浙江农业学报 ›› 2025, Vol. 37 ›› Issue (2): 394-404.DOI: 10.3969/j.issn.1004-1524.20240093
胡睿1,2(), 马丽雅2, 万群2, 王亚2, 曹瑶瑶2, 邵思城1, 葛静2, 吴祥为1,*(
), 余向阳2,*(
)
收稿日期:
2024-01-28
出版日期:
2025-02-25
发布日期:
2025-03-20
作者简介:
余向阳,E-mail:yuxy@jaas.ac.cn通讯作者:
吴祥为,余向阳
基金资助:
HU Rui1,2(), MA Liya2, WAN Qun2, WANG Ya2, CAO Yaoyao2, SHAO Sicheng1, GE Jing2, WU Xiangwei1,*(
), YU Xiangyang2,*(
)
Received:
2024-01-28
Online:
2025-02-25
Published:
2025-03-20
Contact:
WU Xiangwei,YU Xiangyang
摘要:
为探讨促生菌及其复合菌群对上海青(Brassica rapa subsp. chinensis)降解噻虫嗪的影响,以假单胞菌NS6、肠杆菌NS54和NS62、嗜水气单胞菌NS69为材料,采用拮抗试验测定菌株间的相容性,结合促生特性实验,筛选构建复合菌群的菌株;通过盆栽试验,研究促生单菌株与复合菌群对上海青生长、品质和降解噻虫嗪的影响。结果表明,各菌株间不存在拮抗关系,且NS54+NS62+NS69复合菌群促生效果最好。盆栽结果显示,单菌株和最佳复合菌群处理均能提高上海青的株高、根长、鲜重、干重和叶绿素含量,有效降低噻虫嗪处理后上海青的MDA含量,同时提高上海青的可溶性糖、可溶性蛋白和维生素C含量,且复合菌群的处理效果优于单菌株。此外,NS54+NS62+NS69复合菌群能上调上海青中抗逆植物激素(水杨酸和茉莉酸)相关基因的表达,从而促进上海青中噻虫嗪的降解。综上,NS54+NS62+NS69复合菌群在促进上海青生长、提高上海青品质的同时,有效降低了上海青中噻虫嗪的残留量。研究结果为保障农产品质量安全、开发功能微生物菌剂提供了重要的理论基础。
中图分类号:
胡睿, 马丽雅, 万群, 王亚, 曹瑶瑶, 邵思城, 葛静, 吴祥为, 余向阳. 促生菌对上海青(Brassica rapa subsp. chinensis)降解噻虫嗪的影响[J]. 浙江农业学报, 2025, 37(2): 394-404.
HU Rui, MA Liya, WAN Qun, WANG Ya, CAO Yaoyao, SHAO Sicheng, GE Jing, WU Xiangwei, YU Xiangyang. Effect of growth-promoting bacteria on the degradation of thiamethoxam in Brassica rapa subsp. chinensis[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 394-404.
基因 Gene | 正向引物序列 Forward primer sequence(5'→3') | 反向引物序列 Reverse primer sequence(5'→3') |
---|---|---|
BraA05g023030.3C | GGCTGGACCTACGCTATA | CGCAACACCTTCTTACGA |
BraA03g024150.3C | ACCAATCCGCCATCTACT | TCACCGTCCACCATTCT |
BraA03g042180.3C | TCGGAGGAACAAGTAGAGG | CCATCAGGCAACAGAACTC |
BraA03g021140.3C | ACTTCCGCCTCGTCTTACTC | AGCCGCCTTGTCTGAGATAG |
BraA09g044270.3C | CGCTATGGCTTCGTATTGC | GTTCTTCACCGTCTGTCTC |
BraA05g036420.3C | CCTAAGCAGCCTCACTAAC | CACTCGGTCCACACTCTT |
BraA07g016780.3C | GAGAGGAAGAGACTCATTGC | GCTCACCAACCGTAACTC |
BraA07g028130.3C | GTTCTTCCGTGACCTTGAC | GAGTAGCAGCCAACATTGAG |
BraA08g009510.3C | GGCTCTGGAATCATTGGAC | CCGACACAACCGCATTAG |
BraA10g033710.3C | AGCGGAGGAGGCAATAGT | CGAATACGGCAGTGTCAAC |
BraA05g007500.3C | ATGGAGAAGAGGCGATAGTC | CTGAACGAGTAAGGCAACG |
BraA07g025310.3C | GGATGGTGGTGAGTGATG | CAAGTGGAGGCGATAGCA |
BraA07g029730.3C | GCTCTGTAAGGTGGTGGA | GGCGTATGGATTGTTGGT |
BraA04g019480.3C | CGTAGCCTCTTCTCTTCAG | CCTTAACCATCTCACCTCTC |
BraA05g032610.3C | TCGGAGATTGGTCGGTGGT | ATGGAGAGCAGGATGAGTG |
表1 PCR的引物序列
Table 1 Primer sequences used for polymerase chain reaction
基因 Gene | 正向引物序列 Forward primer sequence(5'→3') | 反向引物序列 Reverse primer sequence(5'→3') |
---|---|---|
BraA05g023030.3C | GGCTGGACCTACGCTATA | CGCAACACCTTCTTACGA |
BraA03g024150.3C | ACCAATCCGCCATCTACT | TCACCGTCCACCATTCT |
BraA03g042180.3C | TCGGAGGAACAAGTAGAGG | CCATCAGGCAACAGAACTC |
BraA03g021140.3C | ACTTCCGCCTCGTCTTACTC | AGCCGCCTTGTCTGAGATAG |
BraA09g044270.3C | CGCTATGGCTTCGTATTGC | GTTCTTCACCGTCTGTCTC |
BraA05g036420.3C | CCTAAGCAGCCTCACTAAC | CACTCGGTCCACACTCTT |
BraA07g016780.3C | GAGAGGAAGAGACTCATTGC | GCTCACCAACCGTAACTC |
BraA07g028130.3C | GTTCTTCCGTGACCTTGAC | GAGTAGCAGCCAACATTGAG |
BraA08g009510.3C | GGCTCTGGAATCATTGGAC | CCGACACAACCGCATTAG |
BraA10g033710.3C | AGCGGAGGAGGCAATAGT | CGAATACGGCAGTGTCAAC |
BraA05g007500.3C | ATGGAGAAGAGGCGATAGTC | CTGAACGAGTAAGGCAACG |
BraA07g025310.3C | GGATGGTGGTGAGTGATG | CAAGTGGAGGCGATAGCA |
BraA07g029730.3C | GCTCTGTAAGGTGGTGGA | GGCGTATGGATTGTTGGT |
BraA04g019480.3C | CGTAGCCTCTTCTCTTCAG | CCTTAACCATCTCACCTCTC |
BraA05g032610.3C | TCGGAGATTGGTCGGTGGT | ATGGAGAGCAGGATGAGTG |
组合编号 Combination number | 产IAA量 IAA production/(mg·L-1) | 有效磷含量 Vailable phosphorus/(mg·L-1) | 铁载体活性 Iron carrier activity/% | 固氮 Nitrogen fixation |
---|---|---|---|---|
NS6 | 83.16±0.01 a | 133.9±0.1 j | 5.16±0.14 k | - |
NS54 | 71.09±0.10 bcd | 167.3±2.1 e | 22.73±0.79 h | - |
NS62 | 70.96±0.08 bcd | 170.1±1.0 d | 25.69±0.73 f | - |
NS69 | 59.37±0.05 e | 53.3±0.1 m | 41.40±0.31 a | + |
C1:NS6+NS54 | 74.32±0.02 abc | 155.7±0.3 h | 18.42±0.45 j | - |
C2:NS6+NS62 | 72.18±0.02 bcd | 162.1±0.1 f | 20.44±0.10 i | + |
C3:NS6+NS69 | 69.41±0.03 bcd | 94.3±0.1 l | 19.64±0.28 ij | - |
C4:NS54+NS62 | 79.10±0.05 a | 183.9±0.2 a | 31.35±0.49 c | - |
C5:NS54+NS69 | 68.06±0.06 cde | 151.0±0.6 h | 26.42±0.32 e | + |
C6:NS62+NS69 | 65.06±0.04 de | 143.5±0.3 i | 23.49±0.45 fg | + |
C7:NS6+NS54+NS62 | 78.27±0.06 ab | 174.5±0.5 c | 28.52±0.29 d | - |
C8:NS6+NS54+NS69 | 66.37±0.04 de | 125.3±0.2 k | 26.46±0.35 e | + |
C9:NS54+NS62+NS69 | 76.43±0.05 abc | 180.9±0.1 b | 33.47±0.42 b | + |
C10:NS6+NS54+NS62+NS69 | 75.29±0.01 abc | 156.3±0.3 g | 22.48±0.42 gh | + |
表2 菌株和复合菌群的促生能力
Table 2 The growth-promoting ability of strains and microbial consortium
组合编号 Combination number | 产IAA量 IAA production/(mg·L-1) | 有效磷含量 Vailable phosphorus/(mg·L-1) | 铁载体活性 Iron carrier activity/% | 固氮 Nitrogen fixation |
---|---|---|---|---|
NS6 | 83.16±0.01 a | 133.9±0.1 j | 5.16±0.14 k | - |
NS54 | 71.09±0.10 bcd | 167.3±2.1 e | 22.73±0.79 h | - |
NS62 | 70.96±0.08 bcd | 170.1±1.0 d | 25.69±0.73 f | - |
NS69 | 59.37±0.05 e | 53.3±0.1 m | 41.40±0.31 a | + |
C1:NS6+NS54 | 74.32±0.02 abc | 155.7±0.3 h | 18.42±0.45 j | - |
C2:NS6+NS62 | 72.18±0.02 bcd | 162.1±0.1 f | 20.44±0.10 i | + |
C3:NS6+NS69 | 69.41±0.03 bcd | 94.3±0.1 l | 19.64±0.28 ij | - |
C4:NS54+NS62 | 79.10±0.05 a | 183.9±0.2 a | 31.35±0.49 c | - |
C5:NS54+NS69 | 68.06±0.06 cde | 151.0±0.6 h | 26.42±0.32 e | + |
C6:NS62+NS69 | 65.06±0.04 de | 143.5±0.3 i | 23.49±0.45 fg | + |
C7:NS6+NS54+NS62 | 78.27±0.06 ab | 174.5±0.5 c | 28.52±0.29 d | - |
C8:NS6+NS54+NS69 | 66.37±0.04 de | 125.3±0.2 k | 26.46±0.35 e | + |
C9:NS54+NS62+NS69 | 76.43±0.05 abc | 180.9±0.1 b | 33.47±0.42 b | + |
C10:NS6+NS54+NS62+NS69 | 75.29±0.01 abc | 156.3±0.3 g | 22.48±0.42 gh | + |
图4 促生菌株和复合菌群对上海青生长的影响 CK,对照组;NS54,接种菌株NS54;NS62,接种菌株NS62;NS69,接种菌株NS69;C9,接种复合菌群NS54+NS62+NS69。柱上无相同小写字母表示同一指标不同处理间差异显著(P<0.05)。下同。
Fig.4 Effects of growth-promoting strains and microbial consortium on the growth of Brassica rapa subsp. chinensis CK, Control group; NS54, Inoculated strain NS54; NS62, Inoculated strain NS62; NS69, Inoculated strain NS69; C9, Inoculated with microbial consortium NS54+NS62+NS69. Bars marked without the same lowercase letter indicate significant differences between different treatments for the same index (P<0.05). The same as below.
图5 促生菌株和复合菌群对上海青中噻虫嗪含量的影响
Fig.5 Effects of growth-promoting strains and microbial consortium on thiamethoxam content in Brassica rapa subsp. chinensis
处理 Treatment | 丙二醛含量 MDA content/ (μmol·L-1) | 可溶性糖含量 Soluble sugar content/(g·kg-1) | 可溶性蛋白含量 Soluble protein content/(g·kg-1) | 维生素C含量 Vitamin C content/(mg·kg-1) |
---|---|---|---|---|
TMX | 3.86±0.25 a | 9.35±0.51 c | 11.17±0.73 c | 79.3±6.3 c |
NS54+TMX | 2.78±0.15 bc | 12.63±0.88 ab | 13.57±0.30 a | 106.6±9.3 ab |
NS62+TMX | 3.18±0.22 b | 11.39±0.93 b | 12.42±0.45 b | 90.8±5.9 bc |
NS69+TMX | 2.65±0.42 cd | 12.70±0.40 ab | 13.03±0.37 ab | 105.4±5.1 ab |
C9+TMX | 2.25±0.11 d | 13.30±0.50 a | 13.01±0.46 ab | 113.7±6.1 a |
表3 噻虫嗪胁迫下促生菌株和复合菌群处理对上海青品质的影响
Table 3 Effects of growth-promoting strains and microbial consortium on the quality of Brassica rapa subsp. chinensis under thiamethoxam stress
处理 Treatment | 丙二醛含量 MDA content/ (μmol·L-1) | 可溶性糖含量 Soluble sugar content/(g·kg-1) | 可溶性蛋白含量 Soluble protein content/(g·kg-1) | 维生素C含量 Vitamin C content/(mg·kg-1) |
---|---|---|---|---|
TMX | 3.86±0.25 a | 9.35±0.51 c | 11.17±0.73 c | 79.3±6.3 c |
NS54+TMX | 2.78±0.15 bc | 12.63±0.88 ab | 13.57±0.30 a | 106.6±9.3 ab |
NS62+TMX | 3.18±0.22 b | 11.39±0.93 b | 12.42±0.45 b | 90.8±5.9 bc |
NS69+TMX | 2.65±0.42 cd | 12.70±0.40 ab | 13.03±0.37 ab | 105.4±5.1 ab |
C9+TMX | 2.25±0.11 d | 13.30±0.50 a | 13.01±0.46 ab | 113.7±6.1 a |
[1] | HLADIK M L, MAIN A R, GOULSON D. Environmental risks and challenges associated with neonicotinoid insecticides[J]. Environmental Science & Technology, 2018, 52(6): 3329-3335. |
[2] | ZHAN H L, WAN Q, WANG Y, et al. An endophytic bacterial strain, Enterobacter cloacae TMX-6, enhances the degradation of thiamethoxam in rice plants[J]. Chemosphere, 2021, 269: 128751. |
[3] | JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the status and global strategy for neonicotinoids[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2897-2908. |
[4] | WU R L, HE W, LI Y L, et al. Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China[J]. Science of the Total Environment, 2020, 738: 140248. |
[5] | MONTIEL-LEÓN J M, DUY S V, MUNOZ G, et al. Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry[J]. Food Control, 2019, 104: 74-82. |
[6] | 谭颖, 张琪, 赵成, 等. 蔬菜水果中的新烟碱类农药残留量与人群摄食暴露健康风险评价[J]. 生态毒理学报, 2016, 11(6): 67-81. |
TAN Y, ZHANG Q, ZHAO C, et al. Residues of neonicotinoid pesticides in vegetables and fruit and health risk assessment of human exposure via food intake[J]. Asian Journal of Ecotoxicology, 2016, 11(6): 67-81. (in Chinese with English abstract) | |
[7] | MITCHELL E A D, MULHAUSER B, MULOT M, et al. A worldwide survey of neonicotinoids in honey[J]. Science, 2017, 358(6359): 109-111. |
[8] | GREEN T, TOGHILL A, LEE R, et al. Thiamethoxam induced mouse liver tumors and their relevance to humans. part 1: mode of action studies in the mouse[J]. Toxicological Sciences, 2005, 86(1): 36-47. |
[9] | HAN W C, TIAN Y, SHEN X M. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview[J]. Chemosphere, 2018, 192: 59-65. |
[10] | 代金霞, 田平雅, 沈聪, 等. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报, 2021, 30(5): 968-975. |
DAI J X, TIAN P Y, SHEN C, et al. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects[J]. Ecology and Environmental Sciences, 2021, 30(5): 968-975. (in Chinese with English abstract) | |
[11] | ZHOU X G, ZHANG X H, MA C L, et al. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere[J]. Chemosphere, 2022, 307: 136138. |
[12] | 郑培峰, 姜小蕾, 翟彦霖, 等. PGPR对莠去津污染土壤中结缕草生长及生理的影响[J]. 中国农学通报, 2022, 38(5): 124-131. |
ZHENG P F, JIANG X L, ZHAI Y L, et al. PGPR in atrazine contaminated soil: effect on the growth and physiology of Zoysia japonica Steud[J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 124-131. (in Chinese with English abstract) | |
[13] | HE W, MEGHARAJ M, WU C Y, et al. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants[J]. Critical Reviews in Biotechnology, 2020, 40(1): 31-45. |
[14] | ISLAM F, YASMEEN T, ALI Q, et al. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress[J]. Ecotoxicology and Environmental Safety, 2014, 104: 285-293. |
[15] | ZHANG C L, YU Z P, ZHANG M Y, et al. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis[J]. Journal of Experimental Botany, 2022, 73(11): 3711-3725. |
[16] | 刘悦, 徐伟慧, 王志刚. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 2023, 35(12): 2775-2784. |
LIU Y, XU W H, WANG Z G. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2775-2784. (in Chinese with English abstract) | |
[17] | 翟凯辉, 张影影, 高夕全. 种子内生菌促生机制和抗病机理研究进展[J]. 农业生物技术学报, 2023, 31(9): 1965-1979. |
ZHAI K H, ZHANG Y Y, GAO X Q. Research progress on mechanisms of growth promotion and disease resistance of seed endophytes[J]. Journal of Agricultural Biotechnology, 2023, 31(9): 1965-1979. (in Chinese with English abstract) | |
[18] | 宋歌, 才满, 杜克久. 具多氯联苯降解特性绦柳内生菌的分离筛选及其移除性能[J]. 生态学杂志, 2016, 35(4): 1038-1046. |
SONG G, CAI M, DU K J. Isolation and characterization of polychlorinated biphenyl-degrading endophytic bacterium from Salix matsudana f. pendula[J]. Chinese Journal of Ecology, 2016, 35(4): 1038-1046. (in Chinese with English abstract) | |
[19] | FENG F Y, CHEN X L, WANG Q, et al. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables[J]. Journal of Environmental Management, 2020, 253: 109636. |
[20] | CHEN S, MA Z, LI S Y, et al. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables[J]. Environment International, 2019, 132: 105081. |
[21] | 张帆, 马丽雅, 冯发运, 等. 接种嗜水气单胞菌对水稻降解毒死蜱的影响及作用机制[J]. 农药学学报, 2023, 25(2): 422-434. |
ZHANG F, MA L Y, FENG F Y, et al. Effect and mechanism of inoculation with Aeromonas hydrophila on the degradation of chlorpyrifos in rice[J]. Chinese Journal of Pesticide Science, 2023, 25(2): 422-434. (in Chinese with English abstract) | |
[22] | 张秀雨, 马秀花, 李玮, 等. 芽孢杆菌复合菌群的构建及其对野燕麦除草活性研究[J]. 南方农业学报, 2022, 53(12): 3444-3452. |
ZHANG X Y, MA X H, LI W, et al. Construction of Bacillus compound flora and its herbicidal activity against Avena fatua L[J]. Journal of Southern Agriculture, 2022, 53(12): 3444-3452. (in Chinese) | |
[23] | WANG W F, WAN Q, LI Y X, et al. Application of an endophyte Enterobacter sp. TMX13 to reduce thiamethoxam residues and stress in Chinese cabbage (Brassica chinensis L)[J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9180-9187. |
[24] | 马莹, 王玥, 石孝均, 等. 植物促生菌在重金属生物修复中的作用机制及应用[J]. 环境科学, 2022, 43(9): 4911-4922. |
MA Y, WANG Y, SHI X J, et al. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation[J]. Environmental Science, 2022, 43(9): 4911-4922. (in Chinese with English abstract) | |
[25] | HA-TRAN D M, NGUYEN T T M, HUNG S H, et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review[J]. International Journal of Molecular Sciences, 2021, 22(6): 3154. |
[26] | TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. |
[27] | GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401. |
[28] | EKE P, KUMAR A, SAHU K P, et al. Endophytic bacteria of desert Cactus(Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.)[J]. Microbiological Research, 2019, 228: 126302. |
[29] | GIAUQUE H, CONNOR E W, HAWKES C V. Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants[J]. New Phytologist, 2019, 221(4): 2239-2249. |
[30] | WITTEBOLLE L, MARZORATI M, CLEMENT L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009, 458(7238): 623-626. |
[31] | 车永梅, 刘广超, 郭艳苹, 等. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
CHE Y M, LIU G C, GUO Y P, et al. Preparation of compound halotolerant bioinoculant and study on its growth-promoting effect[J]. Biotechnology Bulletin, 2023, 39(11): 217-225. (in Chinese with English abstract) | |
[32] | 潘宇, 张昊, 李湘, 等. 耐盐促生菌与其复合菌剂对盐胁迫狼尾草生长及生理生化的影响[J]. 贵州农业科学, 2023, 51(7): 39-49. |
PAN Y, ZHANG H, LI X, et al. Effect of salt-tolerant and growth-promoting bacteria and composite microbial agent on growth and physicoch-emical of Pennisetum alopecuroides under salt stress[J]. Guizhou Agricultural Sciences, 2023, 51(7): 39-49. (in Chinese with English abstract) | |
[33] | 张希平, 田菊, 木其尔, 等. 基于代谢组学研究噻虫嗪和戊唑醇农药对蔬菜生理代谢的影响[J]. 沈阳农业大学学报, 2022, 53(6): 693-700. |
ZHANG X P, TIAN J, MU Q E, et al. Metabolomics reveals the effects of pesticide thiamethoxam and pentazolol on the physiological metabolism of vegetable[J]. Journal of Shenyang Agricultural University, 2022, 53(6): 693-700. (in Chinese with English abstract) | |
[34] | 张亚, 师杨杰, 姚均伟, 等. 村镇有机生活垃圾处理产物对青菜品质及土壤性质的影响[J]. 江苏农业学报, 2023, 39(1): 88-96. |
ZHANG Y, SHI Y J, YAO J W, et al. Effects of the products from treatment of organic domestic waste in villages and towns on the quality of Brassica chinensis and soil properties[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 88-96. (in Chinese with English abstract) | |
[35] | 余冬冬, 李永军. 不同微生物菌剂对草莓灰霉病的防治效果、植株生长及果实品质的影响[J]. 浙江农业科学, 2023, 64(10): 2482-2486. |
YU D D, LI Y J. Effects of different microbial agents on the control of gray mold, plant growth, and fruit quality of strawberry[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(10): 2482-2486. (in Chinese with English abstract) | |
[36] | 李婷, 张静, 曲明山, 等. 浇灌不同促生菌剂对网纹甜瓜生长发育及果实品质的影响[J]. 北方园艺, 2023(21): 36-42. |
LI T, ZHANG J, QU M S, et al. Effects of different growth-promoting agents on growth and fruit quality of netted melon[J]. Northern Horticulture, 2023(21): 36-42. (in Chinese with English abstract) | |
[37] | 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2): 495-506. |
GOU Y C, WANG Z K, ZHANG Z P, et al. Advance in role mechanisms of plant growth-promoting rhizobacteria[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 495-506. (in Chinese with English abstract) | |
[38] | ALIZADEH H, BEHBOUDI K, AHMADZADEH M, et al. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14[J]. Biological Control, 2013, 65(1): 14-23. |
[1] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
[2] | 杨乐, 李文杨, 骆建莉, 郑伟, 张毕阳, 王震, 阎腾飞. 地膜覆盖和自然生草对桃园土壤养分、pH及水热的影响[J]. 浙江农业学报, 2024, 36(12): 2719-2726. |
[3] | 谢晓杰, 许双燕, 王文凡, 杨健, 赵卓群, 王敏, 郑华宝. 畜禽养殖废弃物中抗生素的微生物降解研究进展[J]. 浙江农业学报, 2023, 35(8): 1975-1992. |
[4] | 田玉刚, 万素梅, 林皎, 陈国栋, 李浩, 胡宇凯, 李燕芳, 胡守林, 毛廷勇, 赵书珍. 不同地膜类型与灌溉量对棉花光合参数和产量、品质的影响[J]. 浙江农业学报, 2023, 35(7): 1523-1531. |
[5] | 朱燕, 魏佳, 许自龙, 林天宝, 杨升, 刘岩, 吕志强, 刘培刚. 促生长植物激素对桑树叶片衰老过程生理生化指标的影响[J]. 浙江农业学报, 2023, 35(6): 1278-1285. |
[6] | 刘悦, 徐伟慧, 王志刚. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 2023, 35(12): 2775-2784. |
[7] | 黄东慧, 钟鹏, 王建丽, 胡云龙, 王志刚. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473. |
[8] | 孙淑媛, 侯丽娜, 杨桂玲, 杜雨婷, 赵芸. 葡萄中几种常用防治绿盲蝽农药的残留动态与风险评估[J]. 浙江农业学报, 2022, 34(7): 1513-1518. |
[9] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
[10] | 冯娟, 朱廷恒, 罗春萍, 杨佳玥, 祝思瑜, 李彤. 黄粉虫(Tenebrio molitor)肠道中聚乳酸塑料降解菌的筛选及其降解特性[J]. 浙江农业学报, 2022, 34(6): 1277-1287. |
[11] | 张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351. |
[12] | 王一然, 康志超, 朱国鹏, 王洋, 其格其, 于洪文. 耐低温玉米秸秆降解菌群的优化及其效果[J]. 浙江农业学报, 2022, 34(12): 2720-2727. |
[13] | 冯欣欣, 李凤兰, 徐永清, 李磊, 贺付蒙, 冯艳忠, 袁强, 刘娣. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468-1476. |
[14] | 刘丹丹, 孙宛玉, 王鹤. 三株降解阿特拉津菌株的特性与固定载体分析[J]. 浙江农业学报, 2021, 33(6): 1078-1087. |
[15] | 李福艳, 刘晓玉, 颜静婷, 蔡燕飞. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||