[1] |
奚声珂, 郗荣庭, 马杰. 世界核桃生产与研究动态[J]. 经济林研究, 1990, 8(1): 76-79.
|
|
XI S K, XI R T, MA J. Trends of walnut production and research in the world[J]. Non-Wood Forest Research, 1990, 8(1): 76-79. (in Chinese)
|
[2] |
王彦翔, 张艳, 杨成娅, 等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676.
|
|
WANG Y X, ZHANG Y, YANG C Y, et al. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 669-676. (in Chinese with English abstract)
|
[3] |
张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
|
|
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171. (in Chinese with English abstract)
|
[4] |
FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture, 2018, 145: 311-318.
|
[5] |
TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279.
|
[6] |
葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述[J]. 软件学报, 2020, 31(9): 2627-2653.
|
|
GE D H, LI H S, ZHANG L, et al. Survey of lightweight neural network[J]. Journal of Software, 2020, 31(9): 2627-2653. (in Chinese with English abstract)
|
[7] |
ELFATIMI E, ERYIGIT R, ELFATIMI L. Beans leaf diseases classification using MobileNet models[J]. IEEE Access, 2022, 10: 9471-9482.
|
[8] |
CHEN J D, ZHANG D F, SUZAUDDOLA M, et al. Identifying crop diseases using attention embedded MobileNet-V2 model[J]. Applied Soft Computing, 2021, 113: 107901.
|
[9] |
LU L, LIU W, YANG W B, et al. Lightweight corn seed disease identification method based on improved ShuffleNetV2[J]. Agriculture, 2022, 12(11): 1929.
|
[10] |
孙道宗, 刘锦源, 丁郑, 等. 基于改进EfficientNetv2模型的多品种南药叶片分类方法[J]. 华中农业大学学报, 2023, 42(1): 258-267.
|
|
SUN D Z, LIU J Y, DING Z, et al. Classification of leaves of multi-variety southern traditional Chinese medicine based on improved EfficientNetv2 model[J]. Journal of Huazhong Agricultural University, 2023, 42(1): 258-267. (in Chinese with English abstract)
|
[11] |
SINGH P, VERMA A, ALEX J S R. Disease and pest infection detection in coconut tree through deep learning techniques[J]. Computers and Electronics in Agriculture, 2021, 182: 105986.
|
[12] |
刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204.
|
|
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract)
|
[13] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City. IEEE, 2018: 4510-4520.
|
[14] |
NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
|
[15] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City. IEEE, 2018: 7132-7141.
|
[16] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision- ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
[17] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville. IEEE, 2021: 13708-13717.
|
[18] |
LIU H X, LV H C, LI J J, et al. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning[J]. Scientific Reports, 2022, 12: 18914.
|
[19] |
ZHAO X, LI K Y, LI Y X, et al. Identification method of vegetable diseases based on transfer learning and attention mechanism[J]. Computers and Electronics in Agriculture, 2022, 193: 106703.
|
[20] |
CHEN J D, CHEN J X, ZHANG D F, et al. Using deep transfer learning for image-based plant disease identification[J]. Computers and Electronics in Agriculture, 2020, 173: 105393.
|
[21] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice. IEEE, 2017: 618-626.
|