浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 1-8.DOI: 10.3969/j.issn.1004-1524.20230079
        
               		杨西帆1,2(
), 郭彬2, 裘高扬2, 刘俊丽2, 童文彬3,*(
), 杨海峻3, 祝伟东3, 毛聪妍3
                  
        
        
        
        
    
收稿日期:2023-01-19
									
				
									
				
									
				
											出版日期:2024-01-25
									
				
											发布日期:2024-02-18
									
			作者简介:杨西帆(1998—),男,山东聊城人,硕士,主要从事受污染耕地安全利用研究。E-mail: 2112027172@zjut.edu.cn
				
							通讯作者:
					* 童文彬,E-mail:zjqztwb@163.com
							基金资助:
        
               		YANG Xifan1,2(
), GUO Bin2, QIU Gaoyang2, LIU Junli2, TONG Wenbin3,*(
), YANG Haijun3, ZHU Weidong3, MAO Congyan3
			  
			
			
			
                
        
    
Received:2023-01-19
									
				
									
				
									
				
											Online:2024-01-25
									
				
											Published:2024-02-18
									
			摘要:
采用田间试验,持续2年(2021—2022年)研究了市售6种钝化剂不同施用量(0、2 250、4 500、6 750 kg·hm-2)对土壤中镉(Cd)、铅(Pb)、砷(As)有效态含量,土壤pH值,及稻米Cd、Pb、As含量的影响。结果表明,选择适宜用量的钝化剂可显著(P<0.05)提高土壤pH值,降低土壤有效态Cd、Pb、As含量。其中,施用6 750 kg·hm-2长效型钝化剂的效果在2021年最优,土壤pH值由5.00提高至6.98,土壤有效态Cd、Pb含量分别显著降低82.2%和98.6%。此外,长效型钝化剂在4 500 kg·hm-2用量下,第二年的稻米镉含量仍可显著降低90.8%。综上,在对比的6种钝化剂中,长效型钝化剂阻控水稻籽粒Cd富集的效果和持效性最优,推测与其碳酸钙含量较高有关。
中图分类号:
杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8.
YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8.
																													图1 不同钝化剂对土壤有效态Cd含量的影响 A,日宏超能型;B,丰瑜高钙型;C,丰瑜钙镁型;D,丰瑜调理剂;E,中地调理剂;F,长效型钝化剂。柱上无相同字母的表示同一钝化剂不同施用量水平间差异显著(P<0.05)。下同。
Fig.1 Effect of immobilization agents on soil available Cd content A, Rihong super type; B, Fengyu high-calcium type; C, Fengyu calcium-magnesium type; D, Fengyu conditioner; E, Zhongdi conditioner; F, long-acting passivator. Bars marked without the same letters indicate significant (P<0.05) difference within different application rates of the same immobilization agent. The same as below.
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的土壤有效态As含量 Soil available As content under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.081±0.008 a | 0.074±0.012 ab | 0.065±0.009 b | 0.060±0.009 b | 
| B | 0.053±0.010 a | 0.032±0.004 b | 0.013±0.004 c | 0.024±0.006 b | |
| C | 0.039±0.006 a | 0.037±0.001 a | 0.022±0.002 b | 0.010±0.003 c | |
| D | 0.066±0.002 a | 0.009±0.005 d | 0.034±0.002 b | 0.024±0.003 c | |
| E | 0.082±0.003 a | 0.041±0.002 c | 0.024±0.004 d | 0.075±0.003 b | |
| F | 0.112±0.003 a | 0.080±0.007 b | 0.078±0.004 bc | 0.067±0.009 c | |
| 2022 | A | 0.067±0.028 a | 0.083±0.035 a | 0.068±0.025 a | 0.102±0.081 a | 
| B | 0.038±0.083 a | 0.001±0.024 b | 0.089±0.034 a | 0.118±0.050 a | |
| C | 0.150±0.031 a | 0.122±0.066 a | 0.039±0.036 b | 0.093±0.057 a | |
| D | 0.135±0.001 a | 0.055±0.025 ab | 0.005±0.045 b | 0.027±0.048 ab | |
| E | 0.229±0.007 a | 0.052±0.042 b | 0.063±0.045 b | 0.084±0.034 b | |
| F | 0.076±0.087 a | 0.030±0.061 a | 0.087±0.045 a | 0.053±0.033 a | |
表1 不同处理对土壤有效态As含量的影响
Table 1 Effect of different treatments on soil available As contents mg·kg-1
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的土壤有效态As含量 Soil available As content under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.081±0.008 a | 0.074±0.012 ab | 0.065±0.009 b | 0.060±0.009 b | 
| B | 0.053±0.010 a | 0.032±0.004 b | 0.013±0.004 c | 0.024±0.006 b | |
| C | 0.039±0.006 a | 0.037±0.001 a | 0.022±0.002 b | 0.010±0.003 c | |
| D | 0.066±0.002 a | 0.009±0.005 d | 0.034±0.002 b | 0.024±0.003 c | |
| E | 0.082±0.003 a | 0.041±0.002 c | 0.024±0.004 d | 0.075±0.003 b | |
| F | 0.112±0.003 a | 0.080±0.007 b | 0.078±0.004 bc | 0.067±0.009 c | |
| 2022 | A | 0.067±0.028 a | 0.083±0.035 a | 0.068±0.025 a | 0.102±0.081 a | 
| B | 0.038±0.083 a | 0.001±0.024 b | 0.089±0.034 a | 0.118±0.050 a | |
| C | 0.150±0.031 a | 0.122±0.066 a | 0.039±0.036 b | 0.093±0.057 a | |
| D | 0.135±0.001 a | 0.055±0.025 ab | 0.005±0.045 b | 0.027±0.048 ab | |
| E | 0.229±0.007 a | 0.052±0.042 b | 0.063±0.045 b | 0.084±0.034 b | |
| F | 0.076±0.087 a | 0.030±0.061 a | 0.087±0.045 a | 0.053±0.033 a | |
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的稻米As含量 As content in rice grains under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.046±0.072 a | 0.097±0.065 a | 0.001±0.070 a | 0.048±0.042 a | 
| B | 0.120±0.041 a | 0.087±0.049 a | 0.029±0.012 b | 0.065±0.063 ab | |
| C | 0.167±0.072 a | 0.109±0.053 a | 0.125±0.062 a | 0.179±0.036 a | |
| D | 0.085±0.052 b | 0.081±0.077 b | 0.066±0.077 b | 0.199±0.078 a | |
| E | 0.110±0.02 a | 0.105±0.076 a | 0.110±0.040 a | 0.011±0.038 b | |
| F | 0.050±0.076 c | 0.065±0.045 bc | 0.142±0.043 ab | 0.197±0.045 a | |
| 2022 | A | 0.531±0.043 a | ND | 0.207±0.091 a | ND | 
| B | 0.546±0.147 a | 0.465±0.001 a | ND | 0.129±0.129 b | |
| C | 0.103±0.103 b | 0.436±0.075 a | 0.179±0.130 b | 0.385±0.122 a | |
| D | 0.248±0.120 a | 0.457±0.151 a | 0.403±0.143 a | 0.258±0.356 a | |
| E | 0.592±0.238 a | 0.296±0.014 a | 0.508±0.259 a | 0.407±0.289 a | |
| F | 0.189±0.001 a | 0.524±0.249 b | ND | 0.236±0.001 a | |
表2 不同处理对稻米As含量的影响
Table 2 Effect of different treatments on As content in rice grains mg·kg-1
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的稻米As含量 As content in rice grains under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.046±0.072 a | 0.097±0.065 a | 0.001±0.070 a | 0.048±0.042 a | 
| B | 0.120±0.041 a | 0.087±0.049 a | 0.029±0.012 b | 0.065±0.063 ab | |
| C | 0.167±0.072 a | 0.109±0.053 a | 0.125±0.062 a | 0.179±0.036 a | |
| D | 0.085±0.052 b | 0.081±0.077 b | 0.066±0.077 b | 0.199±0.078 a | |
| E | 0.110±0.02 a | 0.105±0.076 a | 0.110±0.040 a | 0.011±0.038 b | |
| F | 0.050±0.076 c | 0.065±0.045 bc | 0.142±0.043 ab | 0.197±0.045 a | |
| 2022 | A | 0.531±0.043 a | ND | 0.207±0.091 a | ND | 
| B | 0.546±0.147 a | 0.465±0.001 a | ND | 0.129±0.129 b | |
| C | 0.103±0.103 b | 0.436±0.075 a | 0.179±0.130 b | 0.385±0.122 a | |
| D | 0.248±0.120 a | 0.457±0.151 a | 0.403±0.143 a | 0.258±0.356 a | |
| E | 0.592±0.238 a | 0.296±0.014 a | 0.508±0.259 a | 0.407±0.289 a | |
| F | 0.189±0.001 a | 0.524±0.249 b | ND | 0.236±0.001 a | |
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的土壤有效态Pb含量 Soil available Pb contents under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.520±0.073 a | 0.430±0.054 a | 0.407±0.076 a | 0.301±0.060 a | 
| B | 0.381±0.151 a | 0.197±0.125 b | 0.077±0.062 c | 0.232±0.024 ab | |
| C | 0.338±0.072 a | 0.118±0.092 b | 0.107±0.046 b | 0.090±0.080 b | |
| D | 0.312±0.093 a | 0.133±0.020 b | 0.156±0.055 b | 0.108±0.040 b | |
| E | 0.234±0.047 a | 0.086±0.056 bc | 0.034±0.041 c | 0.110±0.053 b | |
| F | 0.368±0.050 a | 0.044±0.024 b | 0.042±0.048 b | 0.005±0.002 c | |
| 2022 | A | 0.323±0.003 a | 0.288±0.015 a | 0.302±0.009 a | 0.318±0.035 a | 
| B | 0.115±0.031 b | 0.211±0.042 a | 0.093±0.065 b | 0.062±0.051 b | |
| C | 0.106±0.040 a | 0.120±0.006 a | 0.089±0.068 a | 0.112±0.014 a | |
| D | 0.071±0.001 a | 0.064±0.032 a | 0.047±0.020 a | 0.051±0.033 a | |
| E | 0.092±0.065 a | 0.072±0.050 a | 0.090±0.101 a | 0.093±0.061 a | |
| F | 0.023±0.030 a | 0.025±0.049 a | 0.003±0.101 a | 0.023±0.023 a | |
表3 不同处理对土壤有效态Pb含量的影响
Table 3 Effect of different treatments on soil available Pb content mg·kg-1
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的土壤有效态Pb含量 Soil available Pb contents under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.520±0.073 a | 0.430±0.054 a | 0.407±0.076 a | 0.301±0.060 a | 
| B | 0.381±0.151 a | 0.197±0.125 b | 0.077±0.062 c | 0.232±0.024 ab | |
| C | 0.338±0.072 a | 0.118±0.092 b | 0.107±0.046 b | 0.090±0.080 b | |
| D | 0.312±0.093 a | 0.133±0.020 b | 0.156±0.055 b | 0.108±0.040 b | |
| E | 0.234±0.047 a | 0.086±0.056 bc | 0.034±0.041 c | 0.110±0.053 b | |
| F | 0.368±0.050 a | 0.044±0.024 b | 0.042±0.048 b | 0.005±0.002 c | |
| 2022 | A | 0.323±0.003 a | 0.288±0.015 a | 0.302±0.009 a | 0.318±0.035 a | 
| B | 0.115±0.031 b | 0.211±0.042 a | 0.093±0.065 b | 0.062±0.051 b | |
| C | 0.106±0.040 a | 0.120±0.006 a | 0.089±0.068 a | 0.112±0.014 a | |
| D | 0.071±0.001 a | 0.064±0.032 a | 0.047±0.020 a | 0.051±0.033 a | |
| E | 0.092±0.065 a | 0.072±0.050 a | 0.090±0.101 a | 0.093±0.061 a | |
| F | 0.023±0.030 a | 0.025±0.049 a | 0.003±0.101 a | 0.023±0.023 a | |
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的稻米Pb含量 Pb contents in rice grains under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.012±0.022 a | 0.038±0.069 a | 0.169±0.207 a | 0.124±0.170 a | 
| B | 0.152±0.220 a | 0.110±0.150 a | 0.184±0.062 a | 0.013±0.008 b | |
| C | 0.111±0.104 a | 0.204±0.146 a | 0.380±0.183 a | 0.004±0.007 b | |
| D | 0.001±0.004 a | 0.081±0.073 a | 0.321±0.402 a | 0.015±0.020 b | |
| E | 0.084±0.033 a | 0.072±0.045 a | 0.030±0.040 b | 0.001±0.009 c | |
| F | 0.128±0.126 a | 0.016±0.014 b | 0.070±0.068 b | 0.174±0.157 a | |
| 2022 | A | 0.268±0.268 b | ND | ND | 0.804±0.001 a | 
| B | ND | 1.489±0.001 a | 1.341±0.246 a | 0.825±0.042 b | |
| C | 0.727±0.118 a | 0.027±0.027 c | ND | 0.384±0.384 b | |
| D | 0.091±0.091 b | 0.223±0.109 a | 0.011±0.016 c | 0.487±0.256 a | |
| E | 0.619±0.406 a | ND | 0.439±0.285 a | 0.257±0.163 a | |
| F | ND | 0.556±0.281 a | 0.001±0.024 b | 0.048±0.001 b | |
表4 不同处理对稻米Pb含量的影响
Table 4 Effect of different treatments on Pb content in rice grains mg·kg-1
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的稻米Pb含量 Pb contents in rice grains under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 0.012±0.022 a | 0.038±0.069 a | 0.169±0.207 a | 0.124±0.170 a | 
| B | 0.152±0.220 a | 0.110±0.150 a | 0.184±0.062 a | 0.013±0.008 b | |
| C | 0.111±0.104 a | 0.204±0.146 a | 0.380±0.183 a | 0.004±0.007 b | |
| D | 0.001±0.004 a | 0.081±0.073 a | 0.321±0.402 a | 0.015±0.020 b | |
| E | 0.084±0.033 a | 0.072±0.045 a | 0.030±0.040 b | 0.001±0.009 c | |
| F | 0.128±0.126 a | 0.016±0.014 b | 0.070±0.068 b | 0.174±0.157 a | |
| 2022 | A | 0.268±0.268 b | ND | ND | 0.804±0.001 a | 
| B | ND | 1.489±0.001 a | 1.341±0.246 a | 0.825±0.042 b | |
| C | 0.727±0.118 a | 0.027±0.027 c | ND | 0.384±0.384 b | |
| D | 0.091±0.091 b | 0.223±0.109 a | 0.011±0.016 c | 0.487±0.256 a | |
| E | 0.619±0.406 a | ND | 0.439±0.285 a | 0.257±0.163 a | |
| F | ND | 0.556±0.281 a | 0.001±0.024 b | 0.048±0.001 b | |
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的土壤pH值 Soil pH value under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 4.94±0.07 a | 5.03±0.22 a | 5.67±0.94 a | 5.15±0.06 a | 
| B | 5.05±0.36 a | 5.36±0.26 a | 5.86±0.39 a | 5.29±0.22 a | |
| C | 5.06±0.06 b | 5.36±0.35 a | 5.41±0.11 a | 5.65±0.25 a | |
| D | 5.01±0.04 b | 5.98±0.67 a | 5.39±0.14 ab | 5.64±0.14 a | |
| E | 4.97±0.15 b | 5.42±0.52 ab | 6.08±0.63 a | 5.56±0.17 ab | |
| F | 5.00±0.07 c | 5.89±0.53 bc | 6.56±1.01 ab | 6.98±0.58 a | |
| 2022 | A | 5.66±0.64 a | 5.55±0.05 a | 5.44±0.12 a | 5.33±0.22 a | 
| B | 5.69±0.21 a | 5.84±0.26 a | 5.47±0.17 a | 5.67±0.11 a | |
| C | 5.68±0.12 a | 6.12±0.36 a | 5.55±0.06 b | 5.82±0.34 a | |
| D | 5.60±0.13 a | 5.76±0.04 a | 5.63±0.25 a | 5.70±0.09 a | |
| E | 5.70±0.18 a | 5.55±0.26 ab | 5.39±0.09 b | 5.89±0.22 a | |
| F | 5.77±0.14 b | 5.60±0.22 b | 6.30±0.39 a | 6.31±0.53 a | |
表5 不同处理对土壤pH值的影响
Table 5 Effect of different treatments on soil pH value
| 年份 Year  |  钝化剂 Immobilization agent  |  不同钝化剂施用量水平下的土壤pH值 Soil pH value under diiferent application rates of immobilization agents  | |||
|---|---|---|---|---|---|
| L0 | L1 | L2 | L3 | ||
| 2021 | A | 4.94±0.07 a | 5.03±0.22 a | 5.67±0.94 a | 5.15±0.06 a | 
| B | 5.05±0.36 a | 5.36±0.26 a | 5.86±0.39 a | 5.29±0.22 a | |
| C | 5.06±0.06 b | 5.36±0.35 a | 5.41±0.11 a | 5.65±0.25 a | |
| D | 5.01±0.04 b | 5.98±0.67 a | 5.39±0.14 ab | 5.64±0.14 a | |
| E | 4.97±0.15 b | 5.42±0.52 ab | 6.08±0.63 a | 5.56±0.17 ab | |
| F | 5.00±0.07 c | 5.89±0.53 bc | 6.56±1.01 ab | 6.98±0.58 a | |
| 2022 | A | 5.66±0.64 a | 5.55±0.05 a | 5.44±0.12 a | 5.33±0.22 a | 
| B | 5.69±0.21 a | 5.84±0.26 a | 5.47±0.17 a | 5.67±0.11 a | |
| C | 5.68±0.12 a | 6.12±0.36 a | 5.55±0.06 b | 5.82±0.34 a | |
| D | 5.60±0.13 a | 5.76±0.04 a | 5.63±0.25 a | 5.70±0.09 a | |
| E | 5.70±0.18 a | 5.55±0.26 ab | 5.39±0.09 b | 5.89±0.22 a | |
| F | 5.77±0.14 b | 5.60±0.22 b | 6.30±0.39 a | 6.31±0.53 a | |
| [1] | 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4): 721-728. | 
| LI J R, XU Y M, LIN D S, et al. In situ immobilization remediation of heavy metals in contaminated soils: a review[J]. Ecology and Environmental Sciences, 2014, 23(4): 721-728. (in Chinese with English abstract) | |
| [2] | 汪涛, 高国龙, 王庆, 等. 无机有机复合材料对重金属污染土壤的修复效应[J]. 环境科技, 2018, 31(5): 29-34. | 
| WANG T, GAO G L, WANG Q, et al. Inorganic-organic amendments for immobilization of heavy metal contaminants in soil[J]. Environmental Science and Technology, 2018, 31(5): 29-34. (in Chinese with English abstract) | |
| [3] | 王雷, 刘常升, 安成强. 镀锌层无机物与有机物复合无铬钝化研究进展[J]. 电镀与精饰, 2011, 33(3): 22-26. | 
| WANG L, LIU C S, AN C Q. Progress of chromium-free passivation for zinc plating[J]. Plating & Finishing, 2011, 33(3): 22-26. (in Chinese with English abstract) | |
| [4] | 王荐, 吴运金, 王梦杰, 等. 凹凸棒石-稻秸复合材料的制备及其对污染土壤中镉钝化效果的研究[J]. 土壤, 2022, 54(4): 802-809. | 
| WANG J, WU Y J, WANG M J, et al. Preparation of attapulgite-rice straw composite and its effect on passivation of Cd in contaminated soil[J]. Soils, 2022, 54(4): 802-809. (in Chinese with English abstract) | |
| [5] | 郭彬, 刘琛, 傅庆林, 等. 有机-无机型钝化剂对水稻土镉钝化效果研究[J]. 核农学报, 2017, 31(6): 1173-1178. | 
| GUO B, LIU C, FU Q L, et al. Study on the effect of organic-inorganic passivant on cadmium passivation in paddy soils[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(6): 1173-1178. (in Chinese with English abstract) | |
| [6] | 王凯荣, 张玉烛, 胡荣桂. 不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J]. 农业环境科学学报, 2007, 26(2): 476-481. | 
| WANG K R, ZHANG Y Z, HU R G. Effects of different types of soil amelioration materials on reducing concentrations of Pb and Cd in brown rice in heavy metal polluted paddy soils[J]. Journal of Agro-Environment Science, 2007, 26(2): 476-481. (in Chinese with English abstract) | |
| [7] | 徐隆华, 王佳盟, 韩研科, 等. 轻中度污染耕地安全利用与治理修复技术措施探讨[J]. 农业开发与装备, 2022(3): 121-123. | 
| XU L H, WANG J M, HAN Y K, et al. Discussion on technical measures for safe utilization, treatment and restoration of lightly and moderately polluted cultivated land[J]. Agricultural Development & Equipments, 2022(3): 121-123. (in Chinese) | |
| [8] | 张振兴, 纪雄辉, 谢运河, 等. 水稻不同生育期施用生石灰对稻米镉含量的影响[J]. 农业环境科学学报, 2016, 35(10): 1867-1872. | 
| ZHANG Z X, JI X H, XIE Y H, et al. Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain[J]. Journal of Agro-Environment Science, 2016, 35(10): 1867-1872. (in Chinese with English abstract) | |
| [9] | 朱国武, 胡平, 符明金, 等. 氢氧化钙对土壤中有效镉的时效性[J]. 四川有色金属, 2020(3): 46-47. | 
| ZHU G W, HU P, FU M J, et al. Time effect of calcium hydroxide on available cadmium in soil[J]. Sichuan Nonferrous Metals, 2020(3): 46-47. (in Chinese with English abstract) | |
| [10] | 焦常锋, 常会庆, 王启震, 等. 碳酸钙和壳聚糖联用对高pH值石灰性土壤砷污染的钝化[J]. 农业工程学报, 2020, 36(11): 234-240. | 
| JIAO C F, CHANG H Q, WANG Q Z, et al. Passivation effects of calcium carbonate and chitosan on arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 234-240. (in Chinese with English abstract) | |
| [11] | 王孝堂. 土壤酸度对重金属形态分配的影响[J]. 土壤学报, 1991, 28(1): 103-107. | 
| WANG X T. Effect of soil acidity on distribution and chemical forms of heavy metals in soil[J]. Acta Pedologica Sinica, 1991, 28(1): 103-107. (in Chinese) | |
| [12] | 蔡美芳, 李开明, 谢丹平, 等. 我国耕地土壤重金属污染现状与防治对策研究[J]. 环境科学与技术, 2014, 37(S2): 223-230. | 
| CAI M F, LI K M, XIE D P, et al. The status and protection strategy of farmland soils polluted by heavy metals[J]. Environmental Science & Technology, 2014, 37(S2): 223-230. (in Chinese with English abstract) | |
| [13] | 邵学新, 吴明, 蒋科毅. 土壤重金属污染来源及其解析研究进展[J]. 广东微量元素科学, 2007, 14(4): 1-6. | 
| SHAO X X, WU M, JIANG K Y. Research progress in sources identification of soil heavy metal pollution[J]. Guangdong Trace Elements Science, 2007, 14(4): 1-6. (in Chinese with English abstract) | |
| [14] | 贾然然. 土壤调理剂通用标准有望今年出台[J]. 中国农资, 2016(17): 6. | 
| JIA R R. The general standard of soil conditioner is expected to be introduced this year[J]. China Agri-Production News, 2016(17): 6. (in Chinese) | |
| [15] | 张传琦. 土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究[D]. 合肥: 安徽农业大学, 2011. | 
| ZHANG C Q. Heavy metals in soil arsenic, cadmium, lead, chromium, mercury extraction agents available[D]. Hefei: Anhui Agricultural University, 2011. (in Chinese with English abstract) | |
| [16] | 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499-1502. | 
| HAN C M, WANG L S, GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005, 24(12): 1499-1502. (in Chinese with English abstract) | |
| [17] | 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692-703. | 
| ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 2014, 35(2): 692-703. (in Chinese with English abstract) | 
| [1] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. | 
| [2] | 陈星星, 虞雯煊, 徐健炜, 张鹏. 裙带菜不同部位重金属含量特征分析及健康风险评估[J]. 浙江农业学报, 2025, 37(8): 1794-1804. | 
| [3] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. | 
| [4] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. | 
| [5] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. | 
| [6] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. | 
| [7] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. | 
| [8] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. | 
| [9] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. | 
| [10] | 谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547. | 
| [11] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. | 
| [12] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. | 
| [13] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. | 
| [14] | 王芸, 俞朝, 沈泓, 曹米娜, 周其耀, 胡智鹏, 金崇伟, 冯英. 硅锌叶面肥对芹菜镉积累和营养品质的影响[J]. 浙江农业学报, 2025, 37(1): 61-66. | 
| [15] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||