浙江农业学报 ›› 2025, Vol. 37 ›› Issue (2): 381-393.DOI: 10.3969/j.issn.1004-1524.20231390
陈凤(), 陈虹(
), 陈兵权, 宝春杰, 周昊亮, 赵鑫, 郭来珍
收稿日期:
2023-12-12
出版日期:
2025-02-25
发布日期:
2025-03-20
作者简介:
陈虹,E-mail:ch333999@126.com通讯作者:
陈虹
基金资助:
CHEN Feng(), CHEN Hong(
), CHEN Bingquan, BAO Chunjie, ZHOU Haoliang, ZHAO Xin, GUO Laizhen
Received:
2023-12-12
Online:
2025-02-25
Published:
2025-03-20
Contact:
CHEN Hong
摘要:
为明确核桃无融合生殖核仁的调控机制,以新新2号核桃(花后60 d、花后80 d、花后100 d)的核仁为试验材料,运用转录组分析无融合生殖和正常授粉受精核仁的差异表达基因(DEG),并测定核仁中的生长素(3-indoleacetic acid, IAA)、细胞分裂素(cytokinin, ZT)、赤霉素(gibberellin, GA)、油菜素甾醇(brassinosteroid, BR)、脱落酸(abscisic acid, ABA)和乙烯(ethylene, ETH)等激素含量变化。研究结果表明:花后60 d,无融合生殖核仁的IAA、ZT、BR含量显著(P<0.05)低于正常授粉受精核仁,分别降低28.57%、19.59%和12.07%;GA、ABA、ETH含量显著(P<0.05)高于正常授粉受精核仁,分别提高34.91%、31.50%和19.54%。花后80 d,无融合生殖核仁的IAA、ZT、ETH含量显著(P<0.05)高于正常授粉受精核仁,分别提高6.58%、17.80%、7.44%;GA、BR、ABA含量显著(P<0.05)低于正常授粉受精核仁,分别降低29.37%、14.99%、10.65%。花后100 d,无融合生殖核仁的IAA、ZT、GA、BR和ETH含量显著(P<0.05)高于正常授粉受精核仁,分别提高18.87%、30.12%、16.96%、3.70%和20.57%;ABA含量显著(P<0.05)低于正常授粉受精核仁,降低44.85%。转录组分析结果显示,植物激素信号转导路径中共筛选出62个调控植物激素的差异表达基因,其中,生长素流入载体基因(AUX1 LAX_2)、B类细胞分裂素响应因子基因(ARR-B1)、脱落酸受体基因(PYL2)、BAK家族基因(BAK1)、磷酸基团转移酶基因(AHP4)在无融合生殖核仁中上调表达,F-box蛋白基因(GID2_SLY1_2)、E3泛素连接酶基因(EBF1/2_1、EBF1/2_2)在无融合生殖核仁中下调表达。实时荧光定量PCR(qRT-PCR)验证结果显示,挑选出的8个基因的相对表达量差异与转录组分析结果一致。核桃油脂转化初期高含量的IAA、ZT、BR可促进无融合生殖核仁发育,ETH在无融合生殖核仁油脂转化中后期起调控作用。植物激素信号转导途径相关基因可调节激素水平变化,AUX1 LAX_2、ARR-B1、PYL2、BAK1、AHP4、GID2_SLY1_2、EBF1/2基因均参与调控核桃无融合生殖核仁的发育。
中图分类号:
陈凤, 陈虹, 陈兵权, 宝春杰, 周昊亮, 赵鑫, 郭来珍. 核桃无融合生殖核仁内源激素含量变化与基因表达分析[J]. 浙江农业学报, 2025, 37(2): 381-393.
CHEN Feng, CHEN Hong, CHEN Bingquan, BAO Chunjie, ZHOU Haoliang, ZHAO Xin, GUO Laizhen. Analysis of endogenous hormone changes and gene expression related to walnut apomixis kernels formation[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 381-393.
基因ID Gene ID | 基因名称 Gene name | 正向引物序列 Forward primer sequence (5'→3') | 反向引物序列 Reverse primer sequence (5'→3') |
---|---|---|---|
c61859_g2 | LUX1 LAX_2 | CGTTACGTCGGGAGGATGAG | ATTGAGCGACGAAAAGGGGT |
c60146_g1 | GID2_SLY1_2 | TGGCTATTGCAAAATCAGGTC | ACGCTCGAGTGTAGTAGCAAG |
c66727_g2 | ARR-B2 | CTCACCCTTGTAGAGCGAGG | TGCAAACTCAGTGCTAAAATCAA |
c65820_g2 | AHP4 | ACCCATCTTTCACGTGTGTG | TGCCTAATTAGCAATTTCCA |
c63550_g3 | EBF1/2_1 | CGTTACGTCGGGAGGATGAG | CGTTACGTCGGGAGGATGAG |
c64965_g1 | EBF1/2_2 | ACCTTCCCTGCTCCTCTCTT | GAGCCTTGTGGAAGCAAACG |
c56774_g2 | PYL2 | TGTAATTGGGGAATGTTGCA | TGGGAGACACAATGATCGAA |
c66515_g2 | BAK1_2 | AACTGTTGCCGGAGCTTTCT | TGGGATAACACCACATGCAGT |
表1 候选基因的实时荧光定量PCR引物序列
Table 1 Primer sequences of candidate genes used for real-time fluorescence quantitative PCR
基因ID Gene ID | 基因名称 Gene name | 正向引物序列 Forward primer sequence (5'→3') | 反向引物序列 Reverse primer sequence (5'→3') |
---|---|---|---|
c61859_g2 | LUX1 LAX_2 | CGTTACGTCGGGAGGATGAG | ATTGAGCGACGAAAAGGGGT |
c60146_g1 | GID2_SLY1_2 | TGGCTATTGCAAAATCAGGTC | ACGCTCGAGTGTAGTAGCAAG |
c66727_g2 | ARR-B2 | CTCACCCTTGTAGAGCGAGG | TGCAAACTCAGTGCTAAAATCAA |
c65820_g2 | AHP4 | ACCCATCTTTCACGTGTGTG | TGCCTAATTAGCAATTTCCA |
c63550_g3 | EBF1/2_1 | CGTTACGTCGGGAGGATGAG | CGTTACGTCGGGAGGATGAG |
c64965_g1 | EBF1/2_2 | ACCTTCCCTGCTCCTCTCTT | GAGCCTTGTGGAAGCAAACG |
c56774_g2 | PYL2 | TGTAATTGGGGAATGTTGCA | TGGGAGACACAATGATCGAA |
c66515_g2 | BAK1_2 | AACTGTTGCCGGAGCTTTCT | TGGGATAACACCACATGCAGT |
图1 新新2号无融合生殖核仁与正常授粉受精核仁在不同发育时期的内源激素含量 无相同字母的表示差异显著(P<0.05)。
Fig.1 The endogenous hormone content of the apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut at different developmental stages Different letters indicate significant difference at P<0.05.
样品编号 Sample ID | 原始数据 Raw read | 过滤后数据 Clean read | 高质量碱基 Clean base/Gb | 碱基质量值Quality score | 整体测序错误率 Error rate/% | GC含量 GC content/% | |
---|---|---|---|---|---|---|---|
Q20/% | Q30/% | ||||||
G1 | 52981375 | 50634989 | 7.60 | 95.63 | 90.14 | 0.02 | 45.53 |
G2 | 51860163 | 49469256 | 7.42 | 95.38 | 89.66 | 0.02 | 48.78 |
G3 | 53160610 | 50416068 | 7.56 | 95.85 | 90.36 | 0.02 | 48.96 |
W1 | 45992618 | 43736529 | 6.56 | 94.85 | 88.63 | 0.02 | 44.79 |
W2 | 48272843 | 44792770 | 6.72 | 94.87 | 88.63 | 0.02 | 46.45 |
W3 | 47683476 | 44944840 | 6.74 | 95.23 | 89.46 | 0.02 | 45.16 |
表2 测序数据质量评估统计表
Table 2 Statistical table for quality assessment of sequencing data
样品编号 Sample ID | 原始数据 Raw read | 过滤后数据 Clean read | 高质量碱基 Clean base/Gb | 碱基质量值Quality score | 整体测序错误率 Error rate/% | GC含量 GC content/% | |
---|---|---|---|---|---|---|---|
Q20/% | Q30/% | ||||||
G1 | 52981375 | 50634989 | 7.60 | 95.63 | 90.14 | 0.02 | 45.53 |
G2 | 51860163 | 49469256 | 7.42 | 95.38 | 89.66 | 0.02 | 48.78 |
G3 | 53160610 | 50416068 | 7.56 | 95.85 | 90.36 | 0.02 | 48.96 |
W1 | 45992618 | 43736529 | 6.56 | 94.85 | 88.63 | 0.02 | 44.79 |
W2 | 48272843 | 44792770 | 6.72 | 94.87 | 88.63 | 0.02 | 46.45 |
W3 | 47683476 | 44944840 | 6.74 | 95.23 | 89.46 | 0.02 | 45.16 |
图2 新新2号无融合生殖核仁与正常授粉受精核仁中IAA代谢和信号转导相关基因分析 G1~G3和W1~W3分别表示新新2号正常授粉受精核仁与无融合生殖核仁的3个时期。下同。
Fig.2 Analysis of genes related to IAA metabolism and signal transduction in the apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut G1-G3 and W1-W3 represent the three periods of fertilized kemels and apomictic kemels of ‘Xinxia 2’ walnut.The same as below.
图3 新新2号无融合生殖核仁与正常授粉受精核仁中细胞分裂素代谢和信号转导相关基因分析
Fig.3 Analysis of genes related to cytokinin metabolism and signal transduction in apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut
图4 新新2号无融合生殖核仁与正常授粉受精核仁中赤霉素代谢和信号转导相关基因分析
Fig.4 Analysis of genes related to gibberellin metabolism and signal transduction in apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut
图5 新新2号无融合生殖核仁与正常授粉受精核仁中乙烯代谢和信号转导相关基因分析
Fig.5 Analysis of genes related to ethylene metabolism and signal transduction in apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut
图6 新新2号无融合生殖核仁与正常授粉受精核仁中脱落酸代谢和信号转导相关基因分析
Fig.6 Analysis of genes related to abscisic acid metabolism and signal transduction in apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut
图7 新新2号无融合生殖核仁与正常授粉受精核仁中油菜素甾醇代谢和信号转导相关基因分析
Fig.7 Analysis of genes related to brassinosteroid metabolism and signal transduction in apomictic kernels and fertilized kernels of ‘Xinxin 2’ walnut
[1] | 刘飞虎, 梁雪妮. 植物孤雌生殖研究进展[J]. 世界农业, 1996(8):20-23. |
LIU F H, LIANG X N. Research progress of plant parthenogenesis[J]. World Agriculture, 1996(8): 20-23. (in Chinese) | |
[2] | 张志华, 裴东. 核桃学[M]. 北京: 中国农业出版社, 2018: 9. |
[3] | 李迎超, 李保国, 顾玉红, 等. “绿岭” 核桃柱头开放过程及无融合生殖能力研究[J]. 林业实用技术, 2010(6): 6-8. |
LI Y C, LI B G, GU Y H, et al. Observation of stigma opening process and apomixis reproductive ability of walnut in Green Mountain[J]. Practical Forestry Technology, 2010(6): 6-8. (in Chinese) | |
[4] | 熊利权, 宁德鲁, 石卓功, 等. 云南核桃无融合生殖率和果实生长量研究[J]. 西南林业大学学报(自然科学), 2019, 39(4): 69-75. |
XIONG L Q, NING D L, SHI Z G, et al. Apomictic rate and fruit growth of Juglans regia in Yunnan[J]. Journal of Southwest Forestry University(Natural Sciences), 2019, 39(4): 69-75. (in Chinese with English abstract) | |
[5] | 张智英, 李保国, 张旺林. 不同早实核桃品种的生殖特性研究[J]. 安徽农业科学, 2009, 37(8): 3480-3481. |
ZHANG Z Y, LI B G, ZHANG W L. Study on reproductive characteristics of different varieties of early walnut[J]. Journal of Anhui Agricultural Sciences, 2009, 37(8): 3480-3481. (in Chinese with English abstract) | |
[6] | 吴国良, 杨俊强, 张鹏飞, 等. 山西绵核桃无融合生殖特性研究[J]. 果树学报, 2010, 27(2): 221-226. |
WU G L, YANG J Q, ZHANG P F, et al. Study on the apomixis in Shanxi Mianhetao walnut[J]. Journal of Fruit Science, 2010, 27(2): 221-226. (in Chinese with English abstract) | |
[7] | 朱艳, 余素芹, 梁前进. 核桃无融合生殖诱导及鉴定研究进展[J]. 广东农业科学, 2012, 39(13): 47-50. |
ZHU Y, YU S Q, LIANG Q J. Study on induction and identification of apomixis in walnut[J]. Guangdong Agricultural Sciences, 2012, 39(13): 47-50. (in Chinese with English abstract) | |
[8] | 杜蕊, 李保国, 顾玉红, 等. 不同处理对“绿岭”核桃无融合生殖坐果的影响[J]. 河北农业大学学报, 2010, 33(6): 95-98. |
DU R, LI B G, GU Y H, et al. Effect of different methods on fruit setting percentage in apomixes of “Lv Ling” walnut[J]. Journal of Agricultural University of Hebei, 2010, 33(6): 95-98. (in Chinese with English abstract) | |
[9] | 邵宏波, 初丽慧. 高等植物激素受体的研究进展[J]. 生命科学研究, 2001, 5(S1): 170-174. |
SHAO H B, CHU L H. Advances in the study of hormone receptors in higher plants[J]. Life Science Research, 2001, 5(S1): 170-174. (in Chinese) | |
[10] | 苏谦, 安冬, 王库. 植物激素的受体和诱导基因[J]. 植物生理学通讯, 2008, 44(6): 1202-1208. |
SU Q, AN D, WANG K. Phytohormone receptors and induced genes in plants[J]. Plant Physiology Communications, 2008, 44(6): 1202-1208. (in Chinese with English abstract) | |
[11] | YAO J, DONG Y, MORRIS B A. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(3): 1306-1311. |
[12] | 王家利, 刘冬成, 郭小丽, 等. 生长素合成途径的研究进展[J]. 植物学报, 2012, 47(3): 292-301. |
WANG J L, LIU D C, GUO X L, et al. Research advances in auxin biosynthesis[J]. Chinese Bulletin of Botany, 2012, 47(3): 292-301. (in Chinese with English abstract) | |
[13] | 谈心, 马欣荣. 赤霉素生物合成途径及其相关研究进展[J]. 应用与环境生物学报, 2008, 14(4): 571-577. |
TAN X, MA X R. Advance in research of gibberellin biosynthesis pathway[J]. Chinese Journal of Applied & Environmental Biology, 2008, 14(4): 571-577. (in Chinese with English abstract) | |
[14] | 毛自朝, 于秋菊, 甄伟, 等. 果实专一性启动子驱动IPT基因在番茄中的表达及其对番茄果实发育的影响[J]. 科学通报, 2002, 47(6): 444-448. |
MAO Z C, YU Q J, ZHEN W, et al. Expression of IPT gene driven by fruit-specific promoter in tomato and its effect on tomato fruit development[J]. Chinese Science Bulletin, 2002, 47(6): 444-448. (in Chinese with English abstract) | |
[15] | 张鹏飞, 刘亚令, 张燕, 等. 核桃无融合生殖现象及其矿质营养变化研究[J]. 安徽农业科学, 2006, 34(10): 2032-2033. |
ZHANG P F, LIU Y L, ZHANG Y, et al. Study on the phenomena of apomixis and the change of mineral elements in walnut[J]. Journal of Anhui Agricultural Sciences, 2006, 34(10): 2032-2033. (in Chinese with English abstract) | |
[16] | 王水良, 王平, 王趁义. 固相萃取-高效液相色谱法测定马尾松组织中内源激素[J]. 分析科学学报, 2010, 26(5): 547-550. |
WANG S L, WANG P, WANG C Y. Determination of endogenous hormones in (Pinus massoniana Lamb) using solid phase extraction-high performance liquid chromatography[J]. Journal of Analytical Science, 2010, 26(5): 547-550. (in Chinese with English abstract) | |
[17] | ANDERS S, HUBER W. Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11(10): R106. |
[18] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 [-Delta Delta C(T)] method[J]. Methods, 2001, 25(4): 402-408. |
[19] | 王珍. 观赏海棠‘王族’无融合生殖胚胎发育及分子机制研究[D]. 北京: 北京农学院, 2015. |
WANG Z. The embryonic development and genetic mechanism research of apomixis Malus ‘Rolalty’[D]. Beijing: Beijing University of Agriculture, 2015. (in Chinese with English abstract) | |
[20] | 牛迎凤, 郑诚, 刘紫艳, 等. ‘金煌’芒果胚败育果实中植物激素生物合成的转录组分析[J/OL]. 分子植物育种(2023-08-10)[2023-12-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1243.006.html. |
NIU Y F, ZHEN C, LIU Z Y, et al. Transcriptome analysis of phytohormone biosynthesis in Jinhuang’ mango fruit with aborted embryo[J/OL]. Molecular Plant Breeding, (2023-08-10)[2023-12-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1243.006.html. (in Chinese with English abstract) | |
[21] | 费希同. 花椒无融合生殖特性分析及关键基因的功能验证[D]. 杨凌: 西北农林科技大学, 2021. |
FEI X T. Analysis of apomixis characteristics and functional verification of key genes in Zanthoxylum bungeanum[D]. Yangling: Northwest A & F University, 2021. (in Chinese with English abstract) | |
[22] | 赵晓晓. 桑椹果实内源激素变化及其与果实发育成熟关系的研究[D]. 杨凌: 西北农林科技大学, 2019. |
ZHAO X X. Study on the changes of endogenous hormones in mulberry fruit and its relationship with fruit development and maturity[D]. Yangling: Northwest A & F University, 2019. (in Chinese with English abstract) | |
[23] | CARRIER D J, ABU BAKAR N T, SWARUP R, et al. The binding of auxin to the Arabidopsis auxin influx transporter AUX1[J]. Plant Physiology, 2008, 148(1): 529-535. |
[24] | BLÁZQUEZ M A, NELSON D C, WEIJERS D. Evolution of plant hormone response pathways[J]. Annual Review of Plant Biology, 2020, 71: 327-353. |
[25] | 梁艳, 沈海龙, 高美玲, 等. 红松种子发育过程中内源激素含量的动态变化[J]. 林业科学, 2016, 52(3): 105-111. |
LIANG Y, SHEN H L, GAO M L, et al. Content dynamics of endogenous hormones in different seed developmental stages of Korean pine[J]. Scientia Silvae Sinicae, 2016, 52(3): 105-111. (in Chinese with English abstract) | |
[26] | 彭佳伟, 张叶, 寇单单, 等. ‘仓方早生’桃及其早熟芽变不同发育时期果实的转录组分析[J]. 中国农业科学, 2023, 56(5): 964-980. |
PENG J W, ZHANG Y, KOU D D, et al. Transcriptome analysis of peach fruits at different developmental stages in peach kurakato wase and early-ripening mutant[J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980. (in Chinese with English abstract) | |
[27] | 崔欢, 高巧丽, 罗立新, 等. 水稻萌发期激素信号转导和谷胱甘肽代谢转录分析[J]. 中国水稻科学, 2021, 35(6): 554-564. |
CUI H, GAO Q L, LUO L X, et al. Transcriptome analysis of hormone signal transduction and glutathione metabolic pathway in rice seeds at germination stage[J]. Chinese Journal of Rice Science, 2021, 35(6): 554-564. (in Chinese with English abstract) | |
[28] | KIEBER J J, SCHALLER G E. Cytokinin signaling in plant development[J]. Development, 2018, 145(4): dev149344. |
[29] | HALLMARK H T, RASHOTTE A M. Cytokinin response factors: responding to more than cytokinin[J]. Plant Science, 2019, 289: 110251. |
[30] | LOMIN S N, MYAKUSHINA Y A, KOLACHEVSKAYA O O, et al. Cytokinin perception in potato: new features of canonical players[J]. Journal of Experimental Botany, 2018, 69(16): 3839-3853. |
[31] | 李松琦, 李旭飞, 李敏, 等. 葡萄细胞分裂素响应调节因子VlRRA1的克隆、表达及启动子活性分析[J]. 园艺学报, 2023, 50(8): 1609-1621. |
LI S Q, LI X F, LI M, et al. Cloning, expression and promoter activity analysis of VlRRA1 gene in grape[J]. Acta Horticulturae Sinica, 2023, 50(8): 1609-1621. (in Chinese with English abstract) | |
[32] | ALVAREZ J M, CORTIZO M, ORDÁS R J. Characterization of a type-a response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster[J]. Journal of Plant Physiology, 2012, 169(18): 1807-1814. |
[33] | 贺军虎, 马锋旺, 束怀瑞, 等. ‘金煌’杧果胚正常与胚败育果实内源激素的变化[J]. 园艺学报, 2012, 39(6): 1167-1174. |
HE J H, MA F W, SHU H R, et al. The change of endogenous hormones in‘Jinhuang’Mango fruit with normal and aborted embryo[J]. Acta Horticulturae Sinica, 2012, 39(6): 1167-1174. (in Chinese with English abstract) | |
[34] | 齐蒙, 李国瑞, 黄凤兰, 等. 赤霉素的代谢途径及其受体GID1的功能研究进展[J]. 种子科技, 2017, 35(4): 122-123. |
QI M, LI G R, HUANG F L, et al. Research progress on metabolic pathway of gibberellin and its receptor GID1 function[J]. Seed Science & Technology, 2017, 35(4): 122-123. (in Chinese) | |
[35] | WANG C Y, LIU Y, LI S S, et al. Insights into the origin and evolution of the plant hormone signaling machinery[J]. Plant Physiology, 2015, 167(3): 872-886. |
[36] | 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13. |
GAO X H, FU X D. Research progress for the gibberellin signaling and action on plant growth and development[J]. Biotechnology Bulletin, 2018, 34(7): 1-13. (in Chinese with English abstract) | |
[37] | HUSSAIN Q, SHI J Q, SCHEBEN A, et al. Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement[J]. Plant Biotechnology Journal, 2020, 18(5): 1124-1140. |
[38] | BAGHEL M, NAGARAJA A, SRIVASTAV M, et al. Pleiotropic influences of brassinosteroids on fruit crops: a review[J]. Plant Growth Regulation, 2019, 87(2): 375-388. |
[39] | ZHANG H Y, TAN J, ZHANG M, et al. Comparative transcriptomic analysis of two bottle gourd accessions differing in fruit size[J]. Genes, 2020, 11(4): 359. |
[40] | NARTVARANANT P. Fruit growth, fruit carbohydrate concentration and fruit nutrient concentration in dropped pummelo [Citrus grandis(L.) osbeck] fruit cv. thongdee[J]. International Journal of Fruit Science, 2019, 19(1): 91-103. |
[41] | BOTTON A, RUPERTI B. The yes and no of the ethylene involvement in abscission[J]. Plants, 2019, 8(6): 187. |
[42] | 毕平, 牛自勉, 王贤萍, 等. 枣花内源激素和可溶性糖含量的变化与坐果的关系[J]. 园艺学报, 1996, 23(1): 8-12. |
BI P, NIU Z M, WANG X P, et al. Effect of endohormones and soluble sugar content of flower on the setting percentage of Chinese jujube[J]. Acta Horticulturae Sinica, 1996, 23(1): 8-12. (in Chinese) | |
[43] | 王进, 欧毅, 武峥, 等. 梨树生长过程中内源激素含量变化研究[J]. 西南农业学报, 2010, 23(6): 1842-1847. |
WANG J, OU Y, WU Z, et al. Content changes of endogenous hormones in course of growth pear[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(6): 1842-1847. (in Chinese with English abstract) | |
[44] | SUN Y F, CHEN P, DUAN C R, et al. Transcriptional regulation of genes encoding key enzymes of abscisic acid metabolism during melon (Cucumis melo L.) fruit development and ripening[J]. Journal of Plant Growth Regulation, 2013, 32(2): 233-244. |
[1] | 李俊成, 党芸芝, 孙清明. 高温胁迫下火龙果转录组及热激蛋白响应分析[J]. 浙江农业学报, 2024, 36(5): 1067-1075. |
[2] | 张翰生, 昌秦湘, 康建忠, 梁宗锁. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905-919. |
[3] | 刘慧春, 许雯婷, 周江华, 张加强, 史小华, 朱开元. 基于牡丹涝害胁迫的转录组分析及SSR引物开发[J]. 浙江农业学报, 2024, 36(3): 544-558. |
[4] | 何玲钰, 乔贤, 王新越, 李祥龙. 基于转录组与一代测序技术挖掘ADSL基因调控坝上长尾鸡肌苷酸含量[J]. 浙江农业学报, 2024, 36(12): 2676-2686. |
[5] | 聂红丽, 成琪璐, 孙万春, 马进川, 林辉, 马军伟. 小球藻(Chlorella vulgaris)对泰乐菌素的胁迫响应与耐受性[J]. 浙江农业学报, 2024, 36(10): 2316-2327. |
[6] | 谢梅琼, 王龙江, 何余容, 吕利华. 玫烟色棒束孢转录组测序及潜在致病相关基因分析[J]. 浙江农业学报, 2023, 35(9): 2169-2180. |
[7] | 王智豪, 奚昕琰, 王莉, 杨淑娜, 高志远, 殷益明, 邹辉, 贾惠娟. 浙北地区红美人杂柑成花过程及其生理生化特征[J]. 浙江农业学报, 2023, 35(7): 1571-1581. |
[8] | 徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661. |
[9] | 罗勤川, 唐伟, 马居奎, 陈晶伟, 杨冬静, 高方园, 孙厚俊, 谢逸萍, 张成玲. 腐皮镰刀菌侵染甘薯的转录组分析[J]. 浙江农业学报, 2023, 35(5): 1097-1107. |
[10] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[11] | 杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614. |
[12] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
[13] | 徐悦, 汪少敏, 谭晓菁, 罗英杰, 常婧一, 邓会, 刘秀丽, 崔维军, 周洁, 吴月燕, 严成其, 王栩鸣. D3基因在抗病防卫反应中的转录调控研究[J]. 浙江农业学报, 2023, 35(12): 2763-2774. |
[14] | 张燕, 马家辉, 王伟, 任丽秋, 李晓芹, 朱建津, 成向荣. 不同色泽核桃内种皮多酚和核桃仁分离蛋白理化性质的差异[J]. 浙江农业学报, 2023, 35(12): 2923-2934. |
[15] | 李荣鹏, 买买提·沙吾提, 盛艳芳, 何旭刚. 基于CA-MobileNet-V2的核桃病害识别与应用[J]. 浙江农业学报, 2023, 35(12): 2977-2987. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||