浙江农业学报 ›› 2025, Vol. 37 ›› Issue (2): 269-277.DOI: 10.3969/j.issn.1004-1524.20240156
兰雪成1,2,3(), 赵凤亮2,3,*(
), 张光旭1,2,3, 李杨1,2,3, 郭晓红1,*(
)
收稿日期:
2024-02-20
出版日期:
2025-02-25
发布日期:
2025-03-20
作者简介:
郭晓红,E-mail: guoxh1980@163.com通讯作者:
赵凤亮,郭晓红
基金资助:
LAN Xuecheng1,2,3(), ZHAO Fengliang2,3,*(
), ZHANG Guangxu1,2,3, LI Yang1,2,3, GUO Xiaohong1,*(
)
Received:
2024-02-20
Online:
2025-02-25
Published:
2025-03-20
Contact:
ZHAO Fengliang,GUO Xiaohong
摘要: 以水稻品种葛68优623、武大优1号、稻花香二号、空育131的种子为供试材料,对比了添加10、100、200、500、1 000 mg·L-1的纳米氧化锌(nZnO)或纳米氧化硅(nSiO2)与不加纳米材料的对照下水稻种子吸水率、发芽率、发芽势、萌发时间、发芽指数、根长、芽长、鲜重的变化。结果表明:添加适宜质量浓度的nZnO和nSiO2可以增加水稻种子的吸水率、发芽率、发芽势、发芽指数、地上部鲜重、根鲜重、芽长和根长,缩短其萌发时间,但是过高浓度的nZnO和nSiO2可能会产生反作用。添加相同质量浓度的纳米材料对不同品种水稻种子萌发的影响并不完全相同,综合对比发现,武大优1号对两种纳米材料的响应较为明显。100~200 mg·L-1的nZnO和nSiO2处理对供试水稻品种的种子萌发较为有利。
中图分类号:
兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277.
LAN Xuecheng, ZHAO Fengliang, ZHANG Guangxu, LI Yang, GUO Xiaohong. Effects of nano zinc oxide and nano silicon dioxide on rice seed germination[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 269-277.
图1 纳米ZnO对水稻种子吸水的影响 A,稻花香二号;B,空育131;C,葛68优623;D,武大优1号。同一时间节点柱上无相同小写字母的表示差异显著(P<0.05)。图2同。
Fig.1 Effect of nano ZnO on water absorption of rice seeds A, Daohuaxiang No. 2; B, Kongyu131; C, Ge68you623; D, Wudayou No. 1. Bars marked without the same letters indicate significant (P<0.05) difference within treatments at the same time. The same as in Fig. 2.
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 76.7±0.04 a | 58.3±0.03 a | 3.13±0.12 a | 5.41±0.31 a |
10 | 85.0±0.08 a | 65.0±0.80 a | 3.08±0.08 a | 6.02±0.59 a | |
100 | 86.7±0.09 a | 70.0±0.12 a | 3.01±0.20 a | 6.34±0.74 a | |
200 | 91.7±0.06 a | 78.3±0.10 a | 2.89±0.09 a | 6.87±0.39 a | |
500 | 86.7±0.04 a | 71.7±0.02 a | 3.00±0.12 a | 6.34±0.27 a | |
1 000 | 85.0±0.03 a | 70.0±0.03 a | 3.02±0.10 a | 6.19±0.22 a | |
nSiO2 | 0 | 76.7±0.04 b | 58.3±0.03 c | 3.13±0.12 a | 5.41±0.31 c |
10 | 86.7±0.03 ab | 65.0±0.03 bc | 3.13±0.08 a | 6.14±0.17 b | |
100 | 88.3±0.06 ab | 70.0±0.03 ab | 3.08±0.09 a | 6.45±0.27 b | |
200 | 96.7±0.02 a | 76.7±0.02 a | 3.03±0.08 a | 7.15±0.06 a | |
500 | 93.3±0.02 a | 73.3±0.02 ab | 3.05±0.06 a | 6.71±0.03 ab | |
1 000 | 88.3±0.02 ab | 65.0±0.03 bc | 3.09±0.02 a | 6.23±0.14 b |
表1 纳米材料对稻花香二号水稻种子萌发的影响
Table 1 Effect of nanomaterials on seed germination of rice variety Daohuaxiang No.2
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 76.7±0.04 a | 58.3±0.03 a | 3.13±0.12 a | 5.41±0.31 a |
10 | 85.0±0.08 a | 65.0±0.80 a | 3.08±0.08 a | 6.02±0.59 a | |
100 | 86.7±0.09 a | 70.0±0.12 a | 3.01±0.20 a | 6.34±0.74 a | |
200 | 91.7±0.06 a | 78.3±0.10 a | 2.89±0.09 a | 6.87±0.39 a | |
500 | 86.7±0.04 a | 71.7±0.02 a | 3.00±0.12 a | 6.34±0.27 a | |
1 000 | 85.0±0.03 a | 70.0±0.03 a | 3.02±0.10 a | 6.19±0.22 a | |
nSiO2 | 0 | 76.7±0.04 b | 58.3±0.03 c | 3.13±0.12 a | 5.41±0.31 c |
10 | 86.7±0.03 ab | 65.0±0.03 bc | 3.13±0.08 a | 6.14±0.17 b | |
100 | 88.3±0.06 ab | 70.0±0.03 ab | 3.08±0.09 a | 6.45±0.27 b | |
200 | 96.7±0.02 a | 76.7±0.02 a | 3.03±0.08 a | 7.15±0.06 a | |
500 | 93.3±0.02 a | 73.3±0.02 ab | 3.05±0.06 a | 6.71±0.03 ab | |
1 000 | 88.3±0.02 ab | 65.0±0.03 bc | 3.09±0.02 a | 6.23±0.14 b |
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 b |
10 | 96.7±0.02 a | 80.0±0.03 a | 3.09±0.12 a | 6.74±0.22 a | |
100 | 98.3±0.02 a | 80.0±0.06 a | 3.01±0.11 a | 6.92±0.09 a | |
200 | 96.7±0.02 a | 81.7±0.03 a | 3.13±0.19 a | 6.75±0.11 a | |
500 | 93.3±0.03 a | 75.0±0.03 a | 3.14±0.04 a | 6.37±0.21 ab | |
1 000 | 93.3±0.03 a | 71.7±0.03 a | 3.21±0.11 a | 6.29±0.15 ab | |
nSiO2 | 0 | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 a |
10 | 93.3±0.07 a | 73.3±0.04 a | 3.28±0.03 a | 6.29±0.45 a | |
100 | 96.7±0.02 a | 75.0±0.03 a | 3.18±0.16 a | 5.57±0.11 a | |
200 | 96.7±0.02 a | 76.7±0.04 a | 3.12±0.09 a | 6.68±0.13 a | |
500 | 91.7±0.02 a | 68.3±0.03 a | 3.23±0.09 a | 6.10±0.16 a | |
1 000 | 91.7±0.03 a | 68.3±0.04 a | 3.26±0.02 a | 6.04±0.29 a |
表2 纳米材料对空育131水稻种子萌发的影响
Table 2 Effect of nanomaterials on seed germination of rice variety Kongyu131
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 b |
10 | 96.7±0.02 a | 80.0±0.03 a | 3.09±0.12 a | 6.74±0.22 a | |
100 | 98.3±0.02 a | 80.0±0.06 a | 3.01±0.11 a | 6.92±0.09 a | |
200 | 96.7±0.02 a | 81.7±0.03 a | 3.13±0.19 a | 6.75±0.11 a | |
500 | 93.3±0.03 a | 75.0±0.03 a | 3.14±0.04 a | 6.37±0.21 ab | |
1 000 | 93.3±0.03 a | 71.7±0.03 a | 3.21±0.11 a | 6.29±0.15 ab | |
nSiO2 | 0 | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 a |
10 | 93.3±0.07 a | 73.3±0.04 a | 3.28±0.03 a | 6.29±0.45 a | |
100 | 96.7±0.02 a | 75.0±0.03 a | 3.18±0.16 a | 5.57±0.11 a | |
200 | 96.7±0.02 a | 76.7±0.04 a | 3.12±0.09 a | 6.68±0.13 a | |
500 | 91.7±0.02 a | 68.3±0.03 a | 3.23±0.09 a | 6.10±0.16 a | |
1 000 | 91.7±0.03 a | 68.3±0.04 a | 3.26±0.02 a | 6.04±0.29 a |
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 90.0±0.03 a | 80.0±0.03 c | 2.24±0.09 a | 8.44±0.12 b |
10 | 91.7±0.06 a | 86.7±0.04 abc | 2.20±0.17 a | 8.80±0.50 ab | |
100 | 93.3±0.04 a | 93.3±0.04 ab | 2.03±0.03 a | 9.22±0.36 ab | |
200 | 98.3±0.02 a | 96.7±0.02 a | 2.10±0.05 a | 9.57±0.15 a | |
500 | 96.7±0.02 a | 93.3±0.02 ab | 2.16±0.09 a | 9.26±0.18 ab | |
1 000 | 91.7±0.04 a | 85.0±0.03 bc | 2.19±0.30 a | 8.74±0.17 ab | |
nSiO2 | 0 | 90.0±0.03 a | 80.0±0.03 b | 2.24±0.09 a | 8.44±0.12 b |
10 | 93.3±0.02 a | 86.7±0.04 ab | 2.20±0.07 a | 8.87±0.26 ab | |
100 | 95.0±0.03 a | 90.0±0.03 ab | 2.18±0.02 a | 9.15±0.27 ab | |
200 | 98.3±0.02 a | 95.0±0.03 a | 2.11±0.12 a | 9.54±0.07 a | |
500 | 95.0±0.03 a | 91.7±0.03 a | 2.16±0.03 a | 9.14±0.34 ab | |
1 000 | 90.0±0.03 a | 85.0±0.03 ab | 2.19±0.04 a | 8.61±0.35 b |
表3 纳米材料对葛68优623水稻种子萌发的影响
Table 3 Effect of nanomaterials on seed germination of rice variety Ge68you623
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 90.0±0.03 a | 80.0±0.03 c | 2.24±0.09 a | 8.44±0.12 b |
10 | 91.7±0.06 a | 86.7±0.04 abc | 2.20±0.17 a | 8.80±0.50 ab | |
100 | 93.3±0.04 a | 93.3±0.04 ab | 2.03±0.03 a | 9.22±0.36 ab | |
200 | 98.3±0.02 a | 96.7±0.02 a | 2.10±0.05 a | 9.57±0.15 a | |
500 | 96.7±0.02 a | 93.3±0.02 ab | 2.16±0.09 a | 9.26±0.18 ab | |
1 000 | 91.7±0.04 a | 85.0±0.03 bc | 2.19±0.30 a | 8.74±0.17 ab | |
nSiO2 | 0 | 90.0±0.03 a | 80.0±0.03 b | 2.24±0.09 a | 8.44±0.12 b |
10 | 93.3±0.02 a | 86.7±0.04 ab | 2.20±0.07 a | 8.87±0.26 ab | |
100 | 95.0±0.03 a | 90.0±0.03 ab | 2.18±0.02 a | 9.15±0.27 ab | |
200 | 98.3±0.02 a | 95.0±0.03 a | 2.11±0.12 a | 9.54±0.07 a | |
500 | 95.0±0.03 a | 91.7±0.03 a | 2.16±0.03 a | 9.14±0.34 ab | |
1 000 | 90.0±0.03 a | 85.0±0.03 ab | 2.19±0.04 a | 8.61±0.35 b |
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 88.3±0.04 a | 75.0±0.03 b | 2.48±0.06 a | 7.85±0.30 b |
10 | 95.0±0.03 a | 86.7±0.03 ab | 2.33±0.03 ab | 8.79±0.30 ab | |
100 | 96.7±0.03 a | 95.0±0.03 a | 2.10±0.05 c | 9.40±0.30 a | |
200 | 98.3±0.02 a | 93.3±0.04 a | 2.24±0.10 bc | 9.31±0.31 a | |
500 | 95.0±0.03 a | 86.7±0.04 ab | 2.26±0.03 abc | 8.88±0.35 ab | |
1 000 | 95.0±0.03 a | 85.0±0.06 ab | 2.37±0.10 ab | 8.70±0.46 ab | |
nSiO2 | 0 | 88.3±0.04 b | 75.0±0.03 c | 2.48±0.06 a | 7.85±0.30 b |
10 | 97.0±0.02 ab | 92.0±0.02 ab | 2.24±0.16 b | 9.23±0.13 ab | |
100 | 95.0±0.03 ab | 91.7±0.02 ab | 2.21±0.03 b | 8.97±0.30 ab | |
200 | 98.0±0.02 a | 98.0±0.02 a | 1.98±0.08 c | 9.76±0.14 a | |
500 | 96.7±0.02 ab | 91.7±0.02 ab | 2.21±0.03 b | 9.16±0.20 ab | |
1 000 | 95.0±0.03 ab | 88.3±0.02 b | 2.25±0.02 b | 8.95±0.32 ab |
表4 纳米材料对武大优1号水稻种子萌发的影响
Table 4 Effect of nanomaterials on seed germination of rice variety Wudayou No. 1
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 88.3±0.04 a | 75.0±0.03 b | 2.48±0.06 a | 7.85±0.30 b |
10 | 95.0±0.03 a | 86.7±0.03 ab | 2.33±0.03 ab | 8.79±0.30 ab | |
100 | 96.7±0.03 a | 95.0±0.03 a | 2.10±0.05 c | 9.40±0.30 a | |
200 | 98.3±0.02 a | 93.3±0.04 a | 2.24±0.10 bc | 9.31±0.31 a | |
500 | 95.0±0.03 a | 86.7±0.04 ab | 2.26±0.03 abc | 8.88±0.35 ab | |
1 000 | 95.0±0.03 a | 85.0±0.06 ab | 2.37±0.10 ab | 8.70±0.46 ab | |
nSiO2 | 0 | 88.3±0.04 b | 75.0±0.03 c | 2.48±0.06 a | 7.85±0.30 b |
10 | 97.0±0.02 ab | 92.0±0.02 ab | 2.24±0.16 b | 9.23±0.13 ab | |
100 | 95.0±0.03 ab | 91.7±0.02 ab | 2.21±0.03 b | 8.97±0.30 ab | |
200 | 98.0±0.02 a | 98.0±0.02 a | 1.98±0.08 c | 9.76±0.14 a | |
500 | 96.7±0.02 ab | 91.7±0.02 ab | 2.21±0.03 b | 9.16±0.20 ab | |
1 000 | 95.0±0.03 ab | 88.3±0.02 b | 2.25±0.02 b | 8.95±0.32 ab |
图3 nZaO(A)和nSiO2(B)对水稻地上部和根系鲜重的影响 D2,稻花香二号;K131,空育131;G68,葛68优623;W1,武大优1号。同一品种柱上无相同字母的表示水稻的地上部鲜重或根鲜重在处理间差异显著(P<0.05)。图4同。图中数据均以单株计。
Fig.3 Effect of nZaO (A) and nSiO2 (B) on fresh weight of aboveground part and root of rice D2, Daohuaxiang No. 2; K131, Kongyu131; G68, Ge68you623; W1, Wudayou No. 1. Bars marked without the same letters indicate significant (P<0.05) difference within treatments for the fresh weight of aboveground part or root of rice. The same as in Fig. 4. The data were recorded by single plant.
[1] | 吴媛媛. 我国水稻生产现状及发展趋势[J]. 新农业, 2018(7): 27-28. |
WU Y Y. Current situation and development trend of rice production in China[J]. Xin Nongye, 2018(7): 27-28. (in Chinese) | |
[2] | 梁玉刚, 李静怡, 周晶, 等. 中国水稻栽培技术的演变与展望[J]. 作物研究, 2022, 36(2): 180-188. |
LIANG Y G, LI J Y, ZHOU J, et al. Evolution and prospect of rice cultivation technology in China[J]. Crop Research, 2022, 36(2): 180-188. (in Chinese with English abstract) | |
[3] | MUKHERJEE A, MAJUMDAR S, SERVIN A D, et al. Carbon nanomaterials in agriculture: a critical review[J]. Frontiers in Plant Science, 2016, 7: 172. |
[4] | 祁国效. 纳米材料对水稻的影响研究进展[J]. 南方农业, 2021, 15(36): 45-48. |
QI G X. Research progress on the influence of nano-materials on rice[J]. South China Agriculture, 2021, 15(36): 45-48. (in Chinese) | |
[5] | 陈士勇, 王锐, 陈志青, 等. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022(4): 107-114. |
CHEN S Y, WANG R, CHEN Z Q, et al. Effects of nano-zinc and ion-zinc on rice yield formation and grain zinc content[J]. Crops, 2022(4): 107-114. (in Chinese with English abstract) | |
[6] | NAIK S K, DAS D K. Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.)[J]. Nutrient Cycling in Agroecosystems, 2008, 81(3): 219-227. |
[7] | 于敬波, 李林林, 张悦, 等. 纳米氧化锌对水稻种子萌发和幼苗生长的影响[J]. 长春师范大学学报, 2021, 40(2): 127-131. |
YU J B, LI L L, ZHANG Y, et al. Toxicological effects of zinc oxidenanoparticles on rice seedling[J]. Journal of Changchun Normal University, 2021, 40(2): 127-131. (in Chinese with English abstract) | |
[8] | YUVARAJ M, SUBRAMANIAN K S. Fabrication of zinc nano fertilizer on growth parameter of rice[J]. Trends in Biosciences, 2015, 7(17): 2564-2565. |
[9] | 闫龙翔, 霍晓玉, 阚雨晨, 等. 新型含硒纳米硅肥在水稻上的施用效果初探[J]. 上海农业科技, 2021(3): 85-87. |
YAN L X, HUO X Y, KAN Y C, et al. Preliminary study on the application effect of new selenium-containing nano-silicon fertilizer on rice[J]. Shanghai Agricultural Science and Technology, 2021(3): 85-87. (in Chinese) | |
[10] | 孙德权, 陆新华, 胡玉林, 等. 纳米硅材料对植物生长发育影响的研究进展[J]. 热带作物学报, 2019, 40(11): 2300-2311. |
SUN D Q, LU X H, HU Y L, et al. Research progress of silica nanoparticle effects on the growth and development of plants[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2300-2311. (in Chinese with English abstract) | |
[11] | 杨莎莎, 林匡飞, 徐圣友, 等. 多尺度纳米SiO2对水稻的生态毒理效应及临界指标研究[J]. 农业环境科学学报, 2009, 28(1): 30-34. |
YANG S S, LIN K F, XU S Y, et al. Eco-toxicological effects of multiscale nano-SiO2 and its critical value on rice[J]. Journal of Agro-Environment Science, 2009, 28(1): 30-34. (in Chinese with English abstract) | |
[12] | 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017, 53(6): 933-942. |
WANG Y J, CHEN R Y, LIU H C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants[J]. Plant Physiology Journal, 2017, 53(6): 933-942. (in Chinese with English abstract) | |
[13] | 薛琳, 孙宇彤, 盛明悦, 等. 纳米材料对作物种子萌发及生长发育的影响[J]. 中国农学通报, 2020, 36(21): 33-39. |
XUE L, SUN Y T, SHENG M Y, et al. Nanomaterials: effects on seed germination and growth and development of crop[J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 33-39. (in Chinese with English abstract) | |
[14] | THIRUVENGADAM M, GURUNATHAN S, CHUNG I M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.)[J]. Protoplasma, 2015, 252(4): 1031-1046. |
[15] | KARUNAKARAN G, SURIYAPRABHA R, RAJENDRAN V, et al. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions[J]. IET Nanobiotechnology, 2016, 10(4): 171-177. |
[16] | YANG Z Z, CHEN J, DOU R Z, et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.)[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15100-15109. |
[17] | 赵威, 陈先良, 王长进, 等. 纳米氧化锌对玉米幼苗生长及酶活性的影响[J]. 安徽农学通报, 2021, 27(9): 22-26. |
ZHAO W, CHEN X L, WANG C J, et al. Effects of nano-zinc oxide on growth and enzyme activity of maize seedlings[J]. Anhui Agricultural Science Bulletin, 2021, 27(9): 22-26. (in Chinese) | |
[18] | 王宁. 纳米氧化锌对湿地植物的胁迫效应[D]. 南京: 东南大学, 2016. |
WANG N. The stress on the wetland plants of zinc oxide nano particles[D]. Nanjing: Southeast University, 2016. (in Chinese with English abstract) | |
[19] | 胡灵璇. 纳米氧化锌对木槿生长发育及锌吸收的影响研究[D]. 长沙: 中南林业科技大学, 2023. |
HU L X. Effect of ZnO nanoparticles on the growth and development and zinc uptake of Hibiscus syriacus L.[D]. Changsha: Central South University of Forestry & Technology, 2023. (in Chinese with English abstract) | |
[20] | 孙露莹, 宋凤斌, 李向楠, 等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J]. 土壤与作物, 2020, 9(1): 40-49. |
SUN L Y, SONG F B, LI X N, et al. Effects of ZnO nanoparticles on seed germination and root carbon metabolism in maize(Zea mays L.)[J]. Soils and Crops, 2020, 9(1): 40-49. (in Chinese with English abstract) | |
[21] | 刘保友. 纳米二氧化硅增强水稻和苹果胁迫抗性的作用机理研究[D]. 泰安: 山东农业大学, 2022. |
LIU B Y. Mechanism of silica nanoparticles to enhance stress resistance in rice and apple[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[22] | 王攀. 纳米二氧化硅对大豆盐胁迫的缓解效应及其微生物学机制[D]. 杨凌: 西北农林科技大学, 2023. |
WANG P. Alleviating effect of silica nanoparticles on salt-stressed soybean and its microbiological mechanism[D]. Yangling: Northwest A & F University, 2023. (in Chinese with English abstract) | |
[23] | 孙光燕. 新型纳米材料调控玉米萌发和幼苗生长的生理机制[D]. 哈尔滨: 东北农业大学, 2022. |
SUN G Y. Physiological mechanism of new nanomaterials regulating maize germination and seedling growth[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese with English abstract) | |
[24] | 刘新浩. 纳米二氧化硅对镉胁迫下小麦种子萌发的影响[J]. 河南农业, 2022(18): 47-48. |
LIU X H. Effect of nano-silica on wheat seed germination under cadmium stress[J]. Agriculture of Henan, 2022(18): 47-48. (in Chinese) | |
[25] | 刘建华, 钱瑭璜, 彭昭良, 等. 纳米硅对中华结缕草种子萌发和幼苗期生长的影响[J]. 天津农业科学, 2017, 23(4): 6-9. |
LIU J H, QIAN T H, PENG Z L, et al. Effects of nano-silicon on the germination and seedling growth of Zoysia sinica[J]. Tianjin Agricultural Sciences, 2017, 23(4): 6-9. (in Chinese with English abstract) |
[1] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
[2] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
[3] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
[4] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
[5] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
[6] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
[7] | 郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480. |
[8] | 谭宇虹, 周敏, 张华, 张恒, 王伏林, 宋涛, 朱英, 徐恒. 灌浆期高温对稻米品质影响的品种类型间差异[J]. 浙江农业学报, 2024, 36(12): 2657-2665. |
[9] | 徐金勤, 邱新法, 朱平, 肖潇. 1960—2019年中国水稻气候生长期水热资源变化趋势及其归因分析[J]. 浙江农业学报, 2024, 36(11): 2575-2583. |
[10] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[11] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[12] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[13] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
[14] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[15] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||