浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2977-2987.DOI: 10.3969/j.issn.1004-1524.20221763
收稿日期:2022-12-12
出版日期:2023-12-25
发布日期:2023-12-27
作者简介:李荣鹏(1996—),男,山西晋中人,硕士研究生,主要从事农业遥感图像分类识别研究。E-mail:lrpwyyxx@163.com
通讯作者:
*买买提·沙吾提,E-mail:korxat@xju.edu.cn
基金资助:
LI Rongpeng(
), MAMAT Sawut(
), SHENG Yanfang, HE Xugang
Received:2022-12-12
Online:2023-12-25
Published:2023-12-27
摘要:
病害侵袭是制约核桃优质发展的重要因素之一,为实现田间智能化病害识别,设计了一款核桃病害识别模型。该模型采用Mobilenet-V2作为基础网络骨架,在倒残差结构中添加坐标注意力机制,解决特征提取时位置信息缺失的问题。此外,设计混合迁移的训练方式,将跨域迁移和域内迁移相结合,避免单独迁移学习的不良影响。结果表明:1)混合迁移对模型提升效果最佳,准确率最高提升18.57百分点。2)模型平均识别准确率为96.97%,模型参数量为3.95 M,内存占有量为10.50 MB,相较于Mobilenet-V3-Large、ShuffulNet-V2和EfficientNet-V2-S,识别准确率分别提升4.39百分点、6.63百分点和4.31百分点,且保持较少的参数量与内存占有量。3)与SE(squeeze-and-excitation)模块、CBAM(convolutional block attention module)模块相比,坐标注意力机制更能提升模型对感兴趣区域的关注度。因此,该模型可用于开发安卓应用程序并部署于移动端,为核桃病害智能识别提供新方法。
中图分类号:
李荣鹏, 买买提·沙吾提, 盛艳芳, 何旭刚. 基于CA-MobileNet-V2的核桃病害识别与应用[J]. 浙江农业学报, 2023, 35(12): 2977-2987.
LI Rongpeng, MAMAT Sawut, SHENG Yanfang, HE Xugang. Identification and application of walnut disease based on CA-MobileNet-V2[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2977-2987.
| 病害类型 Disease category | 标签 Labels | 样本数量Number of samples | |||
|---|---|---|---|---|---|
| 增强前Before augmentation | 增强后After augmentation | ||||
| 数据集A Dataset A | 数据集B Dataset B | 数据集A Dataset A | 数据集B Dataset B | ||
| 虫蛀叶Insect pest | 0 | 152 | 261 | 679 | 1 139 |
| 健康叶Healthy | 1 | 123 | 145 | 616 | 1 012 |
| 褐斑病Brown spot | 2 | 105 | 125 | 630 | 1 000 |
| 黑斑病Black spot | 3 | 98 | 189 | 686 | 1 134 |
| 缺素病Element deficiency | 4 | 162 | 242 | 656 | 1 210 |
| 炭疽病Anthrax | 5 | 116 | 168 | 696 | 1 008 |
| 总计Total | 756 | 1 130 | 3 963 | 6 503 | |
表1 数据增强
Table 1 Data augmentation
| 病害类型 Disease category | 标签 Labels | 样本数量Number of samples | |||
|---|---|---|---|---|---|
| 增强前Before augmentation | 增强后After augmentation | ||||
| 数据集A Dataset A | 数据集B Dataset B | 数据集A Dataset A | 数据集B Dataset B | ||
| 虫蛀叶Insect pest | 0 | 152 | 261 | 679 | 1 139 |
| 健康叶Healthy | 1 | 123 | 145 | 616 | 1 012 |
| 褐斑病Brown spot | 2 | 105 | 125 | 630 | 1 000 |
| 黑斑病Black spot | 3 | 98 | 189 | 686 | 1 134 |
| 缺素病Element deficiency | 4 | 162 | 242 | 656 | 1 210 |
| 炭疽病Anthrax | 5 | 116 | 168 | 696 | 1 008 |
| 总计Total | 756 | 1 130 | 3 963 | 6 503 | |
图2 CA与CA-Mobilenet-V2模型结构图 Conv,卷积;Dwise,深度卷积;CA,坐标注意力;Avg Pool,平均池化。
Fig.2 CA and CA-Mobilenet-V2 model structure diagram Conv, Convolution; Dwise, Depthwise; CA, Coordinate attention;Avg Pool, Average pool.
| 迁移方式 Transfer methods | 数据集 Dataset | 准确率 Accuracy/ % |
|---|---|---|
| 无迁移 No transfer | 数据集B Dataset B | 86.62 |
| learning | ||
| 跨域迁移 Cross-domain | ImageNet数据集+数据集B Datase ImageNet+Dataset B | 93.53 |
| transfer | ||
| 域内迁移 Intra-domain | 数据集A+数据集B Dataset A+Dataset B | 78.40 |
| transfer | ||
| 混合迁移 Mixed transfer | ImageNet数据集+数据集A+数据集B Dataset ImageNet+Dataset A+Dataset B | 96.97 |
表2 不同迁移学习方式识别结果比较
Table 2 Comparison of recognition results of different transfer learning methods
| 迁移方式 Transfer methods | 数据集 Dataset | 准确率 Accuracy/ % |
|---|---|---|
| 无迁移 No transfer | 数据集B Dataset B | 86.62 |
| learning | ||
| 跨域迁移 Cross-domain | ImageNet数据集+数据集B Datase ImageNet+Dataset B | 93.53 |
| transfer | ||
| 域内迁移 Intra-domain | 数据集A+数据集B Dataset A+Dataset B | 78.40 |
| transfer | ||
| 混合迁移 Mixed transfer | ImageNet数据集+数据集A+数据集B Dataset ImageNet+Dataset A+Dataset B | 96.97 |
| 模型 Models | 类别 Classification | 精确率 Precision/% | 召回率 Recall/% | F1值 F1score/% | 平均准确率 Mean accuracy% | 参数量 Params/M | 内存占有 Memory/MB |
|---|---|---|---|---|---|---|---|
| VGG16 | 虫害Insect pest | 87.27 | 63.44 | 73.47 | 64.48 | 138.23 | 512.27 |
| 健康Healthy | 79.12 | 35.64 | 49.15 | ||||
| 褐斑Brown spot | 51.30 | 49.50 | 50.38 | ||||
| 黑斑Black spot | 49.54 | 94.25 | 64.94 | ||||
| 缺素Element deficiency | 78.73 | 71.90 | 75.16 | ||||
| 炭疽Anthrax | 68.18 | 67.16 | 67.66 | ||||
| ResNet18 | 虫害Insect pest | 95.63 | 96.48 | 96.05 | 97.31 | 11.82 | 42.72 |
| 健康Healthy | 99.50 | 100.00 | 99.75 | ||||
| 褐斑Brown spot | 94.17 | 96.04 | 95.10 | ||||
| 黑斑Black spot | 99.06 | 94.20 | 96.57 | ||||
| 缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
| 炭疽Anthrax | 98.02 | 98.51 | 98.26 | ||||
| Mobilenet-V3-Large | 虫害Insect pest | 87.34 | 92.17 | 89.69 | 92.58 | 5.42 | 21.65 |
| 健康Healthy | 96.55 | 96.55 | 96.55 | ||||
| 褐斑Brown spot | 86.41 | 89.48 | 87.92 | ||||
| 黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
| 缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
| 炭疽Anthrax | 95.05 | 94.12 | 94.58 | ||||
| ShuffulNet-V2 | 虫害Insect pest | 83.84 | 91.87 | 87.67 | 90.34 | 2.28 | 9.03 |
| 健康Healthy | 92.12 | 92.57 | 92.35 | ||||
| 褐斑Brown spot | 85.92 | 85.55 | 85.71 | ||||
| 黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
| 缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
| 炭疽Anthrax | 95.05 | 94.12 | 97.57 | ||||
| EfficientNet-V2-S | 虫害Insect pest | 87.77 | 93.50 | 90.54 | 92.66 | 23.25 | 81.28 |
| 健康Healthy | 95.07 | 94.61 | 94.84 | ||||
| 褐斑Brown spot | 88.35 | 90.55 | 89.44 | ||||
| 黑斑Black spot | 94.67 | 88.55 | 91.36 | ||||
| 缺素Element deficiency | 95.00 | 93.60 | 94.29 | ||||
| 炭疽Anthrax | 96.04 | 95.57 | 95.80 | ||||
| CA-Mobilenet-V2 | 虫害Insect pest | 95.20 | 96.04 | 95.61 | 96.97 | 3.95 | 10.50 |
| 健康Healthy | 99.02 | 99.51 | 99.26 | ||||
| 褐斑Brown spot | 93.20 | 96.00 | 94.58 | ||||
| 黑斑Black spot | 98.59 | 92.92 | 95.67 | ||||
| 缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
| 炭疽Anthrax | 98.02 | 98.51 | 98.26 |
表3 不同CNN模型识别结果比较
Table 3 Comparison of recognition results of different CNN models
| 模型 Models | 类别 Classification | 精确率 Precision/% | 召回率 Recall/% | F1值 F1score/% | 平均准确率 Mean accuracy% | 参数量 Params/M | 内存占有 Memory/MB |
|---|---|---|---|---|---|---|---|
| VGG16 | 虫害Insect pest | 87.27 | 63.44 | 73.47 | 64.48 | 138.23 | 512.27 |
| 健康Healthy | 79.12 | 35.64 | 49.15 | ||||
| 褐斑Brown spot | 51.30 | 49.50 | 50.38 | ||||
| 黑斑Black spot | 49.54 | 94.25 | 64.94 | ||||
| 缺素Element deficiency | 78.73 | 71.90 | 75.16 | ||||
| 炭疽Anthrax | 68.18 | 67.16 | 67.66 | ||||
| ResNet18 | 虫害Insect pest | 95.63 | 96.48 | 96.05 | 97.31 | 11.82 | 42.72 |
| 健康Healthy | 99.50 | 100.00 | 99.75 | ||||
| 褐斑Brown spot | 94.17 | 96.04 | 95.10 | ||||
| 黑斑Black spot | 99.06 | 94.20 | 96.57 | ||||
| 缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
| 炭疽Anthrax | 98.02 | 98.51 | 98.26 | ||||
| Mobilenet-V3-Large | 虫害Insect pest | 87.34 | 92.17 | 89.69 | 92.58 | 5.42 | 21.65 |
| 健康Healthy | 96.55 | 96.55 | 96.55 | ||||
| 褐斑Brown spot | 86.41 | 89.48 | 87.92 | ||||
| 黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
| 缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
| 炭疽Anthrax | 95.05 | 94.12 | 94.58 | ||||
| ShuffulNet-V2 | 虫害Insect pest | 83.84 | 91.87 | 87.67 | 90.34 | 2.28 | 9.03 |
| 健康Healthy | 92.12 | 92.57 | 92.35 | ||||
| 褐斑Brown spot | 85.92 | 85.55 | 85.71 | ||||
| 黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
| 缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
| 炭疽Anthrax | 95.05 | 94.12 | 97.57 | ||||
| EfficientNet-V2-S | 虫害Insect pest | 87.77 | 93.50 | 90.54 | 92.66 | 23.25 | 81.28 |
| 健康Healthy | 95.07 | 94.61 | 94.84 | ||||
| 褐斑Brown spot | 88.35 | 90.55 | 89.44 | ||||
| 黑斑Black spot | 94.67 | 88.55 | 91.36 | ||||
| 缺素Element deficiency | 95.00 | 93.60 | 94.29 | ||||
| 炭疽Anthrax | 96.04 | 95.57 | 95.80 | ||||
| CA-Mobilenet-V2 | 虫害Insect pest | 95.20 | 96.04 | 95.61 | 96.97 | 3.95 | 10.50 |
| 健康Healthy | 99.02 | 99.51 | 99.26 | ||||
| 褐斑Brown spot | 93.20 | 96.00 | 94.58 | ||||
| 黑斑Black spot | 98.59 | 92.92 | 95.67 | ||||
| 缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
| 炭疽Anthrax | 98.02 | 98.51 | 98.26 |
图4 不同注意力机制可视化比较 P表示模型对不同类别的判断概率。
Fig.4 Comparison of visualization of different attention modules P represents the judgment probability of the model for different classes.
| 模型 Model | 准确率 Accuracy/ % | 漏检率 Missing/ % | 误检率 Error/% | 耗时 Time consuming/s |
|---|---|---|---|---|
| CA-MobileNet-V2 | 90.83 | 4.17 | 5.00 | 0.53 |
| ResNet18 | 92.50 | 4.17 | 3.33 | 3.37 |
| MobileNet-V3-Large | 87.50 | 5.83 | 6.67 | 1.05 |
| ShuffulNet-V2 | 82.50 | 5.00 | 12.50 | 0.36 |
| EfficientNet-V2-S | 86.67 | 7.50 | 5.83 | 5.09 |
表4 核桃病害识别程序测试结果
Table 4 Walnut disease identification program test results
| 模型 Model | 准确率 Accuracy/ % | 漏检率 Missing/ % | 误检率 Error/% | 耗时 Time consuming/s |
|---|---|---|---|---|
| CA-MobileNet-V2 | 90.83 | 4.17 | 5.00 | 0.53 |
| ResNet18 | 92.50 | 4.17 | 3.33 | 3.37 |
| MobileNet-V3-Large | 87.50 | 5.83 | 6.67 | 1.05 |
| ShuffulNet-V2 | 82.50 | 5.00 | 12.50 | 0.36 |
| EfficientNet-V2-S | 86.67 | 7.50 | 5.83 | 5.09 |
| [1] | 奚声珂, 郗荣庭, 马杰. 世界核桃生产与研究动态[J]. 经济林研究, 1990, 8(1): 76-79. |
| XI S K, XI R T, MA J. Trends of walnut production and research in the world[J]. Non-Wood Forest Research, 1990, 8(1): 76-79. (in Chinese) | |
| [2] | 王彦翔, 张艳, 杨成娅, 等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676. |
| WANG Y X, ZHANG Y, YANG C Y, et al. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 669-676. (in Chinese with English abstract) | |
| [3] | 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171. |
| ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171. (in Chinese with English abstract) | |
| [4] | FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture, 2018, 145: 311-318. |
| [5] | TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279. |
| [6] | 葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述[J]. 软件学报, 2020, 31(9): 2627-2653. |
| GE D H, LI H S, ZHANG L, et al. Survey of lightweight neural network[J]. Journal of Software, 2020, 31(9): 2627-2653. (in Chinese with English abstract) | |
| [7] | ELFATIMI E, ERYIGIT R, ELFATIMI L. Beans leaf diseases classification using MobileNet models[J]. IEEE Access, 2022, 10: 9471-9482. |
| [8] | CHEN J D, ZHANG D F, SUZAUDDOLA M, et al. Identifying crop diseases using attention embedded MobileNet-V2 model[J]. Applied Soft Computing, 2021, 113: 107901. |
| [9] | LU L, LIU W, YANG W B, et al. Lightweight corn seed disease identification method based on improved ShuffleNetV2[J]. Agriculture, 2022, 12(11): 1929. |
| [10] | 孙道宗, 刘锦源, 丁郑, 等. 基于改进EfficientNetv2模型的多品种南药叶片分类方法[J]. 华中农业大学学报, 2023, 42(1): 258-267. |
| SUN D Z, LIU J Y, DING Z, et al. Classification of leaves of multi-variety southern traditional Chinese medicine based on improved EfficientNetv2 model[J]. Journal of Huazhong Agricultural University, 2023, 42(1): 258-267. (in Chinese with English abstract) | |
| [11] | SINGH P, VERMA A, ALEX J S R. Disease and pest infection detection in coconut tree through deep learning techniques[J]. Computers and Electronics in Agriculture, 2021, 182: 105986. |
| [12] | 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. |
| LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract) | |
| [13] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City. IEEE, 2018: 4510-4520. |
| [14] | NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. |
| [15] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City. IEEE, 2018: 7132-7141. |
| [16] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision- ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
| [17] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville. IEEE, 2021: 13708-13717. |
| [18] | LIU H X, LV H C, LI J J, et al. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning[J]. Scientific Reports, 2022, 12: 18914. |
| [19] | ZHAO X, LI K Y, LI Y X, et al. Identification method of vegetable diseases based on transfer learning and attention mechanism[J]. Computers and Electronics in Agriculture, 2022, 193: 106703. |
| [20] | CHEN J D, CHEN J X, ZHANG D F, et al. Using deep transfer learning for image-based plant disease identification[J]. Computers and Electronics in Agriculture, 2020, 173: 105393. |
| [21] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice. IEEE, 2017: 618-626. |
| [1] | 李强, 刘思彤, 黄显斌, 姜君龙, 邓建宇, 王教瑜, 李玲. 山区猕猴桃溃疡病病原菌的鉴定及不同类型高效防治药剂的筛选[J]. 浙江农业学报, 2025, 37(10): 2116-2128. |
| [2] | 沈岚, 杨肖芳, 张国芳. 草莓根腐病病原菌的鉴定及其对杀菌剂的敏感性[J]. 浙江农业学报, 2025, 37(2): 417-425. |
| [3] | 燕中立, 李永慧, 李玉成, 李伟, 张学胜, 洪勇, 葛立傲. 蓝藻好氧堆肥负载阿维菌素对草莓红蜘蛛的防治效果[J]. 浙江农业学报, 2024, 36(10): 2264-2272. |
| [4] | 纪嵩岩, 邵长琪, 齐文康, 何煜晖, 张欣, 王翠平. 枸杞根腐病病原鉴定及拮抗菌筛选[J]. 浙江农业学报, 2024, 36(10): 2283-2297. |
| [5] | 闫鸿媛, 俞浙萍, 张淑文, 倪晓鹏, 李向男, 梁森苗. 杨梅肉葱病发生与营养元素关联分析[J]. 浙江农业学报, 2024, 36(7): 1626-1633. |
| [6] | 余帅, 黄俊, 应俊杰, 张娟, 毛雪琴, 张治军, 吕要斌, 李龑. 香蕉皮粉末对黑腹果蝇的引诱活性及挥发物化学成分分析[J]. 浙江农业学报, 2023, 35(10): 2415-2424. |
| [7] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
| [8] | 曾雅婷, 熊桃, 李红叶. 柑橘黑点病菌(Diaporthe citri)快速分子检测技术[J]. 浙江农业学报, 2022, 34(7): 1457-1465. |
| [9] | 杨秀娟, 李卫雅, 李彩苗, 成碧君, 高芬, 赵军. 茶籽饼对黄芪和三七根腐病病原菌的抑制效果[J]. 浙江农业学报, 2022, 34(6): 1227-1235. |
| [10] | 吴嘉维, 姚张良, 胡琪琪, 张杰, 陈轶, 蒋建荣, 周国鑫, 王霞. 浙北桐乡梨锈病防治适期和防治药剂研究[J]. 浙江农业学报, 2021, 33(9): 1668-1675. |
| [11] | 孟幼青, 汪恩国, 陈吴健, 李艳敏, 程帆, 孟敏霞. 浙江省亚洲柑橘木虱黄龙病病原分布与消长规律[J]. 浙江农业学报, 2021, 33(3): 464-469. |
| [12] | 黄振东, 蒲占湑, 胡秀荣, 陈国庆, 吕佳, 占红木. 矿物油乳剂对柑橘木虱定殖行为的影响[J]. 浙江农业学报, 2021, 33(1): 87-95. |
| [13] | 赖家豪, 宋水林, 刘冰. 三株柑橘溃疡病生防内生细菌对脐橙感染溃疡病后几种防御酶活性的影响[J]. 浙江农业学报, 2020, 32(11): 1994-2000. |
| [14] | 张小彦, 何静, 侯彩霞, 张树衡. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. |
| [15] | 郭雪松, 田丽波, 商桑, 邹凯茜, 陈虹容, 李婉豫, 岳晓琦. 芒果蒂腐病拮抗放线菌A10和A17的分离、鉴定和特征化研究[J]. 浙江农业学报, 2020, 32(3): 460-468. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||