticides alone and combined with nano-TiO2 on soil microorganisms[D]. Taian: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[26] | 王宇轩. 添加生物质炭对苯磺隆胁迫下土壤养分和酶活性的影响[D]. 太谷: 山西农业大学, 2020. |
WANG Y X. Effects of adding biomass charcoal on soil nutrients and enzyme activities under tribenuron-methyl stress[D]. Taigu: Shanxi Agricultural University, 2020. (in Chinese with English abstract) | |
[27] | LIU Y F, FAN X X, ZHANG T, et al. Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China[J]. Environmental Pollution, 2020, 262: 114264. |
[28] | ZHANG Y Q, ZHANG J W, SHI B H, et al. Effects of cloransulam-methyl and diclosulam on soil nitrogen and carbon cycle-related microorganisms[J]. Journal of Hazardous Materials, 2021, 418: 126395. |
[29] | GODIN A M, LIDHER K K, WHITESIDE M D, et al. Control of soil phosphatase activities at millimeter scales in a mixed paper birch-Douglas-fir forest: The importance of carbon and nitrogen[J]. Soil Biology and Biochemistry, 2015, 80: 62-69. |
[30] | LIU K H, LI C M, TANG S Q, et al. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China[J]. Chemosphere, 2020, 251: 126415. |
[31] | BELIAEFF B, BURGEOT T. Integrated biomarker response: a useful tool for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2002, 21(6): 1316-1322. |
[32] | ZHANG C, ZHANG J W, ZHU L S, et al. Fluoxastrobin-induced effects on acute toxicity, development toxicity, oxidative stress, and DNA damage in Danio rerio embryos[J]. Science of the Total Environment, 2020, 715: 137069. |
[33] | YANG R, XIA X M, WANG J H, et al. Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities[J]. Chemosphere, 2020, 250: 126161. |
[34] | CHENG Y L, SONG W H, TIAN H M, et al. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota[J]. Chemosphere, 2021, 267: 129219. |
[1] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[2] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
[3] | 吴耀, 章钢明, 周成云, 吴燕君, 张丹, 董代幸, 洪文英. 唑虫酰胺在西兰苔中的残留消解动态与膳食风险评估[J]. 浙江农业学报, 2023, 35(1): 184-190. |
[4] | 靳晓杰, 张静珍, 杨新笋. 基于广泛靶向代谢组学的武穴野生山药及其零余子代谢物差异分析[J]. 浙江农业学报, 2022, 34(4): 727-735. |
[5] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[6] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
[7] | 吉小凤, 吕文涛, 汪建妹, 廖琳慧, 徐杰, 钱鸣蓉. 超高效液相色谱-串联质谱法测定鲜鸡蛋中氟虫腈及其代谢物残留[J]. 浙江农业学报, 2020, 32(10): 1849-1854. |
[8] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[9] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
[10] | 徐明飞1,孙彩霞1,章虎1,刘大群2,张棋1,叶雪珠1. 溴虫腈在露地和温室栽培西兰花花球及叶片的消解动态[J]. 浙江农业学报, 2015, 27(8): 1435-. |
[11] | 胡选祥1,邵美红1,洪文英2,吴燕君2,柯汉云1,赵帅锋1. 丁氟螨酯在草莓中的残留消解动态及安全性评价 [J]. 浙江农业学报, 2014, 26(6): 1558-. |
[12] | 刘术新;丁枫华;*;陈伟祥;徐桂芬;程结. 有机肥对长豇豆连作土壤养分及酶活性的影响[J]. , 2014, 26(3): 0-770774. |
[13] | 柳爱春;刘超;赵芸;桑丽雅;王振国;陈飞东. 免疫胶体金法快速检测水产品中硝基呋喃类代谢物的研究[J]. , 2013, 25(1): 0-102. |
[14] | 洪文英;吴燕君;章虎;钱鸣蓉;陈瑞. 嘧菌酯和吡唑醚菌酯在黄瓜中的残留降解行为及安全使用技术[J]. , 2012, 24(3): 0-475. |
[15] | 王道泽;宋亮;洪文英;吴燕君;洪奎贤. 毒死蜱在设施青菜上的残留动态及安全使用技术[J]. , 2011, 23(2): 0-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||