浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 308-318.DOI: 3969/j.issn.1004-1524.2023.02.08
李苹芳1,2(
), 姚协丰2,*(
), 徐锦华2, 朱凌丽2, 羊杏平2,*(
)
收稿日期:2022-05-20
出版日期:2023-02-25
发布日期:2023-03-14
作者简介:羊杏平,E-mail: 1394654153@qq.com通讯作者:
姚协丰,羊杏平
基金资助:
LI Pingfang1,2(
), YAO Xiefeng2,*(
), XU Jinhua2, ZHU Lingli2, YANG Xingping2,*(
)
Received:2022-05-20
Online:2023-02-25
Published:2023-03-14
Contact:
YAO Xiefeng,YANG Xingping
摘要:
甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。
中图分类号:
李苹芳, 姚协丰, 徐锦华, 朱凌丽, 羊杏平. 甜瓜果实发育相关SWEET糖转运蛋白基因的鉴定与功能初步分析[J]. 浙江农业学报, 2023, 35(2): 308-318.
LI Pingfang, YAO Xiefeng, XU Jinhua, ZHU Lingli, YANG Xingping. Identification and preliminary functional characterization of SWEET sugar transporters involved in fruit development of melon (Cucumis melo L.)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 308-318.
| 引物名称 | 上游引物序列 | 下游引物序列 |
|---|---|---|
| Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
| CmSWEET1 | TCTTGGAAATGCAACTGCTC | GGCAATTCAACATCGTCATC |
| CmSWEET2 | AAAGTGTGGAGTTTATGCCATTT | CCCAACATAGTTCCTATTCCATT |
| CmSWEET3 | CTCCGCAAGTTCCTTATGGT | CAATGGGCTTCCCACTAGAT |
| CmSWEET5d | GGCCTCTTTCTGTCACCAGT | GCATTCCATAGAACACCCAA |
| CmSWEET7a | GAGGGAAGGTAAAGGGAAGG | TGTTGCGAGTCCTATCAAGC |
| CmSWEET7c | ATGGAAGAAGGGATCAGTGG | CCGTACAATGTCCACACCAT |
| CmSWEET10 | TTCTTCAGCCAAACATGGAC | CGGGTGCAATAGATCAGATG |
| CmSWEET12a | ACGCGGATGAGTTCTTTCTT | GAGCCTTCTTGGGAGCATAG |
| CmSWEET12c | TCGATACTCATCACCCTGGA | AAGTGCCACCACATATGGAA |
| CmSWEET12d | TCGAAAGAGAGTTTCTTCCTTACA | GCAGCAGGGTTATGGGTATT |
| CmSWEET15 | CTCCTTTGGTTGTGTCATCG | AATGAAGTGAATGGCCACAA |
| CmSWEET17c | AACGGAGATGATGGAGGAAG | TTGGCTTTGGAAGGCTTAAC |
| Actin7 | TGCCCAGAAGTTCTATTCCAGC | CATAGTTGAACCACCACTGAGGAC |
| TOPO-SWEET7a | CAC CAT GGT TTC TTT GGT GC | TCAAGCTCCATGGACCTCAG |
| TOPO-SWEET3 | CACCATGAGATCTCTCTACACCAT | CTAGGAGTTATTTTGATGTGGA |
| TOPO-SWEET17c | CACCATGGCTGCTAGTTTGAGCT | TCAAAATTTTCCATCTTCCACC |
| NEV-SWEET7a: | GCGGCCGC AAGCTTGTAAAAGAA AT GGT TTC TTT GGT GC | GCGGCCGCTCAAGCTCCATGGACCTC |
| NEV-SWEET3: | GCGGCCGC AAGCTTGTAAAAGAA ATGAGATCTCTCTACACC | GCGGCCGCCTAGGAGTTATTTTGATG |
表1 RT-PCR、qPCR和克隆所用引物
Table 1 Primers used in RT-PCR, qPCR and cloning
| 引物名称 | 上游引物序列 | 下游引物序列 |
|---|---|---|
| Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
| CmSWEET1 | TCTTGGAAATGCAACTGCTC | GGCAATTCAACATCGTCATC |
| CmSWEET2 | AAAGTGTGGAGTTTATGCCATTT | CCCAACATAGTTCCTATTCCATT |
| CmSWEET3 | CTCCGCAAGTTCCTTATGGT | CAATGGGCTTCCCACTAGAT |
| CmSWEET5d | GGCCTCTTTCTGTCACCAGT | GCATTCCATAGAACACCCAA |
| CmSWEET7a | GAGGGAAGGTAAAGGGAAGG | TGTTGCGAGTCCTATCAAGC |
| CmSWEET7c | ATGGAAGAAGGGATCAGTGG | CCGTACAATGTCCACACCAT |
| CmSWEET10 | TTCTTCAGCCAAACATGGAC | CGGGTGCAATAGATCAGATG |
| CmSWEET12a | ACGCGGATGAGTTCTTTCTT | GAGCCTTCTTGGGAGCATAG |
| CmSWEET12c | TCGATACTCATCACCCTGGA | AAGTGCCACCACATATGGAA |
| CmSWEET12d | TCGAAAGAGAGTTTCTTCCTTACA | GCAGCAGGGTTATGGGTATT |
| CmSWEET15 | CTCCTTTGGTTGTGTCATCG | AATGAAGTGAATGGCCACAA |
| CmSWEET17c | AACGGAGATGATGGAGGAAG | TTGGCTTTGGAAGGCTTAAC |
| Actin7 | TGCCCAGAAGTTCTATTCCAGC | CATAGTTGAACCACCACTGAGGAC |
| TOPO-SWEET7a | CAC CAT GGT TTC TTT GGT GC | TCAAGCTCCATGGACCTCAG |
| TOPO-SWEET3 | CACCATGAGATCTCTCTACACCAT | CTAGGAGTTATTTTGATGTGGA |
| TOPO-SWEET17c | CACCATGGCTGCTAGTTTGAGCT | TCAAAATTTTCCATCTTCCACC |
| NEV-SWEET7a: | GCGGCCGC AAGCTTGTAAAAGAA AT GGT TTC TTT GGT GC | GCGGCCGCTCAAGCTCCATGGACCTC |
| NEV-SWEET3: | GCGGCCGC AAGCTTGTAAAAGAA ATGAGATCTCTCTACACC | GCGGCCGCCTAGGAGTTATTTTGATG |
| 基因名 Gene name | 甜瓜基因组ID Melon genome IDs | 拟南芥同源基因 Arabidopsis hits | E值 E-value | 开放阅读框 ORF length/bp | 多肽Deduced polypeptide | |||
|---|---|---|---|---|---|---|---|---|
| 长度 | 分子量 | 等电点 | 跨膜区域 | |||||
| Length/aa | MW/ku | pI | TM | |||||
| CmSWEET1 | MELO3C008417.2.1 | AtSWEET1 | 6.00×10-94 | 759 | 252 | 27.7 | 9.25 | 7 |
| CmSWEET3 | MELO3C005869.2.1 | AtSWEET3 | 3.00×10-43 | 627 | 208 | 23.5 | 9.06 | 5 |
| CmSWEET5a | MELO3C002256.2.1 | AtSWEET5 | 2.00×10-72 | 552 | 183 | 21 | 9.42 | 5 |
| CmSWEET5b | MELO3C009951.2.1 | AtSWEET5 | 9.00×10-67 | 747 | 248 | 28.2 | 8.91 | 7 |
| CmSWEET5c | MELO3C009950.2.1 | AtSWEET5 | 5.00×10-63 | 705 | 234 | 26 | 8.72 | 7 |
| CmSWEET7a | MELO3C016259.2.1 | AtSWEET7 | 3.00×10-74 | 789 | 262 | 29.1 | 9.1 | 7 |
| CmSWEET7b | MELO3C005758.2.1 | AtSWEET7 | 3.00×10-39 | 504 | 265 | 29.1 | 9.66 | 7 |
| CmSWEET9a | MELO3C008674.2.1 | AtSWEET9 | 4.00×10-76 | 798 | 262 | 30.1 | 9.07 | 7 |
| CmSWEET9b | MELO3C031232.2.1 | AtSWEET9 | 4.00×10-59 | 639 | 212 | 24.3 | 9.8 | 6 |
| CmSWEET10 | MELO3C026184.2.1 | AtSWEET10 | 5.00×10-82 | 891 | 296 | 33 | 9.23 | 7 |
| CmSWEET12a | MELO3C026183.2.1 | AtSWEET12 | 1.00×10-79 | 894 | 297 | 33.3 | 8.85 | 7 |
| CmSWEET12b | MELO3C002381.2.1 | AtSWEET12 | 2.00×10-72 | 876 | 291 | 32.9 | 6.44 | 7 |
| CmSWEET12c | MELO3C002380.2.1 | AtSWEET12 | 3.00×10-38 | 729 | 242 | 27.4 | 8.97 | 5 |
| CmSWEET15 | MELO3C022341.2.1 | AtSWEET15 | 2.00×10-74 | 822 | 273 | 30.9 | 9.19 | 6 |
| CmSWEET17a | MELO3C000200.2.1 | AtSWEET17 | 2.00×10-42 | 582 | 193 | 21.6 | 7.66 | 4 |
| CmSWEET17b | MELO3C004222.2.1 | AtSWEET17 | 1.00×10-31 | 456 | 151 | 16.6 | 8.67 | 5 |
| CmSWEET17c | MELO3C027076.2.1 | AtSWEET17 | 2.00×10-27 | 615 | 204 | 22.5 | 7.8 | 4 |
| CmSWEET17d | MELO3C031734.2.1 | AtSWEET17 | 4.00×10-16 | 501 | 166 | 19.5 | 9.86 | 2 |
表2 甜瓜SWEETs家族基因的生物信息学分析
Table 2 Bioinformatics analysis of SWEETs family genes in melon
| 基因名 Gene name | 甜瓜基因组ID Melon genome IDs | 拟南芥同源基因 Arabidopsis hits | E值 E-value | 开放阅读框 ORF length/bp | 多肽Deduced polypeptide | |||
|---|---|---|---|---|---|---|---|---|
| 长度 | 分子量 | 等电点 | 跨膜区域 | |||||
| Length/aa | MW/ku | pI | TM | |||||
| CmSWEET1 | MELO3C008417.2.1 | AtSWEET1 | 6.00×10-94 | 759 | 252 | 27.7 | 9.25 | 7 |
| CmSWEET3 | MELO3C005869.2.1 | AtSWEET3 | 3.00×10-43 | 627 | 208 | 23.5 | 9.06 | 5 |
| CmSWEET5a | MELO3C002256.2.1 | AtSWEET5 | 2.00×10-72 | 552 | 183 | 21 | 9.42 | 5 |
| CmSWEET5b | MELO3C009951.2.1 | AtSWEET5 | 9.00×10-67 | 747 | 248 | 28.2 | 8.91 | 7 |
| CmSWEET5c | MELO3C009950.2.1 | AtSWEET5 | 5.00×10-63 | 705 | 234 | 26 | 8.72 | 7 |
| CmSWEET7a | MELO3C016259.2.1 | AtSWEET7 | 3.00×10-74 | 789 | 262 | 29.1 | 9.1 | 7 |
| CmSWEET7b | MELO3C005758.2.1 | AtSWEET7 | 3.00×10-39 | 504 | 265 | 29.1 | 9.66 | 7 |
| CmSWEET9a | MELO3C008674.2.1 | AtSWEET9 | 4.00×10-76 | 798 | 262 | 30.1 | 9.07 | 7 |
| CmSWEET9b | MELO3C031232.2.1 | AtSWEET9 | 4.00×10-59 | 639 | 212 | 24.3 | 9.8 | 6 |
| CmSWEET10 | MELO3C026184.2.1 | AtSWEET10 | 5.00×10-82 | 891 | 296 | 33 | 9.23 | 7 |
| CmSWEET12a | MELO3C026183.2.1 | AtSWEET12 | 1.00×10-79 | 894 | 297 | 33.3 | 8.85 | 7 |
| CmSWEET12b | MELO3C002381.2.1 | AtSWEET12 | 2.00×10-72 | 876 | 291 | 32.9 | 6.44 | 7 |
| CmSWEET12c | MELO3C002380.2.1 | AtSWEET12 | 3.00×10-38 | 729 | 242 | 27.4 | 8.97 | 5 |
| CmSWEET15 | MELO3C022341.2.1 | AtSWEET15 | 2.00×10-74 | 822 | 273 | 30.9 | 9.19 | 6 |
| CmSWEET17a | MELO3C000200.2.1 | AtSWEET17 | 2.00×10-42 | 582 | 193 | 21.6 | 7.66 | 4 |
| CmSWEET17b | MELO3C004222.2.1 | AtSWEET17 | 1.00×10-31 | 456 | 151 | 16.6 | 8.67 | 5 |
| CmSWEET17c | MELO3C027076.2.1 | AtSWEET17 | 2.00×10-27 | 615 | 204 | 22.5 | 7.8 | 4 |
| CmSWEET17d | MELO3C031734.2.1 | AtSWEET17 | 4.00×10-16 | 501 | 166 | 19.5 | 9.86 | 2 |
图3 甜瓜SWEETs家族基因在不同营养器官(A)与不同果实发育阶段(B)的表达
Fig.3 Expression pattern of SWEETs family genes in different vegetative organs (A) and fruits in different developmental stages(B) of melon
图4 三个CmSWEETs基因在不同果实发育期的qPCR表达分析 每个果实作为一个重复,数据来自3个独立的重复,图中的每个值表示均值±SD。qPCR产生的表达量与对照的比值为1.0。
Fig.4 qPCR analysis of 3 CmSWEETs genes during different fruit developmental stages in melon plants Each fruit was set as one replicate, the data were obtained from three separate replicates, each value in the graph showed means ± SD. Expression levels produced by qPCR were expressed as a ratio to the control. which was set at 1.0.
| [1] | CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532. |
| [2] | BÜTTNER M, et al. Monosaccharide transporters in plants: structure, function and physiology[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2000, 1465(1/2): 263-274. |
| [3] | KÜHN C, et al. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
| [4] | ZHANG X Y, WANG X L, WANG X F, et al. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry[J]. Plant Physiology, 2006, 142(1): 220-232. |
| [5] | NIE P X, WANG X Y, HU L P, et al. The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development[J]. Plant and Cell Physiology, 2010, 51(6): 1007-1018. |
| [6] | ZHANG L Y, PENG Y B, PELLESCHI-TRAVIER S, et al. Evidence for apoplasmic phloem unloading in developing apple fruit[J]. Plant Physiology, 2004, 135(1): 574-586. |
| [7] | HU L P, SUN H H, LI R F, et al. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage[J]. Plant, Cell & Environment, 2011, 34(11): 1835-1848. |
| [8] | REN Y, GUO S G, ZHANG J, et al. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon[J]. Plant Physiology, 2018, 176(1): 836-850. |
| [9] | CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065): 207-211. |
| [10] | KO H Y, HO L H, NEUHAUS H E, et al. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato[J]. Plant Physiology, 2021, 187(4): 2230-2245. |
| [11] | XUAN Y H, HU Y B, CHEN L Q, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): E3685-E3694. |
| [12] | BREIA R, CONDE A, BADIM H, et al. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles[J]. Plant Physiology, 2021, 186(2): 836-852. |
| [13] | 胡丽萍, 张峰, 徐惠, 等. 植物SWEET基因家族结构、功能及调控研究进展[J]. 生物技术通报, 2017, 33(4): 27-37. |
| HU L P, ZHANG F, XU H, et al. Research advances in the structure, function and regulation of SWEET gene family in plants[J]. Biotechnology Bulletin, 2017, 33(4): 27-37. (in Chinese with English abstract) | |
| [14] | MANCK-GÖTZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J]. Frontiers in Plant Science, 2016, 7: 487. |
| [15] | 陈慧敏, 李威, 马雄风, 等. 植物SWEET基因家族的相关研究进展[J]. 中国农学通报, 2017, 33(19): 34-39. |
| CHEN H M, LI W, MA X F, et al. SWEET gene family in plants: research advances[J]. Chinese Agricultural Science Bulletin, 2017, 33(19): 34-39. (in Chinese with English abstract) | |
| [16] | MA L, ZHANG D C, MIAO Q S, et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling[J]. Plant and Cell Physiology, 2017, 58(5): 863-873. |
| [17] | MATHAN J, SINGH A, RANJAN A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice[J]. Physiologia Plantarum, 2021, 171(4): 620-637. |
| [18] | OLIVA R, JI C H, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350. |
| [19] | KANNO Y, OIKAWA T, CHIBA Y, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nature Communications, 2016, 7: 13245. |
| [20] | CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. The Plant Cell, 2015, 27(3): 607-619. |
| [21] | LIVAK K J, et al. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. |
| [22] | ANJALI A, FATIMA U, SENTHIL-KUMAR M. The ins and outs of SWEETs in plants: current understanding of the basics and their prospects in crop improvement[J]. Journal of Biosciences, 2021, 46: 100. |
| [23] | WEI X Y, LIU F L, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Frontiers in Plant Science, 2014, 5: 569. |
| [24] | ZHEN Q L, FANG T, PENG Q, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation[J]. Horticulture Research, 2018, 5(10.1038): s41438-18. |
| [25] | FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2): 261-272. |
| [26] | ZHANG Z, ZOU L M, REN C, et al. VvSWEET10 mediates sugar accumulation in grapes[J]. Genes, 2019, 10(4): 255. |
| [27] | HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. Journal of Integrative Agriculture, 2017, 16(7): 1486-1501. |
| [28] | HUANG S W, LI R Q, ZHANG Z H, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature Genetics, 2009, 41(12): 1275-1281. |
| [29] | 申长卫, 袁敬平. 南瓜SWEET蛋白家族的全基因组鉴定与进化分析[J]. 广西植物, 2021, 41(1): 40-54. |
| SHEN C W, YUAN J P. Genome-wide identification and phylogenetic analysis of SWEET protein family in pumpkin[J]. Guihaia, 2021, 41(1): 40-54. (in Chinese with English abstract) | |
| [30] | KÜHN C, GROF C P L. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
| [31] | SEO P J, PARK J M, KANG S K, et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity[J]. Planta, 2011, 233(1): 189-200. |
| [32] | CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J]. Current Biology, 2013, 23(8): 697-702. |
| [33] | KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiology, 2013, 163(3): 1338-1352. |
| [34] | 杨官显, 许海峰, 张静, 等. 苹果糖转运蛋白基因MdSWEET17的功能鉴定[J]. 植物生理学报, 2018, 54(11): 1737-1745. |
| YANG G X, XU H F, ZHANG J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple[J]. Plant Physiology Journal, 2018, 54(11): 1737-1745. (in Chinese with English abstract) | |
| [35] | NI J P, LI J M, ZHU R X, et al. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves[J]. Gene, 2020, 743: 144582. |
| [36] | LI Y X, LIU H, YAO X H, et al. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development[J]. Plant Physiology, 2021, 186(1): 640-654. |
| [37] | SONNEWALD U. Sweets-the missing sugar efflux carriers[J]. Frontiers in Plant Science, 2011, 2: 7. |
| [38] | CHEN L Q. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytologist, 2014, 201(4): 1150-1155. |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 贺世雄, 杨蕾, 齐安民, 程籍, 王敏, 李英奎, 洪林. 中间砧对3种杂柑叶片光合特性、理化指标和果实品质的影响[J]. 浙江农业学报, 2025, 37(8): 1680-1693. |
| [3] | 张顺昌, 徐继根, 符成悦, 蒲占湑, 胡丽鹏, 吴昊, 李俊兵, 辛亮, 雷元军. 喷施氨基酸钙对红美人杂柑果皮龟裂与品质的影响[J]. 浙江农业学报, 2025, 37(8): 1706-1715. |
| [4] | 王呈阳, 刘洁雅, 吴敏怡, 谢博伊, 洪德成, 冷锋, 吴国泉. 钙处理对涝害下寒香蜜葡萄果实品质的影响[J]. 浙江农业学报, 2025, 37(7): 1451-1458. |
| [5] | 项缨, 丛建民, 潘丹红, 陶永刚. 春大棚有机种植不同品种番茄的生育进程分析和综合评价研究[J]. 浙江农业学报, 2025, 37(6): 1252-1261. |
| [6] | 王丽, 陈立明, 王鹏飞, 张彬, 穆霄鹏. 有机肥配施菌肥对欧李果实品质和土壤性质的影响[J]. 浙江农业学报, 2025, 37(4): 820-830. |
| [7] | 熊韬, 闫淼, 吴婷, 马超, 杨俊涛, 胡国智. 黄腐酸钾对甜瓜根区土壤微生态、根系形态及果实品质的影响[J]. 浙江农业学报, 2025, 37(10): 2066-2076. |
| [8] | 俞沁佩, 孙鹂, 张淑文, 俞浙萍, 郑锡良, 戚行江. 园艺作物果实β-半乳糖苷酶研究进展[J]. 浙江农业学报, 2024, 36(9): 2184-2192. |
| [9] | 孙鹂, 张淑文, 俞浙萍, 郑锡良, 梁森苗, 任海英, 戚行江. 腐殖酸钾对杨梅土壤改良和生长结实的影响[J]. 浙江农业学报, 2024, 36(8): 1878-1886. |
| [10] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
| [11] | 汪颖, 王尖, 冯子珊, 汪宝根, 吴新义, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴晓花. 瓠瓜果实品质性状因子分析和综合评价[J]. 浙江农业学报, 2024, 36(2): 334-343. |
| [12] | 罗莎莎, 王如月, 甄紫怡, 吴嘉龙, 徐业勇, 巴合提牙儿·克热木, 孙雅丽, 虎海防. 灌溉时间和灌溉量对杏李裂果率与果实品质的影响[J]. 浙江农业学报, 2024, 36(2): 365-372. |
| [13] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
| [14] | 赵凌吉, 廖香娇, 刘德春, 胡威, 匡柳青, 宋杰, 易明亮, 刘勇, 杨莉. 桃溪蜜柚果实贮藏期有机酸含量变化及相关基因表达分析[J]. 浙江农业学报, 2024, 36(11): 2510-2520. |
| [15] | 夏智杰, 张雷, 宋江华, 傅敏, 张立新. 安徽甜瓜和栝楼蔓枯病的病原菌鉴定及其有效药剂筛选[J]. 浙江农业学报, 2024, 36(1): 168-176. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||