浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 75-83.DOI: 10.3969/j.issn.1004-1524.20230059
王菲1,2(), 韩宇杰1,3, 房义1, 向海1,3, 常潇1,3, 钟荣珍1,*(
)
收稿日期:
2023-01-13
出版日期:
2024-01-25
发布日期:
2024-02-18
作者简介:
王菲(1990—),女,吉林长春人,硕士,研究实习员,主要从事食用菌基质与秸秆饲料化、基质化研究。E-mail:wangfei90wf@163.com
通讯作者:
* 钟荣珍,E-mail: zhongrongzhen@iga.ac.cn
基金资助:
WANG Fei1,2(), HAN Yujie1,3, FANG Yi1, XIANG Hai1,3, CHANG Xiao1,3, ZHONG Rongzhen1,*(
)
Received:
2023-01-13
Online:
2024-01-25
Published:
2024-02-18
摘要:
为评定培养时间对金针菇(Flammulina filiformis)栽培基质饲用营养价值的影响,在金针菇栽培的第0、9、14、18、22、29、36、51天收集金针菇栽培基质,测定基质中的营养成分含量与氨基酸组成,并采用尼龙袋法测定在瘤胃中进行体内消化0、2、4、8、12、24、48、72 h后样品的干物质消失率,及24 h和48 h的营养物质降解率。结果表明,与处理前相比,培养29 d的基质中,粗蛋白含量显著(P<0.05)提升至8.96%,必需氨基酸和总氨基酸含量分别显著提升至0.47%和1.01%,酸性洗涤木质素含量显著降至试验条件下的最低水平(7.72%)。培养51 d的基质中,半纤维素含量达31.37%,是各处理中最高的,且有较高的干物质消失率。综上,金针菇栽培基质可作为反刍动物的饲料资源,最适利用时间为培养29 d。
中图分类号:
王菲, 韩宇杰, 房义, 向海, 常潇, 钟荣珍. 不同培养时间金针菇栽培基质的饲用营养价值评定[J]. 浙江农业学报, 2024, 36(1): 75-83.
WANG Fei, HAN Yujie, FANG Yi, XIANG Hai, CHANG Xiao, ZHONG Rongzhen. Evaluation on nutritional value of Flammulina filiformis cultivation substrate with different cultivation time[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 75-83.
指标 Index | 各时间点(d)的指标值Index value at different time (d) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | |
含水量Moisture/% | 70.39 c | 70.02 c | 71.23 b | 71.47 b | 71.75 b | 73.44 a | 70.27 c | 54.81 d |
粗脂肪含量Ether extract content/% | 7.20 b | 7.78 a | 7.87 a | 7.67 a | 7.25 b | 6.71 c | 6.36 c | 4.84 d |
粗蛋白含量Crude protein content/% | 7.64 d | 8.45 bc | 8.51 b | 8.67 ab | 8.71 ab | 8.96 a | 8.19 c | 7.53 d |
半纤维素含量Hemicellulose content/% | 29.56 b | 26.29 d | 26.50 d | 27.80 c | 28.58 bc | 25.81 d | 28.03 c | 31.37 a |
纤维素含量Cellulose content/% | 22.22 c | 23.92 ab | 23.63 ab | 24.56 a | 22.78 bc | 22.37 c | 19.20 d | 9.22 e |
酸性洗涤木质素含量Acid detergent lignin content/% | 13.14 c | 14.23 b | 13.40 bc | 13.34 c | 9.04 e | 7.72 f | 11.31 d | 39.21 a |
中性洗涤纤维含量Neutral detergent fiber content/% | 67.33 b | 60.73 cd | 61.20 cd | 65.57 b | 62.31 c | 58.24 e | 60.14 d | 70.90 a |
酸性洗涤纤维含量Acid detergent fiber content/% | 37.77 a | 35.43 b | 34.24 b | 37.66 a | 33.54 b | 31.21 c | 31.22 c | 29.79 c |
粗灰分含量Crude ash content/% | 7.57 e | 7.79 de | 8.12 d | 8.61 c | 8.72 bc | 9.01 bc | 9.09 b | 9.90 a |
菌丝含量Mycelium content/% | 25.25 h | 31.51 g | 32.26 f | 33.01 e | 36.02 d | 41.52 c | 46.03 a | 45.15 b |
总能量Gross energy/(MJ·kg-1) | 17.45 ab | 17.47 ab | 17.54 a | 17.37 b | 17.18 c | 16.95 d | 17.14 c | 17.06 cd |
表1 不同培养时间金针菇栽培基质的营养成分
Table 1 Nutritional ingredients of F. filiformis cultivation substrate with different cultivation time
指标 Index | 各时间点(d)的指标值Index value at different time (d) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | |
含水量Moisture/% | 70.39 c | 70.02 c | 71.23 b | 71.47 b | 71.75 b | 73.44 a | 70.27 c | 54.81 d |
粗脂肪含量Ether extract content/% | 7.20 b | 7.78 a | 7.87 a | 7.67 a | 7.25 b | 6.71 c | 6.36 c | 4.84 d |
粗蛋白含量Crude protein content/% | 7.64 d | 8.45 bc | 8.51 b | 8.67 ab | 8.71 ab | 8.96 a | 8.19 c | 7.53 d |
半纤维素含量Hemicellulose content/% | 29.56 b | 26.29 d | 26.50 d | 27.80 c | 28.58 bc | 25.81 d | 28.03 c | 31.37 a |
纤维素含量Cellulose content/% | 22.22 c | 23.92 ab | 23.63 ab | 24.56 a | 22.78 bc | 22.37 c | 19.20 d | 9.22 e |
酸性洗涤木质素含量Acid detergent lignin content/% | 13.14 c | 14.23 b | 13.40 bc | 13.34 c | 9.04 e | 7.72 f | 11.31 d | 39.21 a |
中性洗涤纤维含量Neutral detergent fiber content/% | 67.33 b | 60.73 cd | 61.20 cd | 65.57 b | 62.31 c | 58.24 e | 60.14 d | 70.90 a |
酸性洗涤纤维含量Acid detergent fiber content/% | 37.77 a | 35.43 b | 34.24 b | 37.66 a | 33.54 b | 31.21 c | 31.22 c | 29.79 c |
粗灰分含量Crude ash content/% | 7.57 e | 7.79 de | 8.12 d | 8.61 c | 8.72 bc | 9.01 bc | 9.09 b | 9.90 a |
菌丝含量Mycelium content/% | 25.25 h | 31.51 g | 32.26 f | 33.01 e | 36.02 d | 41.52 c | 46.03 a | 45.15 b |
总能量Gross energy/(MJ·kg-1) | 17.45 ab | 17.47 ab | 17.54 a | 17.37 b | 17.18 c | 16.95 d | 17.14 c | 17.06 cd |
氨基酸 Amino acid | 不同时间(d)基质中的氨基酸含量 Amino acid content of cultivation substrate at different time(d) | 子实体的氨基酸含量 Amino acid content of fruiting body | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | ||
Thr | 0.03 c | 0.03 c | 0.04 bc | 0.04 bc | 0.04 bc | 0.05 b | 0.04 bc | 0.04 bc | 0.09 a |
Val | 0.05 b | 0.05 b | 0.06 b | 0.05 b | 0.05 b | 0.06 b | 0.05 b | 0.05 b | 0.09 a |
Met | 0.01 bc | <0.01 c | 0.01 bc | 0.01 bc | 0.01 bc | 0.02 b | 0.02 b | 0.01 bc | 0.35 a |
Ile | 0.03 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.05 b | 0.04 bc | 0.02 c | 0.07 a |
Leu | 0.08 b | 0.07 bc | 0.08 b | 0.07 bc | 0.06 bc | 0.08 b | 0.06 bc | 0.05 c | 0.11 a |
Phe | 0.04 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.05 b | 0.04 bc | 0.03 c | 0.09 a |
Lys | 0.03 d | 0.03 d | 0.04 cd | 0.05 bc | 0.05 bc | 0.06 b | 0.05 bc | 0.04 cd | 0.12 a |
Trp | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.06 a |
His | 0.01 c | 0.01 c | 0.02 bc | 0.03 b | 0.03 b | 0.03 b | 0.02 bc | 0.01 c | 0.04 a |
Arg | 0.05 de | 0.05 de | 0.06 cd | 0.07 bc | 0.07 bc | 0.09 a | 0.07 bc | 0.04 e | 0.08 ab |
Ser | 0.04 bc | 0.04 bc | 0.05 bc | 0.05 bc | 0.05 bc | 0.06 b | 0.05 bc | 0.03 c | 0.09 a |
Glu | 0.15 bc | 0.15 bc | 0.16 b | 0.16 b | 0.16 b | 0.16 b | 0.12 cd | 0.10 d | 0.37 a |
Gly | 0.05 c | 0.05 c | 0.06 bc | 0.06 bc | 0.06 bc | 0.07 b | 0.06 bc | 0.05 c | 0.09 a |
Ala | 0.04 c | 0.05 bc | 0.05 bc | 0.05 bc | 0.05 bc | 0.06 b | 0.05 bc | 0.04 c | 0.12 a |
Cys | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a |
Tyr | 0.02 b | 0.02 b | 0.03 b | 0.03 b | 0.03 b | 0.03 b | 0.03 b | 0.01 c | 0.07 a |
Asp | 0.08 c | 0.09 c | 0.09 c | 0.10 bc | 0.10 bc | 0.11 b | 0.09 c | 0.09 c | 0.18 a |
Pro | 0.05 b | 0.06 b | 0.06 b | 0.05 b | 0.05 b | 0.06 b | 0.05 b | 0.05 b | 0.07 a |
EAA | 0.35 c | 0.35 c | 0.40 bc | 0.41 bc | 0.41 bc | 0.47 b | 0.40 bc | 0.32 c | 1.11 a |
NEAA | 0.45 bc | 0.46 bc | 0.49 bc | 0.50 bc | 0.50 bc | 0.53 b | 0.45 bc | 0.41 c | 0.99 a |
总和Total | 0.80 c | 0.81 c | 0.89 bc | 0.90 bc | 0.91 bc | 1.01 b | 0.84 bc | 0.73 c | 2.10 a |
表2 不同培养时间金针菇栽培基质及子实体的氨基酸组成
Table 2 Amino acid composition of fruiting body and cultivation substrate of F. filiformis with different cultivation time %
氨基酸 Amino acid | 不同时间(d)基质中的氨基酸含量 Amino acid content of cultivation substrate at different time(d) | 子实体的氨基酸含量 Amino acid content of fruiting body | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | ||
Thr | 0.03 c | 0.03 c | 0.04 bc | 0.04 bc | 0.04 bc | 0.05 b | 0.04 bc | 0.04 bc | 0.09 a |
Val | 0.05 b | 0.05 b | 0.06 b | 0.05 b | 0.05 b | 0.06 b | 0.05 b | 0.05 b | 0.09 a |
Met | 0.01 bc | <0.01 c | 0.01 bc | 0.01 bc | 0.01 bc | 0.02 b | 0.02 b | 0.01 bc | 0.35 a |
Ile | 0.03 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.05 b | 0.04 bc | 0.02 c | 0.07 a |
Leu | 0.08 b | 0.07 bc | 0.08 b | 0.07 bc | 0.06 bc | 0.08 b | 0.06 bc | 0.05 c | 0.11 a |
Phe | 0.04 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.04 bc | 0.05 b | 0.04 bc | 0.03 c | 0.09 a |
Lys | 0.03 d | 0.03 d | 0.04 cd | 0.05 bc | 0.05 bc | 0.06 b | 0.05 bc | 0.04 cd | 0.12 a |
Trp | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.02 b | 0.06 a |
His | 0.01 c | 0.01 c | 0.02 bc | 0.03 b | 0.03 b | 0.03 b | 0.02 bc | 0.01 c | 0.04 a |
Arg | 0.05 de | 0.05 de | 0.06 cd | 0.07 bc | 0.07 bc | 0.09 a | 0.07 bc | 0.04 e | 0.08 ab |
Ser | 0.04 bc | 0.04 bc | 0.05 bc | 0.05 bc | 0.05 bc | 0.06 b | 0.05 bc | 0.03 c | 0.09 a |
Glu | 0.15 bc | 0.15 bc | 0.16 b | 0.16 b | 0.16 b | 0.16 b | 0.12 cd | 0.10 d | 0.37 a |
Gly | 0.05 c | 0.05 c | 0.06 bc | 0.06 bc | 0.06 bc | 0.07 b | 0.06 bc | 0.05 c | 0.09 a |
Ala | 0.04 c | 0.05 bc | 0.05 bc | 0.05 bc | 0.05 bc | 0.06 b | 0.05 bc | 0.04 c | 0.12 a |
Cys | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a | <0.01 a |
Tyr | 0.02 b | 0.02 b | 0.03 b | 0.03 b | 0.03 b | 0.03 b | 0.03 b | 0.01 c | 0.07 a |
Asp | 0.08 c | 0.09 c | 0.09 c | 0.10 bc | 0.10 bc | 0.11 b | 0.09 c | 0.09 c | 0.18 a |
Pro | 0.05 b | 0.06 b | 0.06 b | 0.05 b | 0.05 b | 0.06 b | 0.05 b | 0.05 b | 0.07 a |
EAA | 0.35 c | 0.35 c | 0.40 bc | 0.41 bc | 0.41 bc | 0.47 b | 0.40 bc | 0.32 c | 1.11 a |
NEAA | 0.45 bc | 0.46 bc | 0.49 bc | 0.50 bc | 0.50 bc | 0.53 b | 0.45 bc | 0.41 c | 0.99 a |
总和Total | 0.80 c | 0.81 c | 0.89 bc | 0.90 bc | 0.91 bc | 1.01 b | 0.84 bc | 0.73 c | 2.10 a |
体内消化时间 Incubation time/h | 不同时间(d)的干物质消失率Dry matter degradability at different time (d) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | |
0 | 9.33 cH | 10.81 aH | 9.36 cH | 9.51 bcG | 9.81 abcF | 10.59 abF | 9.54 bcG | 9.75 abcH |
2 | 19.30 dG | 22.99 bcG | 22.55 cG | 23.13 bcF | 23.01 bcE | 24.13 abE | 25.04 aF | 24.63 aG |
4 | 26.38 abF | 26.54 abF | 25.93 bF | 25.37 bF | 25.70 bD | 25.22 bE | 28.17 aE | 28.42 aF |
8 | 29.23 bcE | 29.99 bcE | 31.08 abE | 30.21 bcE | 24.53 dDE | 25.22 dE | 28.17 cE | 32.81 aE |
12 | 32.47 bD | 32.55 bD | 34.70 bD | 34.34 bD | 33.53 bC | 35.09 bD | 34.55 bD | 38.57 aD |
24 | 36.00 cdC | 36.44 cdC | 39.78 bC | 40.49 bC | 34.70 dC | 40.71 bC | 38.73 bcC | 44.01 aC |
48 | 51.29 aB | 51.76 aB | 52.29 aB | 47.72 bcB | 46.25 cB | 52.33 aB | 49.79 abB | 50.05 abB |
72 | 61.67 aA | 62.55 aA | 62.12 aA | 61.82 aA | 61.62 aA | 61.93 aA | 62.22 aA | 61.09 aA |
表3 不同培养时间金针菇栽培基质的干物质消失率
Table 3 Dry matter degradability of F. filiformis cultivation substrate with different cultivation time
体内消化时间 Incubation time/h | 不同时间(d)的干物质消失率Dry matter degradability at different time (d) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | |
0 | 9.33 cH | 10.81 aH | 9.36 cH | 9.51 bcG | 9.81 abcF | 10.59 abF | 9.54 bcG | 9.75 abcH |
2 | 19.30 dG | 22.99 bcG | 22.55 cG | 23.13 bcF | 23.01 bcE | 24.13 abE | 25.04 aF | 24.63 aG |
4 | 26.38 abF | 26.54 abF | 25.93 bF | 25.37 bF | 25.70 bD | 25.22 bE | 28.17 aE | 28.42 aF |
8 | 29.23 bcE | 29.99 bcE | 31.08 abE | 30.21 bcE | 24.53 dDE | 25.22 dE | 28.17 cE | 32.81 aE |
12 | 32.47 bD | 32.55 bD | 34.70 bD | 34.34 bD | 33.53 bC | 35.09 bD | 34.55 bD | 38.57 aD |
24 | 36.00 cdC | 36.44 cdC | 39.78 bC | 40.49 bC | 34.70 dC | 40.71 bC | 38.73 bcC | 44.01 aC |
48 | 51.29 aB | 51.76 aB | 52.29 aB | 47.72 bcB | 46.25 cB | 52.33 aB | 49.79 abB | 50.05 abB |
72 | 61.67 aA | 62.55 aA | 62.12 aA | 61.82 aA | 61.62 aA | 61.93 aA | 62.22 aA | 61.09 aA |
指标 Index | 体内消化时间 Incubation time/h | 不同时间点(d)的指标值Index values at different time (d) | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | ||
NDF降解率 | 24 | 24.87 d | 26.73 c | 27.76 c | 25.36 d | 22.96 e | 21.73 f | 35.18 a | 33.81 b |
Degradation rate of NDF | 48 | 39.23 c | 39.47 c | 43.10 ab | 37.58 d | 28.19 e | 25.48 f | 43.58 a | 42.05 b |
ADF降解率 | 24 | 98.27 a | 98.54 a | 98.41 a | 98.51 a | 98.47 a | 98.33 a | 98.59 a | 98.63 a |
Degradation rate of ADF | 48 | 98.64 a | 98.70 a | 98.78 a | 98.76 a | 98.47 a | 98.40 a | 98.77 a | 98.77 a |
ADL降解率 | 24 | 22.28 e | 25.83 c | 23.46 de | 22.99 de | 23.26 de | 24.17 d | 45.00 a | 37.95 b |
Degradation rate of ADL | 48 | 28.33 g | 37.02 e | 35.24 f | 43.97 c | 40.98 d | 44.63 bc | 45.27 b | 54.26 a |
半纤维素降解率 | 24 | 35.92 b | 26.20 e | 35.00 b | 29.10 d | 20.76 f | 31.11 c | 40.37 a | 35.41 b |
Degradation rate of hemicellulose | 48 | 46.30 bc | 45.08 c | 47.30 ab | 40.10 d | 32.90 f | 34.90 e | 48.15 a | 45.19 c |
纤维素降解率 | 24 | 63.89 a | 61.72 b | 61.08 b | 61.62 b | 60.66 b | 49.51 c | 31.16 d | 19.74 e |
Degradation rate of cellulose | 48 | 65.66 b | 62.60 c | 56.81 d | 69.01 a | 62.57 c | 51.83 e | 44.52 f | 21.95 g |
粗蛋白降解率 | 24 | 88.12 a | 80.82 d | 82.70 c | 80.24 e | 77.44 g | 78.86 f | 81.18 d | 83.63 b |
Degradation rate of crude protein | 48 | 95.12 a | 92.80 b | 92.29 bc | 90.71 d | 89.41 e | 89.62 e | 89.08 e | 92.10 c |
表4 不同培养时间金针菇栽培基质的营养物质降解率
Table 4 Degradation rate of nutrional ingredients of F. filiformis cultivation substrate with different cultivation time
指标 Index | 体内消化时间 Incubation time/h | 不同时间点(d)的指标值Index values at different time (d) | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 9 | 14 | 18 | 22 | 29 | 36 | 51 | ||
NDF降解率 | 24 | 24.87 d | 26.73 c | 27.76 c | 25.36 d | 22.96 e | 21.73 f | 35.18 a | 33.81 b |
Degradation rate of NDF | 48 | 39.23 c | 39.47 c | 43.10 ab | 37.58 d | 28.19 e | 25.48 f | 43.58 a | 42.05 b |
ADF降解率 | 24 | 98.27 a | 98.54 a | 98.41 a | 98.51 a | 98.47 a | 98.33 a | 98.59 a | 98.63 a |
Degradation rate of ADF | 48 | 98.64 a | 98.70 a | 98.78 a | 98.76 a | 98.47 a | 98.40 a | 98.77 a | 98.77 a |
ADL降解率 | 24 | 22.28 e | 25.83 c | 23.46 de | 22.99 de | 23.26 de | 24.17 d | 45.00 a | 37.95 b |
Degradation rate of ADL | 48 | 28.33 g | 37.02 e | 35.24 f | 43.97 c | 40.98 d | 44.63 bc | 45.27 b | 54.26 a |
半纤维素降解率 | 24 | 35.92 b | 26.20 e | 35.00 b | 29.10 d | 20.76 f | 31.11 c | 40.37 a | 35.41 b |
Degradation rate of hemicellulose | 48 | 46.30 bc | 45.08 c | 47.30 ab | 40.10 d | 32.90 f | 34.90 e | 48.15 a | 45.19 c |
纤维素降解率 | 24 | 63.89 a | 61.72 b | 61.08 b | 61.62 b | 60.66 b | 49.51 c | 31.16 d | 19.74 e |
Degradation rate of cellulose | 48 | 65.66 b | 62.60 c | 56.81 d | 69.01 a | 62.57 c | 51.83 e | 44.52 f | 21.95 g |
粗蛋白降解率 | 24 | 88.12 a | 80.82 d | 82.70 c | 80.24 e | 77.44 g | 78.86 f | 81.18 d | 83.63 b |
Degradation rate of crude protein | 48 | 95.12 a | 92.80 b | 92.29 bc | 90.71 d | 89.41 e | 89.62 e | 89.08 e | 92.10 c |
[1] | 中国农业年鉴编辑委员会. 中国农业年鉴: 2020[M]. 北京: 中国农业出版社, 2021: 164. |
[2] | CHEN Z Q, WU Y Q, WEN Q X, et al. Insight into the effects of sulfamethoxazole and norfloxacin on nitrogen transformation functional genes during swine manure composting[J]. Bioresource Technology, 2020, 297: 122463. |
[3] | ZHAO F K, CHEN L D, YEN H, et al. Multimedia mass balance approach to characterizing the transport potential of antibiotics in soil-plant systems following manure application[J]. Journal of Hazardous Materials, 2020, 393: 122363. |
[4] | ZHANG L B, LIU Y Q, HAO L. Contributions of open crop straw burning emissions to PM2.5 concentrations in China[J]. Environmental Research Letters, 2016, 11(1): 014014. |
[5] | VAN KUIJK S J A, SONNENBERG A S M, BAARS J J P, et al. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes[J]. Biomass and Bioenergy, 2017, 105: 381-391. |
[6] | NIU D Z, ZUO S S, JIANG D, et al. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro[J]. Animal Feed Science and Technology, 2018, 237: 46-54. |
[7] | SHRIVASTAVA B, THAKUR S, KHASA Y P, et al. White-rot fungal conversion of wheat straw to energy rich cattle feed[J]. Biodegradation, 2011, 22(4): 823-831. |
[8] | 中国食用菌协会. 2021年度全国食用菌统计调查结果分析[J]. 中国食用菌, 2023, 42(1): 118-127. |
China Edible Fungi Association. Analysis on the results of national edible fungi statistical survey in 2021[J]. Edible Fungi of China, 2023, 42(1): 118-127. (in Chinese) | |
[9] | 李玉. 中国食用菌产业发展现状、机遇和挑战: 走中国特色菇业发展之路, 实现食用菌产业强国之梦[J]. 菌物研究, 2018, 16(3): 125-131. |
LI Y. The status, opportunities and challenges of edible fungi industry in China: develop with Chinese characteristics, realize the dream of powerful mushroom industrial country[J]. Journal of Fungal Research, 2018, 16(3): 125-131. (in Chinese with English abstract) | |
[10] | 李长田, 谭琦, 边银丙, 等. 中国食用菌工厂化的现状与展望[J]. 菌物研究, 2019, 17(1): 1-10. |
LI C T, TAN Q, BIAN Y B, et al. The status and prospection of edible mushroom industry in China[J]. Journal of Fungal Research, 2019, 17(1): 1-10. (in Chinese with English abstract) | |
[11] | 崔嘉, 郭佳伟, 忻龙祚, 等. 金针菇菌糠饲用价值评价[J]. 饲料研究, 2017(9): 37-41. |
CUI J, GUO J W, XIN L Z, et al. Evaluation of feeding value of Flammulina velutipes chaff[J]. Feed Research, 2017(9): 37-41. (in Chinese) | |
[12] | ZHU H J, SHENG K, YAN E F, et al. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate[J]. International Journal of Biological Macromolecules, 2012, 50(3): 840-843. |
[13] | 温永亮, 张变英. 金针菇菌糠在动物生产中的应用[J]. 饲料博览, 2018(6): 4-7. |
WEN Y L, ZHANG B Y. Application of mushroom bran in animal production[J]. Feed Review, 2018(6): 4-7. (in Chinese with English abstract) | |
[14] | 李艳梅, 贺龙强, 姚巧玲. 金针菇菌糠的营养价值及在动物生产中的应用[J]. 饲料研究, 2021, 44(11): 152-154. |
LI Y M, HE L Q, YAO Q L. Nutritional value of Flammulina velutipes bran and its application in animal production[J]. Feed Research, 2021, 44(11): 152-154. (in Chinese with English abstract) | |
[15] | 赵新海, 钟丽娟. 金针菇菌糠饲料化研究与应用进展[J]. 中国饲料, 2021(3): 112-116. |
ZHAO X H, ZHONG L J. Advances in research and application of Flammulina velutipes bran foraging[J]. China Feed, 2021(3): 112-116. (in Chinese with English abstract) | |
[16] | ZHANG Y, LIU W, XU C P, et al. Characterization and antiproliferative effect of novel acid polysaccharides from the spent substrate of shiitake culinary-medicinal mushroom Lentinus edodes(agaricomycetes) cultivation[J]. International Journal of Medicinal Mushrooms, 2017, 19(5): 395-403. |
[17] | ALBORES S, PIANZZOLA M J, SOUBES M, et al. Biodegradation of agroindustrial wastes by Pleurotus spp for its use as ruminant feed[J]. Electronic Journal of Biotechnology, 2006, 9(3). |
[18] | VAN KUIJK S J A, SONNENBERG A S M, BAARS J J P, et al. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review[J]. Biotechnology Advances, 2015, 33(1): 191-202. |
[19] | ADAMOVIĆ M, GRUBIĆ G, MILENKOVIĆ I, et al. The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding[J]. Animal Feed Science and Technology, 1998, 71(3/4): 357-362. |
[20] | RANGUBHET K T, MANGWE M C, MLAMBO V, et al. Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets[J]. Animal Feed Science and Technology, 2017, 234: 78-87. |
[21] | 王宇, 李晗, 高景, 等. 金针菇菌糠营养价值评定及其对肉牛生产性能的影响[J]. 华中农业大学学报, 2020, 39(5): 115-122. |
WANG Y, LI H, GAO J, et al. Nutrients assessments of Flammulina velutipes substrate and its effects on production performance of beef cattle[J]. Journal of Huazhong Agricultural University, 2020, 39(5): 115-122. (in Chinese with English abstract) | |
[22] | 钟港, 陈东, 田科雄, 等. 发酵菌糠替代白酒糟对育肥牛瘤胃发酵参数、微生物菌群结构和功能的影响[J]. 动物营养学报, 2022, 34(1): 381-394. |
ZHONG G, CHEN D, TIAN K X, et al. Effects of replacing distiller’s grains with fermented spent mushroom substrate on rumen fermentation parameters, microbial community structure and function of fattening cattle[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 381-394. (in Chinese with English abstract) | |
[23] | 王霞, 张玉洁, 李讨讨, 等. 金针菇菌渣对羔羊生长性能、体尺指标、采食行为及反刍行为的影响[J]. 动物营养学报, 2020, 32(8): 3944-3951. |
WANG X, ZHANG Y J, LI T T, et al. Influences of Flammulina velutipes residue on growth performance, body size indexes, feed behavior and ruminant behavior of lambs[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3944-3951. (in Chinese with English abstract) | |
[24] | 黄丽琴, 李松桥, 袁振中, 等. 全株水稻与平菇菌糠共发酵料对浏阳黑山羊屠宰性能、肉品质和器官指数的影响[J]. 草业学报, 2021, 30(6): 133-140. |
HUANG L Q, LI S Q, YUAN Z Z, et al. Effects of feeding co-fermented whole plant rice and spent mushroom(Pleurotus ostreatus) substrate on slaughter performance, meat quality and organ size indexes of Liuyang black goats[J]. Acta Prataculturae Sinica, 2021, 30(6): 133-140. (in Chinese with English abstract) | |
[25] | 杨胜. 饲料分析及饲料质量检测技术[M]. 北京: 中国农业大学出版社, 1993. |
[26] | GILKA J, JELÍNEK P, JANKOVÁ B, et al. Amino acid composition of meat, fatty acid composition of fat and content of some chemical elements in the tissues of male lambs fed monensin or lasalocid[J]. Meat Science, 1989, 25(4): 273-280. |
[27] | 曾辉, 曾志恒, 舒黎黎, 等. 采用几丁质和麦角固醇测定双孢蘑菇W192栽培种相对菌丝量的方法研究[J]. 食用菌学报, 2018, 25(3): 36-41. |
ZENG H, ZENG Z H, SHU L L, et al. Determination of relative mycelial mass of Agaricus bisporus W192 based on chitin and ergosterol content[J]. Acta Edulis Fungi, 2018, 25(3): 36-41. (in Chinese with English abstract) | |
[28] | MENKE K H, RAAB L, SALEWSKI A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro[J]. The Journal of Agricultural Science, 1979, 93(1): 217-222. |
[29] | 陈艳, 张晓明, 王之盛, 等. 6种肉牛常用粗饲料瘤胃降解特性和瘤胃非降解蛋白质的小肠消化率[J]. 动物营养学报, 2014, 26(8): 2145-2154. |
CHEN Y, ZHANG X M, WANG Z S, et al. Ruminal degradation characteristics and small intestinal digestibility of rumen undegraded protein of six kinds of commonly used roughages for steers[J]. Chinese Journal of Animal Nutrition, 2014, 26(8): 2145-2154. (in Chinese with English abstract) | |
[30] | VAN KUIJK S J A, DEL RÍO J C, RENCORET J, et al. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability[J]. Journal of Animal Science and Biotechnology, 2016, 7: 55. |
[31] | VAN KUIJK S J A, SONNENBERG A S M, BAARS J J P, et al. Fungal treatment of lignocellulosic biomass: importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability[J]. Animal Feed Science and Technology, 2015, 209: 40-50. |
[32] | LOWRY J B, CONLAN L L, SCHLINK A C, et al. Acid detergent dispersible lignin in tropical grasses[J]. Journal of the Science of Food and Agriculture, 1994, 65(1): 41-49. |
[33] | JUNG H J G. Analysis of forage fiber and cell walls in ruminant nutrition[J]. The Journal of Nutrition, 1997, 127(5): 810S-813 S. |
[34] | ZHAO J W, LIN W, MA X H, et al. The protein kinase Hal5p is the high-copy suppressor of lithium-sensitive mutations of genes involved in the sporulation and meiosis as well as the ergosterol biosynthesis in Saccharomyces cerevisiae[J]. Genomics, 2010, 95(5): 290-298. |
[35] | 高昌鹏, 周玉香, 杨万宗, 等. 荞麦秸秆饲粮中添加过瘤胃赖氨酸和蛋氨酸对滩羊生长性能和消化代谢的影响[J]. 动物营养学报, 2020, 32(1): 310-320. |
GAO C P, ZHOU Y X, YANG W Z, et al. Effects of buckwheat straw diet supplemented with rumen protected lysine and methionine on growth performance and digestion and metabolism of Tan sheep[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 310-320. (in Chinese with English abstract) | |
[36] | 李雪玲, 张乃锋, 马涛, 等. 开食料中赖氨酸、蛋氨酸、苏氨酸和色氨酸对断奶羔羊生长性能、氮利用率和血清指标的影响[J]. 畜牧兽医学报, 2017, 48(4): 678-689. |
LI X L, ZHANG N F, MA T, et al. Effects of lysine, methionine, threonine and tryptophan in starter on growth performance, nitrogen utilization and serum parameters in weaned lambs[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(4): 678-689. (in Chinese with English abstract) | |
[37] | APPUHAMY J A, BELL A L, NAYANANJALIE W A, et al. Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices[J]. The Journal of Nutrition, 2011, 141(6): 1209-1215. |
[38] | SCHWAB C G, BRODERICK G A. A 100-year review: protein and amino acid nutrition in dairy cows[J]. Journal of Dairy Science, 2017, 100(12): 10094-10112. |
[39] | CASLER M D. Breeding forage crops for increased nutritional value[M]// Advances in agronomy. Amsterdam: Elsevier, 2001: 51-107. |
[40] | 赵雪莉. 白腐真菌发酵对玉米秸秆纤维降解和绵羊饲喂价值的影响[D]. 重庆: 西南大学, 2020. |
ZHAO X L. The effects of white rot fungus pretreatment on corn straw fiber degradation and feeding value of sheep[D]. Chongqing: Southwest University, 2020. (in Chinese with English abstract) |
[1] | 唐金玉, 覃宝利, 叶建勇, 戴杨鑫. 放养模式对日本沼虾生长性状与肌肉营养成分的影响[J]. 浙江农业学报, 2024, 36(2): 254-263. |
[2] | 冯连荣, 张妍, 赵鑫闻, 宋立志, 梁德军. 一株野生金针菇菌种的分离、鉴定与生物学特性研究[J]. 浙江农业学报, 2023, 35(5): 1088-1096. |
[3] | 于士军, 何玲艳, 程铭, 徐鑫, 徐馨怡, 柴新义, 王维坤. 硒对蝉花孢梗束营养和功能成分的影响[J]. 浙江农业学报, 2021, 33(12): 2245-2253. |
[4] | 马义胜, 洪春来, 王卫平, 姚燕来, 朱凤香, 陈晓旸, 薛智勇. 铁皮石斛栽培废料和菇渣配制基质对草莓生长、产量及品质的影响[J]. 浙江农业学报, 2018, 30(7): 1175-1181. |
[5] | 蔡子豪,杜晶,孙彬,何培民*,马家海*. 南黄海绿潮藻的分子鉴定及营养价值初探[J]. 浙江农业学报, 2016, 28(7): 1206-. |
[6] | 金群力, 范丽军, 冯伟林, 宋婷婷, 沈颖越, 田芳芳, 蔡为明. 不同栽培原料配方及装瓶容重对金针菇生长发育的影响[J]. 浙江农业学报, 2016, 28(11): 1874-1880. |
[7] | 冯伟林;蔡为明*;金群力;范丽军;沈颖越;宋婷婷;田芳芳. 金针菇生长发育期间相关胞外酶的活性变化研究[J]. , 2012, 24(3): 0-433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||