浙江农业学报 ›› 2024, Vol. 36 ›› Issue (5): 1076-1085.DOI: 10.3969/j.issn.1004-1524.20230757
黄融1(), 孟庆鑫1, 吴晓漫1, 荀利杰1, 张俊丽1, 董霞2, 董坤1,*(
), 龚雪阳1,*(
)
收稿日期:
2023-06-13
出版日期:
2024-05-25
发布日期:
2024-05-29
作者简介:
黄融(1998—),女,云南大理人,硕士研究生,主要从事蜜粉源植物授粉研究。E-mail:huangrongg2022@163.com
通讯作者:
* 董坤,E-mail:dongkun19722004@aliyun.com;龚雪阳,E-mail:xueyangg11@126.com
基金资助:
HUANG Rong1(), MENG Qingxin1, WU Xiaoman1, XUN Lijie1, ZHANG Junli1, DONG Xia2, DONG Kun1,*(
), GONG Xueyang1,*(
)
Received:
2023-06-13
Online:
2024-05-25
Published:
2024-05-29
摘要:
以腾冲红花油茶花梗为试材,采用高通量测序的方法,研究了12年生(N组)和60年生(O组)树龄的腾冲红花油茶花梗内生真菌群落结构及其多样性。结果表明,两种树龄腾冲红花油茶花梗内生真菌OTU和Alpha分析结果存在差异,物种多样性和丰富度差异显著。在两种树龄腾冲红花油茶花梗中子囊菌门和担子菌门是优势菌门(二者丰度之和>90%),但目、科水平上两组样品优势种群差异巨大,很多物种(真菌)只能分类到目水平,其中O组的煤炱目未分类科和N组银耳目未分类科占比最大。内生真菌功能预测得到11个生态共位群,未知(Unknown)占比最高,动物病原菌、植物病原菌、真菌寄生菌等与各种腐生菌组成了多功能的营养型,内生真菌中病原菌、寄生菌和腐生菌的丰度受树龄影响较大。综上所述,树龄大的腾冲红花油茶花梗中内生真菌多样性和丰富度显著增多,并且优势真菌种类、丰度和功能也发生改变,因此,利用内生真菌时树龄因素不可忽视。
中图分类号:
黄融, 孟庆鑫, 吴晓漫, 荀利杰, 张俊丽, 董霞, 董坤, 龚雪阳. 两种树龄腾冲红花油茶花梗内生真菌的多样性[J]. 浙江农业学报, 2024, 36(5): 1076-1085.
HUANG Rong, MENG Qingxin, WU Xiaoman, XUN Lijie, ZHANG Junli, DONG Xia, DONG Kun, GONG Xueyang. Diversity analysis of endophytic fungi in the pedicels of two tree-age Camellia reticulate[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1076-1085.
样本 Sample | OTU数 Number of OTU | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus |
---|---|---|---|---|---|---|
O组Group O | 1 032 | 4 | 22 | 68 | 150 | 240 |
N组Group N | 528 | 4 | 21 | 65 | 123 | 185 |
表1 两种树龄腾冲红花油茶花梗内生真丰富度比较
Table 1 Comparison of richness of endophytic fungi in pedicels of Camellia reticulate of two tree ages
样本 Sample | OTU数 Number of OTU | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus |
---|---|---|---|---|---|---|
O组Group O | 1 032 | 4 | 22 | 68 | 150 | 240 |
N组Group N | 528 | 4 | 21 | 65 | 123 | 185 |
图1 OTU水平Venn图分析 按树龄分为N组(12 a)和O组(60 a)。下同。
Fig.1 Venn analysis on OTU level The experimental samples were divided into two groups according to tree age: group N (12 a) and group O (60 a). The same as below.
图2 两种树龄的腾冲红花油茶花梗内生真菌Sobs稀释曲线(A)和Shannon指数稀释曲线(B)
Fig.2 Rarefaction curves of Sobs index (A) and Shannon index (B) of endophytic fungi detected in pedicels of Camellia reticulate of two tree ages
样本 Sample | Sobs指数 Sobs index | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖度 Coverage/% |
---|---|---|---|---|---|---|
O组Group O | 530.33 ± 53.17 a | 3.64 ± 0.29 a | 0.08 ± 0.02 b | 619.90 ± 87.17 a | 373.90 ± 35.85 a | 99.82 |
N组Group N | 283.67 ± 45.12 b | 2.29 ± 0.37 b | 0.20 ± 0.05 a | 343.70 ± 38.53 b | 617.80 ±38.53 b | 99.88 |
表2 两种树龄腾冲红花油茶花梗内生真菌多样性指数
Table 2 Endophytic fungi diversity indexes in pedicels of Camellia reticulate of two tree ages
样本 Sample | Sobs指数 Sobs index | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖度 Coverage/% |
---|---|---|---|---|---|---|
O组Group O | 530.33 ± 53.17 a | 3.64 ± 0.29 a | 0.08 ± 0.02 b | 619.90 ± 87.17 a | 373.90 ± 35.85 a | 99.82 |
N组Group N | 283.67 ± 45.12 b | 2.29 ± 0.37 b | 0.20 ± 0.05 a | 343.70 ± 38.53 b | 617.80 ±38.53 b | 99.88 |
图6 两种树龄的腾冲红花油茶花梗内生真菌群落在门水平上的丰度差异比较
Fig.6 Comparison of differences in abundance of endophytic fungi at phylum level in pedicels of Camellia reticulate of two tree ages
图7 两种树龄的腾冲红花油茶花梗内生真菌群落在科水平上的丰度差异比较
Fig.7 Comparison of differences in abundance of endophytic fungi at family level in pedicels of Camellia reticulate of two tree ages
[1] | 冯国楣, 夏丽芳, 朱象鸿. 云南山茶花[M]. 昆明: 云南人民出版, 1981. |
[2] | 李归林, 董琼. 腾冲红花油茶资源开发利用研究进展[J]. 绿色科技, 2022, 24(9): 112-115. |
LI G L, DONG Q. Research and development progress of Camellia reticulata lindl[J]. Journal of Green Science and Technology, 2022, 24(9): 112-115. (in Chinese with English abstract) | |
[3] | 谢胤, 曹永庆, 余祖华, 等. 腾冲红花油茶花期物候对座果率和产量的影响[J]. 林业与环境科学, 2020, 36(6): 40-47. |
XIE Y, CAO Y Q, YU Z H, et al. Effect of flowering phenophase on fruitset ratio and yield of Camellia reticulata[J]. Forestry and Environmental Science, 2020, 36(6): 40-47. (in Chinese with English abstract) | |
[4] | 辛成莲, 石卓功, 黄佳聪, 等. 腾冲红花油茶的坐果率及结实率研究[J]. 西部林业科学, 2011, 40(4): 60-64. |
XIN C L, SHI Z G, HUANG J C, et al. Study on fruit setting and seed production characteristics of Camellia reticulata in Tengchong County[J]. Journal of West China Forestry Science, 2011, 40(4): 60-64. (in Chinese with English abstract) | |
[5] | SAIKKONEN K, FAETH S H, HELANDER M, et al. FUNGAL ENDOPHYTES: a continuum of interactions with host plants[J]. Annual Review of Ecology and Systematics, 1998, 29: 319-343. |
[6] | ARNOLD A E, MEJÍA L C, KYLLO D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15649-15654. |
[7] | TERKAR A, BORDE M. Endophytic fungi: novel source of bioactive fungal metabolites[M]//New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier, 2021: 95-105. |
[8] | 张婷, 左雪枝, 徐艳. 油茶内生真菌多样性与抑菌性研究[J]. 河南农业科学, 2017, 46(4): 68-74. |
ZHANG T, ZUO X Z, XU Y. Diversity, antimicrobial activity of endophytic fungi from Camellia oleifera[J]. Journal of Henan Agricultural Sciences, 2017, 46(4): 68-74. (in Chinese with English abstract) | |
[9] | 张林平, 张扬, 王舒, 等. 油茶不同部位的内生真菌组成及多样性分析[J]. 林业科技开发, 2013, 27(6): 101-105. |
ZHANG L P, ZHANG Y, WANG S, et al. The composition and diversity of endophytic fungi in different parts of Camellia oleifera Abel[J]. China Forestry Science and Technology, 2013, 27(6): 101-105. (in Chinese with English abstract) | |
[10] | 陈言柳, 裴男才, 吴斐, 等. 不同地区油茶内生真菌多样性及其抑菌活性[J]. 生物灾害科学, 2018, 41(4): 261-267. |
CHEN Y L, PEI N C, WU F, et al. Diversity and antibacterial activity of endophytic fungi from Camellia oleifera in different regions[J]. Biological Disaster Science, 2018, 41(4): 261-267. (in Chinese with English abstract) | |
[11] | YU J X, WU Y, HE Z, et al. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera[J]. Mycobiology, 2018, 46(2): 85-91. |
[12] | BORAH A, DAS R, MAZUMDAR R, et al. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics[J]. Journal of Applied Microbiology, 2019, 127(3): 825-844. |
[13] | FERGUSON J A. Species diversity in space and time. Michael L. rosenzweig[J]. Economic Botany, 1996, 50(4): 470. |
[14] | WANG Y, GUO L D. A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis[J]. Canadian Journal of Botany, 2007, 85(10): 911-917. |
[15] | WAGNER M R, LUNDBERG D S, DEL RIO T G, et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant[J]. Nature Communications, 2016, 7: 12151. |
[16] | JUYBARI H Z, ALI TAJICK GHANBARY M, RAHIMIAN H, et al. Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran[J]. Forest Pathology, 2019, 49(6): e12559. |
[17] | LÓPEZ-GONZÁLEZ R C, GÓMEZ-CORNELIO S, DE LA ROSA-GARCÍA S C, et al. The age of Lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum[J]. Fungal Ecology, 2017, 26: 1-10. |
[18] | SOON W W, HARIHARAN M, SNYDER M P. High-throughput sequencing for biology and medicine[J]. Molecular Systems Biology, 2013, 9: 640. |
[19] | 周火明. 简明植物学教程[M]. 武汉: 华中师范大学出版社, 2015. |
[20] | LIU H W, CARVALHAIS L C, CRAWFORD M, et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria[J]. Frontiers in Microbiology, 2017, 8: 2552. |
[21] | ERCOLANI G L. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time[J]. Microbial Ecology, 1991, 21(1): 35-48. |
[22] | 杨琴, 邹凯, 陈爱佳, 等. 不同树龄银杏叶内生真菌的多样性及群落结构分析[J]. 湖南农业大学学报(自然科学版), 2019, 45(1): 42-49. |
YANG Q, ZOU K, CHEN A J, et al. Endophytic fungal communities structure and variation in Ginkgo biloba leaf tissues with different ages[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(1): 42-49. (in Chinese with English abstract) | |
[23] | 周生亮, 闫淑珍, 吴振莹, 等. 基于rDNA ITS序列的油茶叶片内生真菌多样性研究(英文)[J]. 菌物学报, 2013, 32(5): 819-830. |
ZHOU S L, YAN S Z, WU Z Y, et al. Detection of endophytic fungi within foliar tissues of Camellia oleifera based on rDNA ITS sequences[J]. Mycosystema, 2013, 32(5): 819-830. (in English with Chinese abstract) | |
[24] | RAJAMANIKYAM M, VADLAPUDI V, AMANCHY R, et al. Endophytic fungi as novel resources of natural therapeutics[J]. Brazilian Archives of Biology and Technology, 2017, 60: e17160542. |
[25] | 张丽, 张武, 王长宝. 基于高通量测序卷柏内生真菌多样性研究[J]. 农业与技术, 2023, 43(4): 20-23. |
ZHANG L, ZHANG W, WANG C B. Diversity of endophytic fungi based on Selaginella selaginella in high-throughput sequencing[J]. Agriculture and Technology, 2023, 43(4): 20-23. (in Chinese) | |
[26] | 杨立昌, 吴庆珊, 高阳, 等. 基于高通量测序的金钗石斛种子内生菌群落结构组成分析[J]. 种子, 2020, 39(8): 94-98. |
YANG L C, WU Q S, GAO Y, et al. Analysis of composition of endophytic community of Dendrobium nobile Lindl.Seeds based on high-throughput sequencing[J]. Seed, 2020, 39(8): 94-98. (in Chinese) | |
[27] | LEROY C, MAES A Q, LOUISANNA E, et al. How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species[J]. Fungal Ecology, 2019, 39: 296-306. |
[28] | OHM R A, FEAU N, HENRISSAT B, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi[J]. PLoS Pathogens, 2012, 8(12): e1003037. |
[29] | HARDOIM P R, VAN OVERBEEK L S, BERG G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3): 293-320. |
[30] | BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398. |
[31] | ZHANG P, CUI Z Y, GUO M Q, et al. Characteristics of the soil microbial community in the forestland of Camellia oleifera[J]. PeerJ, 2020, 8: e9117. |
[32] | PROMPUTTHA I, LUMYONG S, DHANASEKARAN V, et al. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence[J]. Microbial Ecology, 2007, 53(4): 579-590. |
[33] | VAN BAARLEN P, VAN BELKUM A, SUMMERBELL R C, et al. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-Kingdom host jumps?[J]. FEMS Microbiology Reviews, 2007, 31(3): 239-277. |
[34] | YACHI S, LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468. |
[35] | ISBELL F, CRAVEN D, CONNOLLY J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes[J]. Nature, 2015, 526(7574): 574-577. |
[1] | 刘慧春, 许雯婷, 周江华, 张加强, 史小华, 朱开元. 基于牡丹涝害胁迫的转录组分析及SSR引物开发[J]. 浙江农业学报, 2024, 36(3): 544-558. |
[2] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
[3] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[4] | 隋夕然, 王妍, 刘云根, 张雅洁, 吴丽芳. 典型喀斯特区云南松林土壤养分和细菌群落对海拔的响应[J]. 浙江农业学报, 2021, 33(12): 2348-2357. |
[5] | 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析[J]. 浙江农业学报, 2020, 32(6): 1019-1028. |
[6] | 杨移斌, 艾晓辉, 宋怿, 董靖, 胥宁, 姜兰. 黄颡鱼溶血性腹水病初探[J]. 浙江农业学报, 2019, 31(8): 1239-1248. |
[7] | 张博伟, 王海静, 宋茂勇, 谢慧君, 张建. 四溴双酚A对土壤无机氮转化的影响及其微生物学机理初探[J]. 浙江农业学报, 2019, 31(4): 639-645. |
[8] | 倪黎纲, 赵旭庭, 王宵燕, 宋成义, 吴信生, 甘源. 基于高通量测序分析肺炎支原体感染姜曲海猪肺组织miRNA表达谱[J]. 浙江农业学报, 2019, 31(12): 1979-1986. |
[9] | 徐晓锋, 郭成. 淀粉诱导奶牛乳脂下降后奶牛瘤胃细菌菌群变化[J]. 浙江农业学报, 2019, 31(10): 1591-1598. |
[10] | 张爱菊, 郝雅宾, 郭爱环, 刘金殿, 练青平, 周志明. 基于高通量测序技术的鱼类环境DNA研究中通用引物的筛选验证[J]. 浙江农业学报, 2019, 31(10): 1615-1623. |
[11] | 桂国弘, 杨华, 朱江群, 朱建芬, 肖英平, 徐娥. 冷鲜鸡冷藏保存过程中菌群结构变化分析[J]. 浙江农业学报, 2019, 31(1): 47-55. |
[12] | 刘宗楠, 王新, 吴逸飞, 姚晓红, 孙宏, 沈琦, 李维琳, 汤江武. 鸢尾联合固定化菌剂净化河道水体的微生态过程[J]. 浙江农业学报, 2019, 31(1): 121-129. |
[13] | 王佩佩, 杨华, 戴贤君, 桂国弘, 肖英平. 家禽屠宰场环境和屠宰器械表面微生物菌群结构和耐药基因分析[J]. 浙江农业学报, 2018, 30(7): 1249-1258. |
[14] | 肖英平, 杨彩梅, 代兵, 李开锋, 陈镜刚, 杨华. 基于高通量测序的丁酸梭菌对肉鸡盲肠菌群结构的影响[J]. 浙江农业学报, 2017, 29(3): 373-379. |
[15] | 席刚俊, 李警保, 史俊, 韩正敏. 白芨内生真菌的多样性[J]. 浙江农业学报, 2017, 29(12): 2077-2083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||