浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2763-2774.DOI: 10.3969/j.issn.1004-1524.20221667
徐悦1,2(), 汪少敏3, 谭晓菁1,2, 罗英杰1,2, 常婧一2, 邓会2, 刘秀丽2, 崔维军2, 周洁2, 吴月燕1, 严成其1,4,*(
), 王栩鸣2,*(
)
收稿日期:
2022-11-22
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
徐悦(1997—),女,浙江衢州人,硕士研究生,主要从事水稻抗病育种研究。E-mail: xu1839372725@163.com
通讯作者:
*严成其,E-mail: yanchengqi@163.com;王栩鸣,E-mail: xmwang@zaas.ac.cn
基金资助:
XU Yue1,2(), WANG Shaomin3, TAN Xiaojing1,2, LUO Yingjie1,2, CHANG Jingyi2, DENG Hui2, LIU Xiuli2, CUI Weijun2, ZHOU Jie2, WU Yueyan1, YAN Chengqi1,4,*(
), WANG Xuming2,*(
)
Received:
2022-11-22
Online:
2023-12-25
Published:
2023-12-27
摘要:
水稻白叶枯病(bacterial leaf blight, BLB)是由水稻黄单胞菌属水稻致病变种(Xanthomonas oryzae pv. oryzae, Xoo)引起的细菌性病害,严重影响水稻产量。随着基因技术的发展,编辑抗病基因是提高水稻抗病性降低该病害的发生的一种行之有效的方法。本研究首先对D3基因编辑株系和野生型进行白叶枯病菌接种实验来确定D3基因对于白叶枯病菌的抗性,其次利用高通量测序技术对已筛选出的遗传纯合D3基因编辑株系进行转录组分析,同时结合基因差异表达分析、基因家族分析和富集分析挖掘其在抗病相关通路上的潜在作用,并通过实时荧光定量PCR(qRT-PCR)技术对部分差异表达基因(differential expressed genes, DEGs)进行验证。结果表明:接种白叶枯病菌后D3基因被显著诱导,同时D3基因编辑株系均表现出不同程度的白叶枯病抗性。转录组数据显示,与野生型相比,在转录组水平共鉴定到8 184个差异表达基因,包含4 201个上调基因和3 983个下调基因,3组均呈现差异表达的相关基因共有359个。GO功能富集分析表明,D3基因编辑株系与野生型在生物学途径、细胞组分和分子功能上的相关基因均呈显著差异表达。KEGG代谢途径富集分析发现,DEGs显著富集于植物与病原菌互作、植物激素信号转导以及苯丙烷生物合成途径。本研究丰富了水稻D3基因在抗病相关基因转录调控方面的信息,为D3基因抗病功能研究拓展了思路。
中图分类号:
徐悦, 汪少敏, 谭晓菁, 罗英杰, 常婧一, 邓会, 刘秀丽, 崔维军, 周洁, 吴月燕, 严成其, 王栩鸣. D3基因在抗病防卫反应中的转录调控研究[J]. 浙江农业学报, 2023, 35(12): 2763-2774.
XU Yue, WANG Shaomin, TAN Xiaojing, LUO Yingjie, CHANG Jingyi, DENG Hui, LIU Xiuli, CUI Weijun, ZHOU Jie, WU Yueyan, YAN Chengqi, WANG Xuming. Effects of the D3 gene on transcriptional regulation and its role in defense responses[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2763-2774.
株系 Line | 突变方式 Mutation | 处理组 Treatment group | 对照组 Control group(Nip) |
---|---|---|---|
GEM1 | -AT | A-1、A-2、A-3 | CK-1 |
GEM2 | -AGT | B-1、B-2、B-3 | CK-2 |
GEM3 | -CAGTTGCG | C-1、C-2、C-3 | CK-3 |
表1 D3基因编辑转基因GEM株系
Table 1 D3 gene-edited transgenic GEM line
株系 Line | 突变方式 Mutation | 处理组 Treatment group | 对照组 Control group(Nip) |
---|---|---|---|
GEM1 | -AT | A-1、A-2、A-3 | CK-1 |
GEM2 | -AGT | B-1、B-2、B-3 | CK-2 |
GEM3 | -CAGTTGCG | C-1、C-2、C-3 | CK-3 |
基因Gene | 正向引物Forward primer(5'→3') | 反向引物Reverse primer(3'→5') |
---|---|---|
Os02g0462800 | AAGGCTCGCCTTATCCACGC | CAGTCGTCCTGTGCTCCGTC |
Os01g0884300 | GAAGCCGGTGGCGATCAAGA | GAAGCCGGTGGCGATCAAGA |
Os04g0118800 | TGGTTTTGCAAACGAGCGAG | ACCTTCACACCTGCCAACAA |
Os06g0521900 | CACAGCTGCGAGCACTACGA | TTGTCGAACTTGGCTGGCGT |
Os12g0528801 | CGCCACCTTCTCTCCGGTTC | GCTGAGCAGCAGGAGACACT |
表2 qRT-PCR的引物序列
Table 2 Primers used for qRT-PCR
基因Gene | 正向引物Forward primer(5'→3') | 反向引物Reverse primer(3'→5') |
---|---|---|
Os02g0462800 | AAGGCTCGCCTTATCCACGC | CAGTCGTCCTGTGCTCCGTC |
Os01g0884300 | GAAGCCGGTGGCGATCAAGA | GAAGCCGGTGGCGATCAAGA |
Os04g0118800 | TGGTTTTGCAAACGAGCGAG | ACCTTCACACCTGCCAACAA |
Os06g0521900 | CACAGCTGCGAGCACTACGA | TTGTCGAACTTGGCTGGCGT |
Os12g0528801 | CGCCACCTTCTCTCCGGTTC | GCTGAGCAGCAGGAGACACT |
图3 样本间关系的整体特征 A, 基因编辑组之间差异基因的韦恩图;B,基因编辑组之间的差异表达基因数;C,基因编辑组与对照组之间差异基因相对表达量的qRT-PCR分析。
Fig.3 Overall characterization of sample relationship A, Venn diagrams of differentially expressed genes among the gene editing groups and the control group; B, Numbers of differentially expressed genes among the gene editing groups and the control group; C, qRT-PCR analysis of relative expression levels of differentitally genes among the gene editing groups and the control group.
图4 对差异表达显著的DEGs的GO富集分析 差异表达显著的基因被总结为3个主要的GO类别(细胞成分、生物过程和分子功能)。橙色为上调,绿色为下调。
Fig.4 GO enrichment analysis of DEGs with significant expression difference These genes with significant difference are summarized into three main GO categories (biological processes, molecular function, and cellular components). Orange is the up regulated, green is the down regulated.
图5 基因编辑处理组与对照组之间差异表达基因的KEGG富集途径分析 圆圈的大小代表在相应途径中富集的DEG数量,圆圈的颜色代表相应路径。
Fig.5 KEGG enrichment pathway analysis of differentially expressed genes among gene editing treatment groups and control group The size of the circle represents the number of DEG enriched in the corresponding pathway, and the color of the circle represents the corresponding pathway.
图6 苯丙烷生物合成途径中基因编辑处理组与对照组之间差异表达基因分析
Fig.6 Analysis of differentially expressed genes among gene editing treatment groups and control group in the phenylpropane biosynthetic pathway
图7 植物病原菌互作中基因编辑处理组与对照组之间差异表达基因分析
Fig.7 Differentially expressed gene analysis among gene editing treatment groups and control group in plant pathogen interactions
图8 信号转导途径中基因编辑处理组与对照组之间差异表达基因分析
Fig.8 Analysis of differentially expressed genes among gene editing treatment groups and control group in signal transduction pathways
[1] | 陈功友, 徐正银, 杨阳阳, 等. 我国水稻白叶枯病菌致病型划分和水稻抗病育种中应注意的问题[J]. 上海交通大学学报(农业科学版), 2019, 37(1): 67-73. |
CHEN G Y, XU Z Y, YANG Y Y, et al. Classification of pathotypes of Chinese Xanthomonas oryzae pv. oryzae and resistance breeding strategies for bacterial blight[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2019, 37(1): 67-73. (in Chinese with English abstract) | |
[2] | YASMINE NADY HASSAN ABDALLAH. 多粘类芽孢杆菌Sx3和生物合成的4种纳米颗粒抑制水稻白叶枯病菌及促进水稻生长的研究[D]. 杭州: 浙江大学, 2019. |
YASMINE NADY HASSAN ABDALLAH. Studies on plant growth promotion and suppression of bacterial leaf blight pathogen in rice by Paenibacillus polymyxa Sx3 and four biosynthesized nanoparticles[D]. Hangzhou: Zhejiang University, 2019.(in English with Chinese abstract) | |
[3] | 吴水祥, 徐抗冬, 狄蕊, 等. 几种药剂防治水稻白叶枯病效果试验[J]. 湖北植保, 2022(2): 38-40. |
WU S X, XU K D, DI R, et al. Experiment on the effect of several pesticides against bacterial blight in rice[J]. Hubei Plant Protection, 2022(2): 38-40. (in Chinese) | |
[4] | NIÑO-LIU D O, RONALD P C, BOGDANOVE A J. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Molecular Plant Pathology, 2006, 7(5): 303-324. |
[5] | MIZUKAMI T, WAKIMOTO S. Epidemiology and control of bacterial leaf blight of rice[J]. Annual Review of Phytopathology, 1969, 7: 51-72. |
[6] | 吴芝花. 南方稻作区农户专业化统防统治决策行为研究: 以鄱阳湖生态经济区为例[D]. 南昌: 江西财经大学, 2019. |
WU Z H. Research on the decision behavior of farmers’ specialized integrated control in southern rice-growing areas[D]. Nanchang: Jiangxi University of Finance and Economics, 2019. (in Chinese with English abstract) | |
[7] | DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8): 539-548. |
[8] | 王志卫, 贝学军, 朱世平, 等. 植物激素在植物抗病过程中的作用研究进展[J]. 安徽农业科学, 2011, 39(15): 9035-9038, 9041. |
WANG Z W, BEI X J, ZHU S P, et al. Recent advances in phytohormone regulated plant resistance to pathogens[J]. Journal of Anhui Agricultural Sciences, 2011, 39(15): 9035-9038, 9041. (in Chinese with English abstract) | |
[9] | 何金环, 王延方. 水杨酸诱导植物抗病性作用机制研究[J]. 郑州牧业工程高等专科学校学报, 2015, 35(3): 8-11. |
HE J H, WANG Y F. Studies on the mechanism of salicylic acid induced disease resistance in plants[J]. Journal of Zhengzhou College of Animal Husbandry Engineering, 2015, 35(3): 8-11. (in Chinese with English abstract) | |
[10] | 钟庆燕. 外源乙烯和茉莉酸诱导水稻对纹枯病的抗性机理研究[D]. 哈尔滨: 东北农业大学, 2019. |
ZHONG Q Y. Mechanism of resistance of rice to sheath blight induced by exogenous ethylene and jasmonic acid[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[11] | 张灿. 外源独脚金内酯缓解大麦镉毒害的机理研究[D]. 杭州: 浙江大学, 2019. |
ZHANG C. Mechanisms of alleviation effects of exogenous GR24 on cadmium toxicity in barely(Hordeum vulgare)seedlings[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[12] | JIANG L A, LIU X E, XIONG G S, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480): 401-405. |
[13] | CHENG H T, LIU H B, DENG Y, et al. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen[J]. Plant Physiology, 2015, 167(3): 1087-1099. |
[14] | ZHOU F, LIN Q B, ZHU L H, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480): 406-410. |
[15] | ZHANG Y X, VAN DIJK A D J, SCAFFIDI A, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis[J]. Nature Chemical Biology, 2014, 10(12): 1028-1033. |
[16] | UMEHARA M, HANADA A, YOSHIDA S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200. |
[17] | YANG Z, SUN X, WANG S, et al. Genetic and physical mapping of a new gene for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics, 2003, 106(8): 1467-1472. |
[18] | 原文霞, 王栩鸣, 李冬月, 等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5): 685-693. |
YUAN W X, WANG X M, LI D Y, et al. Application of the technology of CRISPR/Cas9 edit rice gene[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5): 685-693. (in Chinese with English abstract) | |
[19] | ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology, 2005, 46(1): 79-86. |
[20] | YAN H F, SAIKA H, MAEKAWA M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes & Genetic Systems, 2007, 82(4): 361-366. |
[21] | CHOI J, LEE T, CHO J, et al. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice[J]. Nature Communications, 2020, 11: 2114. |
[22] | 许秋健, 王松标, 马小卫, 等. 代谢组和转录组联合分析园艺植物生理机制研究进展[R]// 2019年全国热带作物学术年会论文集, 西安, 2019. |
[23] | 刘永振, 李构思, 王晓宇, 等. 利用二代测序技术高通量分析水稻品种间抗病性差异的分子基础[J]. 西北植物学报, 2014, 34(9): 1742-1748. |
LIU Y Z, LI G S, WANG X Y, et al. Exploration on the molecular basis of different resistance in rice using next-generation sequencing[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1742-1748. (in Chinese with English abstract) | |
[24] | 荣河江, 王亚东. 基于基因本体的相似度计算方法[J]. 智能计算机与应用, 2019, 9(1): 108-113, 118. |
RONG H J, WANG Y D. Computation method for semantic similarity based on gene ontology[J]. Intelligent Computer and Applications, 2019, 9(1): 108-113, 118. (in Chinese with English abstract) | |
[25] | OGATA H, GOTO S, SATO K, et al. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 1999, 27(1): 29-34. |
[26] | KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. |
[27] | LIU H H, LIU S M, YU H, et al. An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro[J]. Molecular Plant, 2022, 15(8): 1285-1299. |
[28] | PIETERSE C M J, VAN DER DOES D, ZAMIOUDIS C, et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 2012, 28: 489-521. |
[29] | 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. |
SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. (in Chinese with English abstract) | |
[30] | 陈启锋, 高汉芳, 陈璋, 等. 生物工程应用于作物育种的试验研究第5报水稻抗稻瘟病细胞突变体的筛选[J]. 福建农学院学报, 1989, 18(4): 479-486. |
CHEN Q F, GAO H F, CHEN Z, et al. Studies on the biotechnology applied in crop breeding ⅴ. screening of rice somaclonal mutants with resistance to Pyricularia oryzae[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 1989, 18(4): 479-486. (in Chinese with English abstract) | |
[31] | 王煜, 李文新, 徐宁淳. 水稻植保素的生物化学研究进展[J]. 武汉植物学研究, 1999, 17(S1): 111-114, 116. |
WANG Y, LI W X, XU N C. Progress on biosynthesis of phytoalexins in rice[J]. Journal of Wuhan Botanical Research, 1999, 17(S1): 111-114, 116. (in Chinese with English abstract) | |
[32] | 郝向阳, 孙雪丽, 王天池, 等. 植物PAL基因及其编码蛋白的特征与功能研究进展[J]. 热带作物学报, 2018, 39(7): 1452-1461. |
HAO X Y, SUN X L, WANG T C, et al. Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1452-1461. (in Chinese with English abstract) | |
[33] | YUAN X, WANG Z Y, HUANG J Z, et al. Phospholipidase dδ negatively regulates the function of resistance to Pseudomonas syringae pv. Maculicola 1(RPM1)[J]. Frontiers in Plant Science, 2019, 9: 1991. |
[34] | 杨俊. OsCaM1-1和OsCML16调控水稻耐逆性机制的研究[D]. 武汉: 华中农业大学, 2018. |
YANG J. Study on the mechanisms of OsCaM1-1 and OsCML16 to regulate stress tolerance in rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[35] | PERSECHINI A, MONCRIEF N D, KRETSINGER R H. The EF-hand family of calcium-modulated proteins[J]. Trends in Neurosciences, 1989, 12(11): 462-467. |
[36] | TANAKA M, TAKEI K, KOJIMA M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance[J]. The Plant Journal, 2006, 45(6): 1028-1036. |
[37] | 李辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展[J]. 植物生理学报, 2015, 51(11): 1787-1798. |
LI H, ZUO Q Y, TU S B. Advances in brassinosteroid biosynthesis and metabolism[J]. Plant Physiology Journal, 2015, 51(11): 1787-1798. (in Chinese with English abstract) | |
[38] | 袁梦, 李冰, 尹航, 等. 不同激素和环境胁迫调控水稻分蘖的研究进展[J]. 黑龙江农业科学, 2019(2): 134-139. |
YUAN M, LI B, YIN H, et al. Advances in tillering regulation of rice by different hormones and environmental stresses[J]. Heilongjiang Agricultural Sciences, 2019(2): 134-139. (in Chinese with English abstract) | |
[39] | ÖZDEMIR F, BOR M, DEMIRAL T, et al. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress[J]. Plant Growth Regulation, 2004, 42(3): 203-211. |
[40] | NAKASHITA H, YASUDA M, NITTA T, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice[J]. The Plant Journal, 2003, 33(5): 887-898. |
[41] | CHEN X W, ZUO S M, SCHWESSINGER B, et al. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors[J]. Molecular Plant, 2014, 7(5): 874-892. |
[42] | BI G Z, ZHOU J M. MAP kinase signaling pathways: a hub of plant-microbe interactions[J]. Cell Host & Microbe, 2017, 21(3): 270-273. |
[43] | XU M R, HUANG L Y, ZHANG F, et al. Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection[J]. Plant Molecular Biology Reporter, 2013, 31(4): 877-885. |
[1] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[2] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[3] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[4] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[5] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[6] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[7] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[8] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[9] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
[10] | 张红梅, 王保君, 沈亚强, 程旺大. 浙北地区不同粒形优质粳稻产量和品质对播期调控的响应[J]. 浙江农业学报, 2023, 35(12): 2751-2762. |
[11] | 郝柳柳, 代梨梨, 彭亮, 陈思媛, 陶玲, 李谷, 张辉. 稻虾种养系统水稻根际土壤活性有机碳、微生物群落结构及其相互关系[J]. 浙江农业学报, 2023, 35(12): 2901-2913. |
[12] | 林小兵, 张鸿燕, 张秋梅, 周利军, 徐德胜, 郭乃嘉, 邱祥凤, 黄海平. 基于多指标的镉低积累水稻品种筛选[J]. 浙江农业学报, 2023, 35(11): 2507-2515. |
[13] | 朱雅婷, 倪远之, 张敏, 王振旗, 沈根祥, 黄娜. 不同秸秆还田量对上海地区稻田甲烷排放的影响[J]. 浙江农业学报, 2023, 35(10): 2436-2445. |
[14] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[15] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||