浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1537-1547.DOI: 10.3969/j.issn.1004-1524.20230738
唐金玉1(), 黄福勇1, 戴杨鑫2, 楼宝1, 郭水荣3,*(
)
收稿日期:
2023-06-08
出版日期:
2024-07-25
发布日期:
2024-08-05
作者简介:
唐金玉(1986—),男,山东高密人,博士,助理研究员,主要研究方向为水域生态。E-mail: tangjy@zaas.ac.cn
通讯作者:
*郭水荣,E-mail: 308570748@qq.com
基金资助:
TANG Jinyu1(), HUANG Fuyong1, DAI Yangxin2, LOU Bao1, GUO Shuirong3,*(
)
Received:
2023-06-08
Online:
2024-07-25
Published:
2024-08-05
摘要:
为探究稻渔综合种养模式下浮游生物的群落变化特征及其与养殖对象之间的关系,2022年6月—9月采用18S rRNA基因高通量测序技术调查了浙江省海宁市6处稻-红螯螯虾(Cherax quadricarinatus)养殖水体中浮游生物的群落组成及多样性的变化,并结合Spearman相关性热图分析了优势种类和多样性指数与生长性状之间的关系。结果显示:红螯螯虾的体长、头胸甲宽、体重、增重率、特定生长率和肥满度在不同稻田间无显著差异,但体长、头胸甲宽和体重随着养殖时间的延长明显增加,特定生长率则显著下降。虾引入稻田后会相对改善水体中浮游生物的群落多样性,然而,随着养殖时间的延长,群落稳定性逐渐降低。隐藻(Cryptomonas)、衣藻(Chlamydomonas)、小球藻(Chlorella)和中剑水蚤(Mesocyclops)是共作期间常见的优势种类。浮游植物的优势种或主要种类(浮游生物中排名前50的种类)与浮游动物的变化趋势不同,前者的相对丰度逐渐增加,后者则逐渐降低。分析发现,季节变化是驱动稻-虾共作模式下浮游生物群落演替的主要原因。此外,虾的摄食作用也会对群落变化产生一定影响。相关性分析显示,肥满度与小球藻生物量显著负相关,表明养殖水体的水质对虾的生长和健康状况具有重要影响,因此需平衡好水稻种植区和水产养殖区对营养水平需求不同的矛盾。
中图分类号:
唐金玉, 黄福勇, 戴杨鑫, 楼宝, 郭水荣. 稻-红螯螯虾共作模式下浮游生物的群落变化特征及其与虾生长之间的关系[J]. 浙江农业学报, 2024, 36(7): 1537-1547.
TANG Jinyu, HUANG Fuyong, DAI Yangxin, LOU Bao, GUO Shuirong. The temporal characteristic of plankton community and their relationship with shrimp growth in the co-cultural farming of rice and redclaw crayfish (Cherax quadricarinatus)[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1537-1547.
处理 Treatments | 体长 Body length/cm | 头胸甲宽 Carapace width/cm | 体重 Final body weight/g | 增重率 Growth rate/% | 特定生长率 Specific growth rate/(%·d-1) | 肥满度 Condition factor/ (g·cm-3) | |
---|---|---|---|---|---|---|---|
稻田 | 1# | 13.76±0.06 | 2.63±0.08 | 54.97±1.11 | 13 642.5±277.5 | 5.47±0.02 | 2.11±0.01 |
Sampling sites | 2# | 13.56±0.89 | 2.62±0.18 | 54.81±2.08 | 13 601.7±1 773.0 | 5.45±0.14 | 2.20±0.18 |
3# | 12.64±0.24 | 2.53±0.07 | 46.38±0.77 | 11 493.8±191.6 | 5.28±0.02 | 2.30±0.10 | |
4# | 13.55±0.21 | 2.76±0.06 | 55.78±2.88 | 13 794.2±719.8 | 5.48±0.06 | 2.23±0.08 | |
5# | 13.30±0.14 | 2.67±0.01 | 50.37±1.54 | 12 492.5±384.1 | 5.37±0.03 | 2.15±0.13 | |
6# | 14.08±0.24 | 2.78±0.05 | 56.81±2.50 | 14 101.3±625.4 | 5.50±0.05 | 2.04±0.09 | |
时间Time | Jul | 8.23±0.25 c | 1.70±0.05 c | 12.99±1.13 c | 314 716.8±877.1 a | 11.40±0.31 a | 2.25±0.02 |
Aug | 11.9±0.17 b | 2.47±0.01 b | 40.10±1.15 b | 9 925.4±283.8 b | 7.63±0.04 b | 2.31±0.05 | |
Sep | 13.48±0.20 a | 2.67±0.04 a | 53.15±1.62 a | 13 187.6±405.5 b | 5.43±0.03 c | 2.17±0.04 |
表1 红螯螯虾生长性状
Table 1 Growth traits of C. quadricarinatus in different treatments
处理 Treatments | 体长 Body length/cm | 头胸甲宽 Carapace width/cm | 体重 Final body weight/g | 增重率 Growth rate/% | 特定生长率 Specific growth rate/(%·d-1) | 肥满度 Condition factor/ (g·cm-3) | |
---|---|---|---|---|---|---|---|
稻田 | 1# | 13.76±0.06 | 2.63±0.08 | 54.97±1.11 | 13 642.5±277.5 | 5.47±0.02 | 2.11±0.01 |
Sampling sites | 2# | 13.56±0.89 | 2.62±0.18 | 54.81±2.08 | 13 601.7±1 773.0 | 5.45±0.14 | 2.20±0.18 |
3# | 12.64±0.24 | 2.53±0.07 | 46.38±0.77 | 11 493.8±191.6 | 5.28±0.02 | 2.30±0.10 | |
4# | 13.55±0.21 | 2.76±0.06 | 55.78±2.88 | 13 794.2±719.8 | 5.48±0.06 | 2.23±0.08 | |
5# | 13.30±0.14 | 2.67±0.01 | 50.37±1.54 | 12 492.5±384.1 | 5.37±0.03 | 2.15±0.13 | |
6# | 14.08±0.24 | 2.78±0.05 | 56.81±2.50 | 14 101.3±625.4 | 5.50±0.05 | 2.04±0.09 | |
时间Time | Jul | 8.23±0.25 c | 1.70±0.05 c | 12.99±1.13 c | 314 716.8±877.1 a | 11.40±0.31 a | 2.25±0.02 |
Aug | 11.9±0.17 b | 2.47±0.01 b | 40.10±1.15 b | 9 925.4±283.8 b | 7.63±0.04 b | 2.31±0.05 | |
Sep | 13.48±0.20 a | 2.67±0.04 a | 53.15±1.62 a | 13 187.6±405.5 b | 5.43±0.03 c | 2.17±0.04 |
时间Time | 门Phylum | 纲Class | 目Order | 科Family | 属Genus | 种Species |
---|---|---|---|---|---|---|
Jun | 23±2 | 40±3 | 60±5 | 85±7 | 107±10 | 126±13 |
Jul | 29±1 | 48±2 | 75±4 | 108±5 | 137±7 | 161±9 |
Aug | 29±2 | 47±4 | 67±6 | 93±8 | 121±9 | 143±11 |
Sep | 28±2 | 47±3 | 74±5 | 101±7 | 125±7 | 149±8 |
表2 稻-虾共作模式下浮游生物的基本组成
Table 2 Composition of plankton at different taxonomy levels in the co-cultural system of rice and C. quadricarinatus
时间Time | 门Phylum | 纲Class | 目Order | 科Family | 属Genus | 种Species |
---|---|---|---|---|---|---|
Jun | 23±2 | 40±3 | 60±5 | 85±7 | 107±10 | 126±13 |
Jul | 29±1 | 48±2 | 75±4 | 108±5 | 137±7 | 161±9 |
Aug | 29±2 | 47±4 | 67±6 | 93±8 | 121±9 | 143±11 |
Sep | 28±2 | 47±3 | 74±5 | 101±7 | 125±7 | 149±8 |
图2 门水平上的浮游生物相对丰度 Jun,6月9日;Jul,7月9日;Aug;8月9日;Sep, 9月9日。下同。
Fig.2 Relative abundance histogram of species at phylum level Jun, June 9th; Jul, July 9th; Aug, August 9th; Sep, September 9th. The same as below.
时间 Time | 浮游植物Phytoplankton | 浮游动物Zooplankton | ||||
---|---|---|---|---|---|---|
优势种 Dominant species | 相对丰度 Relative abundance/% | 总计 Total/% | 优势种 Dominant species | 相对丰度 Relative abundance/% | 总计 Total/% | |
Jun | 隐藻Cryptomonas | 18.40 | 28.47 | 中剑水蚤Mesocyclops | 11.30 | 26.32 |
衣藻Chlamydomonas | 6.58 | 伪镖水蚤Pseudodiaptomus | 11.53 | |||
小环藻Cyclotella | 1.42 | 长颈虫Dileptus | 2.37 | |||
蓝隐藻Chroomonas | 2.07 | 温剑水蚤Thermocyclops | 1.11 | |||
Jul | 隐藻Cryptomonas | 3.10 | 37.22 | 中剑水蚤Mesocyclops | 3.38 | 3.38 |
衣藻Chlamydomonas | 24.63 | |||||
小球藻Chlorella | 1.90 | |||||
小环藻Cyclotella | 2.78 | |||||
蓝隐藻Chroomonas | 1.28 | |||||
杜氏藻Dunaliella | 2.45 | |||||
黄群藻Synura | 1.09 | |||||
Aug | 隐藻Cryptomonas | 12.56 | 40.95 | 中剑水蚤Mesocyclops | 1.78 | 1.78 |
衣藻Chlamydomonas | 14.16 | |||||
小球藻Chlorella | 3.15 | |||||
小环藻Cyclotella | 7.48 | |||||
韦斯藻Wislouchiella | 1.33 | |||||
麦克藻Mychonastes | 1.12 | |||||
鱼鳞藻Mallomonas | 1.15 | |||||
Sep | 隐藻Cryptomonas | 30.92 | 50.39 | 中剑水蚤Mesocyclops | 1.87 | 1.87 |
衣藻Chlamydomonas | 6.19 | |||||
小球藻Chlorella | 7.08 | |||||
索囊藻Choricystis | 3.41 | |||||
韦斯藻Wislouchiella | 1.71 | |||||
弓形藻Schroederia | 1.08 |
表3 稻-虾共作模式下浮游生物优势种及相对丰度
Table 3 Dominant species and their relative abundances of plankton in the co-cultural system of rice and C. quadricarinatus
时间 Time | 浮游植物Phytoplankton | 浮游动物Zooplankton | ||||
---|---|---|---|---|---|---|
优势种 Dominant species | 相对丰度 Relative abundance/% | 总计 Total/% | 优势种 Dominant species | 相对丰度 Relative abundance/% | 总计 Total/% | |
Jun | 隐藻Cryptomonas | 18.40 | 28.47 | 中剑水蚤Mesocyclops | 11.30 | 26.32 |
衣藻Chlamydomonas | 6.58 | 伪镖水蚤Pseudodiaptomus | 11.53 | |||
小环藻Cyclotella | 1.42 | 长颈虫Dileptus | 2.37 | |||
蓝隐藻Chroomonas | 2.07 | 温剑水蚤Thermocyclops | 1.11 | |||
Jul | 隐藻Cryptomonas | 3.10 | 37.22 | 中剑水蚤Mesocyclops | 3.38 | 3.38 |
衣藻Chlamydomonas | 24.63 | |||||
小球藻Chlorella | 1.90 | |||||
小环藻Cyclotella | 2.78 | |||||
蓝隐藻Chroomonas | 1.28 | |||||
杜氏藻Dunaliella | 2.45 | |||||
黄群藻Synura | 1.09 | |||||
Aug | 隐藻Cryptomonas | 12.56 | 40.95 | 中剑水蚤Mesocyclops | 1.78 | 1.78 |
衣藻Chlamydomonas | 14.16 | |||||
小球藻Chlorella | 3.15 | |||||
小环藻Cyclotella | 7.48 | |||||
韦斯藻Wislouchiella | 1.33 | |||||
麦克藻Mychonastes | 1.12 | |||||
鱼鳞藻Mallomonas | 1.15 | |||||
Sep | 隐藻Cryptomonas | 30.92 | 50.39 | 中剑水蚤Mesocyclops | 1.87 | 1.87 |
衣藻Chlamydomonas | 6.19 | |||||
小球藻Chlorella | 7.08 | |||||
索囊藻Choricystis | 3.41 | |||||
韦斯藻Wislouchiella | 1.71 | |||||
弓形藻Schroederia | 1.08 |
时间 Time | Chao 1指数 Chao 1 index | Pielou均匀度指数 Pielou’s evenness index | Shannon多样性指数 Shannon diversity index | Simpson多样性指数 Simpson diversity index |
---|---|---|---|---|
Jun | 558.03±67.45 b | 0.65±0.03 | 5.83±0.35 | 0.93±0.02 |
Jul | 880.48±46.02 a | 0.69±0.03 | 6.71±0.32 | 0.95±0.03 |
Aug | 717.09±50.08 ab | 0.66±0.02 | 6.27±0.21 | 0.94±0.01 |
Sep | 702.96±64.03 ab | 0.60±0.06 | 5.66±0.61 | 0.88±0.06 |
表4 稻-虾共作模式下浮游生物多样性
Table 4 Plankton diversity indices in the co-cultural system of rice and C. quadricarinatus
时间 Time | Chao 1指数 Chao 1 index | Pielou均匀度指数 Pielou’s evenness index | Shannon多样性指数 Shannon diversity index | Simpson多样性指数 Simpson diversity index |
---|---|---|---|---|
Jun | 558.03±67.45 b | 0.65±0.03 | 5.83±0.35 | 0.93±0.02 |
Jul | 880.48±46.02 a | 0.69±0.03 | 6.71±0.32 | 0.95±0.03 |
Aug | 717.09±50.08 ab | 0.66±0.02 | 6.27±0.21 | 0.94±0.01 |
Sep | 702.96±64.03 ab | 0.60±0.06 | 5.66±0.61 | 0.88±0.06 |
图6 优势种(A)或多样性指数(B)与红螯螯虾生长性状之间的关系
Fig.6 Relationships between dominant species (A) or diversity indices (B) and growth traits of C. quadricarinatus *, P<0.05;**, P<0.01.
[1] | 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8):19-26. |
YU X J, HAO X J, DANG Z Q, et al. Report on the development of integrated rice-fish farming industry in China (2023)[J]. China Fisheries, 2023(8):19-26.(in Chinese) | |
[2] | 徐跑. 中国稻鱼综合种养的发展与展望[J]. 大连海洋大学学报, 2021, 36(5): 717-726. |
XU P. Development and prospect of integrated rice-fish farming in China: a review[J]. Journal of Dalian Ocean University, 2021, 36(5): 717-726.(in Chinese with English abstract) | |
[3] | GUO H S, QI M, HU Z J, et al. Optimization of the rice-fish coculture in Qingtian, China: 1. Effects of rice spacing on the growth of the paddy fish and the chemical composition of both rice and fish[J]. Aquaculture, 2020, 522: 735106. |
[4] | HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6: 28728. |
[5] | WAN N F, LI S X, LI T, et al. Ecological intensification of rice production through rice-fish co-culture[J]. Journal of Cleaner Production, 2019, 234: 1002-1012. |
[6] | XIE J, WU X, TANG J J, et al. Conservation of traditional rice varieties in a globally important agricultural heritage system (GIAHS): rice-fish co-culture[J]. Agricultural Sciences in China, 2011, 10(5): 754-761. |
[7] | 厉宝仙, 王保君, 怀燕, 等. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
LI B X, WANG B J, HUAI Y, et al. Effects of integrated rice-redclaw crayfish farming system on soil nutrients, carbon pool and rice quality[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 688-696.(in Chinese with English abstract) | |
[8] | 陶先法, 李冰, 喻召雄, 等. 稻虾共生模式对水稻结实期根系分泌物及微生物的影响[J]. 水产学报, 2022, 46(11): 2122-2133. |
TAO X F, LI B, YU Z X, et al. Effects of rice-crayfish integrated model on root exudates and microorganisms of rice during grain filling[J]. Journal of Fisheries of China, 2022, 46(11): 2122-2133.(in Chinese with English abstract) | |
[9] | 王昂, 戴丹超, 马旭洲, 等. 稻蟹共作模式对土壤微生物量氮和酶活性的影响[J]. 江苏农业学报, 2019, 35(1): 76-84. |
WANG A, DAI D C, MA X Z, et al. Effects of rice-crab culture system on soil microbial biomass nitrogen and soil enzymes activities[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 76-84.(in Chinese with English abstract) | |
[10] | 赵翔刚, 罗衡, 刘其根, 等. 稻田养殖沙塘鳢对稻田水体及底泥微生物群落结构及多样性的影响[J]. 淡水渔业, 2017, 47(4): 8-14. |
ZHAO X G, LUO H, LIU Q G, et al. Influence of the cultured Odontobutis obscurus to the microbial community structure and diversity in rice-fish system[J]. Freshwater Fisheries, 2017, 47(4): 8-14.(in Chinese with English abstract) | |
[11] | HE J Z, FENG P F, LV C F, et al. Effect of a fish-rice co-culture system on the growth performance and muscle quality of tilapia (Oreochromis niloticus)[J]. Aquaculture Reports, 2020, 17: 100367. |
[12] | SAOWAKOON S, SAOWAKOON K, JUTAGATE A, et al. Growth and feeding behavior of fishes in organic rice-fish systems with various species combinations[J]. Aquaculture Reports, 2021, 20: 100663. |
[13] | 袁伟玲, 曹凑贵, 汪金平, 等. 稻鱼共作生态系统浮游植物群落结构和生物多样性[J]. 生态学报, 2010, 30(1): 253-257. |
YUAN W L, CAO C G, WANG J P, et al. The community structure and diversity of phytoplankton in rice-fish ecological system[J]. Acta Ecologica Sinica, 2010, 30(1): 253-257.(in Chinese with English abstract) | |
[14] | NAYAK P, NAYAK A, PANDA B, et al. Ecological mechanism and diversity in rice based integrated farming system[J]. Ecological Indicators, 2018, 91: 359-375. |
[15] | 高养春, 李海涛, 王孝程, 等. 利用宏DNA条形码研究浮游动物多样性: 以鸭绿江口为例[J]. 生态学报, 2020, 40(11): 3822-3832. |
GAO Y C, LI H T, WANG X C, et al. Research on zooplankton diversity using DNA-based metabarcoding technique: a case study in the Yalvjiang Estuary[J]. Acta Ecologica Sinica, 2020, 40(11): 3822-3832.(in Chinese with English abstract) | |
[16] | FANG J H, XU Y, NIE Z J, et al. Food sources of common carp in a Hani Terrace integrated rice-fish system (Yunnan Province, China)[J]. Aquaculture Reports, 2022, 22: 100937. |
[17] | 尹天齐, 王庆, 杨宇峰, 等. 基于形态学和DNA分子鉴定的珠江口浮游动物群落结构比较研究[J]. 热带海洋学报, 2022, 41(3): 172-185. |
YIN T Q, WANG Q, YANG Y F, et al. Comparative study on zooplankton community structure in Pearl River Estuary based on morphological and DNA identification[J]. Journal of Tropical Oceanography, 2022, 41(3): 172-185.(in Chinese with English abstract) | |
[18] | 沈亚强, 王保君, 张红梅, 等. 水稻-红螯螯虾综合种养模式及技术要点[J]. 浙江农业科学, 2020, 61(6): 1183-1186. |
SHEN Y Q, WANG B J, ZHANG H M, et al. Building and key technologies of integrated farming of rice and redclaw crayfish[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(6): 1183-1186.(in Chinese with English abstract) | |
[19] | 崔雁娜, 郝贵杰, 林峰, 等. 两种养殖模式红螯螯虾肌肉营养及质构比较[J]. 食品与发酵工业, 2020, 46(21): 115-120. |
CUI Y N, HAO G J, LIN F, et al. Comparison of the nutrition and texture of Cherax quadricarinatus muscle in two culture patterns[J]. Food and Fermentation Industries, 2020, 46(21): 115-120.(in Chinese with English abstract) | |
[20] | 何俊, 张宪中, 蒋造极, 等. 水稻-红螯螯虾共作模式对水环境的影响[J]. 江苏农业科学, 2019, 47(22): 213-215. |
HE J, ZHANG X Z, JIANG Z J, et al. Effects of rice-crayfish (Cherax quadricarinatus) integrated mode on water environment[J]. Jiangsu Agricultural Sciences, 2019, 47(22): 213-215.(in Chinese with English abstract) | |
[21] | 黄福勇, 张煜, 梁骁, 等. 不同模式养殖红螯螯虾营养对比分析[J]. 浙江农业科学, 2023, 64(2): 470-473. |
HUANG F Y, ZHANG Y, LIANG X, et al. Comparative analysis on nutrition of red claw crayfish muscle in different culture patterns[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(2): 470-473.(in Chinese with English abstract) | |
[22] | 杨慧赞, 吕敏, 杨彦豪, 等. 稻田养殖红螯螯虾个体大小与肠道菌群相关性研究[J]. 淡水渔业, 2022, 52(1): 14-20. |
YANG H Z, LV M, YANG Y H, et al. Study on the correlation in Cherax quadricarinatus cultured in rice field between body size and intestinal microbiota[J]. Freshwater Fisheries, 2022, 52(1): 14-20.(in Chinese with English abstract) | |
[23] | LI F F, GAO J C, XU Y, et al. Biodiversity and sustainability of the integrated rice-fish system in Hani terraces, Yunnan province, China[J]. Aquaculture Reports, 2021, 20: 100763. |
[24] | 曾宪磊, 陆诗敏, 刘兴国, 等. 稻蟹复合模式不同区位浮游生物多样性分析[J]. 江苏农业科学, 2018, 46(12): 67-70. |
ZENG X L, LU S M, LIU X G, et al. Diversity analysis of plankton of rice-crab complex mode at different locations[J]. Jiangsu Agricultural Sciences, 2018, 46(12): 67-70.(in Chinese with English abstract) | |
[25] | 顾芸, 李奎, 陈立婧, 等. 宁夏稻蟹共生耦合系统浮游植物的群落结构[J]. 上海海洋大学学报, 2022, 31(2): 411-420. |
GU Y, LI K, CHEN L J, et al. Phytoplankton community structure of rice-crab culture of integrated system in Ningxia[J]. Journal of Shanghai Ocean University, 2022, 31(2): 411-420.(in Chinese with English abstract) | |
[26] | 张庆阳, 吕东锋, 马旭洲, 等. 稻蟹共作系统对浮游甲壳动物群落的影响[J]. 上海海洋大学学报, 2014, 23(6): 834-841. |
ZHANG Q Y, LYU D F, MA X Z, et al. The impact of rice-crab culture system on crustacean zooplankton community[J]. Journal of Shanghai Ocean University, 2014, 23(6): 834-841.(in Chinese with English abstract) | |
[27] | GOLDBERG C S, PILLIOD D S, ARKLE R S, et al. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders[J]. PLoS One, 2011, 6(7): e22746. |
[28] | CASÉ M, LEÇA E E, LEITÃO S N, et al. Plankton community as an indicator of water quality in tropical shrimp culture ponds[J]. Marine Pollution Bulletin, 2008, 56(7): 1343-1352. |
[29] | 唐金玉, 王岩, 戴杨鑫, 等. 不同鱼类混养组合与饲喂方式对鱼蚌综合养殖水体浮游植物群落结构的影响[J]. 中国水产科学, 2014, 21(6): 1190-1199. |
TANG J Y, WANG Y, DAI Y X, et al. Effects of co-cultured fish species combination and formulated feed supplement on phytoplankton community in the enclosures with integrated culture of freshwater pearl mussel and fishes[J]. Journal of Fishery Sciences of China, 2014, 21(6): 1190-1199.(in Chinese with English abstract) | |
[30] | BENDORF J, KRANICH J, MEHNER T, et al. Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany)[J]. Freshwater Biology, 2009, 46: 199-211. |
[31] | 吴志新, 陈孝煊, 张群宝. 池养澳大利亚红螯螯虾的食性[J]. 湖北农业科学, 1995, 34(1):56-59. |
WU Z X, CHEN X X, ZHANG Q B. Feeding habit of Cherax quadricarinatus in pond[J]. Hubei Agricultural Sciences, 1995, 34(1):56-59.(in Chinese with English abstract) | |
[32] | KUNDA M, DEWAN S, UDDIN M J, et al. Length-weight relationship, condition factor and relative condition factor of Macrobrachium rosenbergii in rice fields[J]. Asian Fisheries Science, 2008, 21(4): 451-456. |
[33] | SALMASO N, NASELLI-FLORES L, PADISÁK J. Functional classifications and their application in phytoplankton ecology[J]. Freshwater Biology, 2015, 60(4): 603-619. |
[34] | 胡韧, 蓝于倩, 肖利娟, 等. 淡水浮游植物功能群的概念、划分方法和应用[J]. 湖泊科学, 2015, 27(1): 11-23. |
HU R, LAN Y Q, XIAO L J, et al. The concepts, classification and application of freshwater phytoplankton functional groups[J]. Journal of Lake Sciences, 2015, 27(1): 11-23.(in Chinese with English abstract) |
[1] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
[2] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
[3] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
[4] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
[5] | 黄融, 孟庆鑫, 吴晓漫, 荀利杰, 张俊丽, 董霞, 董坤, 龚雪阳. 两种树龄腾冲红花油茶花梗内生真菌的多样性[J]. 浙江农业学报, 2024, 36(5): 1076-1085. |
[6] | 刘慧春, 许雯婷, 周江华, 张加强, 史小华, 朱开元. 基于牡丹涝害胁迫的转录组分析及SSR引物开发[J]. 浙江农业学报, 2024, 36(3): 544-558. |
[7] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
[8] | 杨天文, 王静, 李炯, 徐彬其, 程蛟文, 洪宇, 曹毅, 崔竣杰. 大顶苦瓜种质资源的遗传多样性分析与指纹图谱构建[J]. 浙江农业学报, 2024, 36(1): 103-114. |
[9] | 吴倩, 汤紫依, 田盛野, 何海叶, 潘伟伟, 王军峰, 鲍洪华, 张慧娟, 蒋明. 基于SRAP分子标记的华顶杜鹃遗传多样性[J]. 浙江农业学报, 2024, 36(1): 127-133. |
[10] | 张小利, 朱灵龙, 李付振, 唐秀梅, 夏友霖, 游宇, 钟瑞春. 115份花生种质资源农艺与品质性状鉴评及分析[J]. 浙江农业学报, 2023, 35(9): 2033-2044. |
[11] | 刘芳芳, 陈红林, 刘峰, 许晓军, 黄福勇, 楼宝, 钱豪杰. 雌雄红螯螯虾染色体核型比较分析[J]. 浙江农业学报, 2023, 35(9): 2079-2089. |
[12] | 袁晔, 刘睿, 王凌云, 沈盟, 叶雪莲, 权新华, 王瑞森, 姚祥坦. 江浙地区菱品种遗传多样性的SLAF-seq分析[J]. 浙江农业学报, 2023, 35(8): 1773-1781. |
[13] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[14] | 张莉丽, 程静雯, 李阿根, 杨亚军. 田埂种植蜜源植物对稻田天敌昆虫多样性的影响[J]. 浙江农业学报, 2023, 35(6): 1360-1367. |
[15] | 戚建莉, 张荣, 吴文俊, 姜成英, 赵梦炯, 金高明, 陈炜青. 油橄榄种质资源表型性状多样性分析与评价[J]. 浙江农业学报, 2023, 35(5): 1001-1015. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||