浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 67-74.DOI: 10.3969/j.issn.1004-1524.20230190
收稿日期:
2023-02-17
出版日期:
2024-01-25
发布日期:
2024-02-18
作者简介:
黄知楚(1999—),女,江西赣州人,硕士研究生,研究方向为蜜蜂科学。E-mail:zhichu@zju.edu.cn
通讯作者:
* 郑火青,E-mail:hqzheng@zju.edu.cn
基金资助:
HUANG Zhichu(), ZHOU Nihong, LIU Yao, ZHENG Huoqing(
)
Received:
2023-02-17
Online:
2024-01-25
Published:
2024-02-18
摘要:
为筛选出具有抗蜜蜂病毒作用效果的天然产物,给感染以色列急性麻痹病毒(IAPV)的蜜蜂分别饲喂含有9种天然产物(百里酚、青蒿素、梓醇、胡椒碱、可可碱、苦杏仁苷、咖啡酸、橙皮苷和ρ-香豆酸)各两种浓度的蔗糖溶液,采用RT-PCR法检测9种天然产物饲喂7 d后对蜜蜂体内病毒的抑制效果,同时测定可能有效的天然产物对蜜蜂免疫相关基因表达的影响。结果表明:外源接种IAPV病毒实验条件下,10 μmol·L-1百里酚饲喂7 d后IAPV病毒载量比对照组显著降低;未外源接种病毒的条件下,10 μmol·L-1百里酚饲喂7 d后蜜蜂携带的IAPV和蜜蜂囊状幼虫病毒(SBV)病毒载量比对照组显著降低,卵黄原蛋白基因在转录水平显著提高。经过筛选发现,蜜蜂饲喂10 μmol·L-1百里酚7 d后能达到较好的抗病毒效果,百里酚可成为抗蜜蜂病毒药物研发的潜力成分。
中图分类号:
黄知楚, 周倪红, 刘瑶, 郑火青. 抗蜜蜂病毒天然产物的初步筛选研究[J]. 浙江农业学报, 2024, 36(1): 67-74.
HUANG Zhichu, ZHOU Nihong, LIU Yao, ZHENG Huoqing. Natural products screening with resistance to honeybee viruses[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 67-74.
物质名称 Product | 化学物质分类 Classification of chemical substances | 参考文献 Reference | 试验浓度 Experimental concentration/ (μmol·L-1) | 购买货号 Item number |
---|---|---|---|---|
百里酚Thymol | 萜类Terpenes | [7,9-11] | 10,100 | T6316 |
青蒿素Artemisinin | 萜类Terpenes | [12] | 10,100 | A800831 |
梓醇Catalpol | 萜类(环烯醚萜苷)Terpenes (Iridoid glycoside) | [7] | 500,1 000 | C805146 |
胡椒碱Piperine | 生物碱Alkaloid | [13] | 10,100 | P886278 |
可可碱Theobromine | 生物碱Alkaloid | [14] | 50,500 | T819117 |
苦杏仁苷Amygdalin | 生氰糖苷Cyanogenic glycoside | [7,15] | 10,100 | A800517 |
咖啡酸Caffeic acid | 苯丙酸类Phenylpropanoids | [16] | 5,50 | C804975 |
橙皮苷Hesperidin | 黄酮类Flavonoids | [7] | 50,500 | H810939 |
ρ-香豆酸ρ-Coumaric acid | 苯丙酸类Phenylpropanoids | [8,16] | 50,500 | C804995 |
表1 天然产物来源与试验浓度
Table 1 Natural product sources and tested concentrations
物质名称 Product | 化学物质分类 Classification of chemical substances | 参考文献 Reference | 试验浓度 Experimental concentration/ (μmol·L-1) | 购买货号 Item number |
---|---|---|---|---|
百里酚Thymol | 萜类Terpenes | [7,9-11] | 10,100 | T6316 |
青蒿素Artemisinin | 萜类Terpenes | [12] | 10,100 | A800831 |
梓醇Catalpol | 萜类(环烯醚萜苷)Terpenes (Iridoid glycoside) | [7] | 500,1 000 | C805146 |
胡椒碱Piperine | 生物碱Alkaloid | [13] | 10,100 | P886278 |
可可碱Theobromine | 生物碱Alkaloid | [14] | 50,500 | T819117 |
苦杏仁苷Amygdalin | 生氰糖苷Cyanogenic glycoside | [7,15] | 10,100 | A800517 |
咖啡酸Caffeic acid | 苯丙酸类Phenylpropanoids | [16] | 5,50 | C804975 |
橙皮苷Hesperidin | 黄酮类Flavonoids | [7] | 50,500 | H810939 |
ρ-香豆酸ρ-Coumaric acid | 苯丙酸类Phenylpropanoids | [8,16] | 50,500 | C804995 |
病毒名称Virus | 引物Primer | 序列Sequence(5'-3') | 参考文献Reference |
---|---|---|---|
急性蜜蜂麻痹病毒Acute bee paralysis virus | ABPV-F | GAAACGGCTACCACATCTAAGGA | [ |
ABPV-R | TGACATAGGGAGGTAGTGACAAGAAA | ||
黑蜂王台病毒Black queen cell virus | BQCV-F | GGAGTCGCAGAGTTCCAAAT | [ |
BQCV-R | GTGGGAGGTGAAGTGGCTAT | ||
慢性蜜蜂麻痹病毒Chronic bee paralysis virus | CBPV-F | GGCACCTCAAGATCGTCCAAGTTAC | [ |
CBPV-R | ACGGAGATGGTGACCTGGTATGG | ||
残翅病毒Deformed wing virus | DWV-F | ACCTGGAACATCAGGTAAGCG | [ |
DWV-R | TTGAATCTCGAGTTCGGGACG | ||
以色列急性麻痹病毒Israeli acute paralysis virus | IAPV-F | TCGCTGAAGGCATGTATTTC | [ |
IAPV-R | ATTACCACTGCTCCGACACA | ||
囊状幼虫病毒Sacbrood virus | SBV-F | AACGTCCACTACACCGAAATGTC | [ |
SBV-R | ACACTGCGCGTCTAACATTCC | ||
克什米尔蜜蜂病毒Kashmir bee virus | KBV-F | CCGGACATTTGACTGGATTC | [ |
KBV-R | TCCTTGGATTCACCAAGAGC |
表2 病毒绝对定量引物序列
Table 2 The primer sequence of viruses for absolute quantitative PCR
病毒名称Virus | 引物Primer | 序列Sequence(5'-3') | 参考文献Reference |
---|---|---|---|
急性蜜蜂麻痹病毒Acute bee paralysis virus | ABPV-F | GAAACGGCTACCACATCTAAGGA | [ |
ABPV-R | TGACATAGGGAGGTAGTGACAAGAAA | ||
黑蜂王台病毒Black queen cell virus | BQCV-F | GGAGTCGCAGAGTTCCAAAT | [ |
BQCV-R | GTGGGAGGTGAAGTGGCTAT | ||
慢性蜜蜂麻痹病毒Chronic bee paralysis virus | CBPV-F | GGCACCTCAAGATCGTCCAAGTTAC | [ |
CBPV-R | ACGGAGATGGTGACCTGGTATGG | ||
残翅病毒Deformed wing virus | DWV-F | ACCTGGAACATCAGGTAAGCG | [ |
DWV-R | TTGAATCTCGAGTTCGGGACG | ||
以色列急性麻痹病毒Israeli acute paralysis virus | IAPV-F | TCGCTGAAGGCATGTATTTC | [ |
IAPV-R | ATTACCACTGCTCCGACACA | ||
囊状幼虫病毒Sacbrood virus | SBV-F | AACGTCCACTACACCGAAATGTC | [ |
SBV-R | ACACTGCGCGTCTAACATTCC | ||
克什米尔蜜蜂病毒Kashmir bee virus | KBV-F | CCGGACATTTGACTGGATTC | [ |
KBV-R | TCCTTGGATTCACCAAGAGC |
基因名称Gene name | 引物Primer | 序列Sequence(5'-3') | 参考文献Reference |
---|---|---|---|
β-actin | β-actin-F | TTGTATGCCAACACTGTCCTTT | [ |
β-actin-R | TGGCGCGATGATCTTAATTT | ||
vitellogenin | Vg-F | TCGACAACTGCGATCAAAGGA | [ |
Vg-R | TGGTCACCGACGATTGGATG | ||
hymenoptaecin | hymenoptaecin-F | ATATCCCGACTCGTTTCCGA | [ |
hymenoptaecin-R | TCCCAAACTCGAATCCTGCA | ||
abaecin | abaecin-F | AGATCTGCACACTCGAGGTCTG | [ |
abaecin-R | TCGGATTGAATGGTCCCTGA | ||
defensin | defensin-F | TGTCGGCCTTCTCTTCATGG | [ |
defensin-R | TGACCTCCAGCTTTACCCAAA | ||
dicer | dicer-F | TGCAGAATGAATCAAAGAACCGA | [ |
dicer-R | TGAGCCAATACAAAGCTGGA | ||
protein lethal (2) essential for life-like | pl2-F | ATTTGGATCGTCCACATCGT | [ |
pl2-R | CGGACAATGGCCGATAGTAG | ||
heat shock 70-ku protein cognate | hsc70-F | CTTGCGTGGGTGTTTTCCAG | [ |
hsc70-R | TATCATCGAAGCGACGACCG | ||
heat shock protein 90 | hsp90-F | CATGGCTAATGCCGGAGAGG | [ |
hsp90-R | CTGCACCAGCTTGAAGAGC |
表3 免疫基因相对定量引物序列
Table 3 The primer sequence of immune genes for relative quantitative PCR
基因名称Gene name | 引物Primer | 序列Sequence(5'-3') | 参考文献Reference |
---|---|---|---|
β-actin | β-actin-F | TTGTATGCCAACACTGTCCTTT | [ |
β-actin-R | TGGCGCGATGATCTTAATTT | ||
vitellogenin | Vg-F | TCGACAACTGCGATCAAAGGA | [ |
Vg-R | TGGTCACCGACGATTGGATG | ||
hymenoptaecin | hymenoptaecin-F | ATATCCCGACTCGTTTCCGA | [ |
hymenoptaecin-R | TCCCAAACTCGAATCCTGCA | ||
abaecin | abaecin-F | AGATCTGCACACTCGAGGTCTG | [ |
abaecin-R | TCGGATTGAATGGTCCCTGA | ||
defensin | defensin-F | TGTCGGCCTTCTCTTCATGG | [ |
defensin-R | TGACCTCCAGCTTTACCCAAA | ||
dicer | dicer-F | TGCAGAATGAATCAAAGAACCGA | [ |
dicer-R | TGAGCCAATACAAAGCTGGA | ||
protein lethal (2) essential for life-like | pl2-F | ATTTGGATCGTCCACATCGT | [ |
pl2-R | CGGACAATGGCCGATAGTAG | ||
heat shock 70-ku protein cognate | hsc70-F | CTTGCGTGGGTGTTTTCCAG | [ |
hsc70-R | TATCATCGAAGCGACGACCG | ||
heat shock protein 90 | hsp90-F | CATGGCTAATGCCGGAGAGG | [ |
hsp90-R | CTGCACCAGCTTGAAGAGC |
图1 九种天然产物对定量接种蜜蜂病毒IAPV的作用效果 *表示差异显著(P<0.05)。下同。
Fig.1 Effects of 9 natural products on exogenous honeybee virus IAPV * indicates the significant difference (P<0.05).The same as below.
图2 实验蜂群携带病毒情况 A,常见病毒检测;B,实验蜂群蜜蜂笼养7 d后,病毒量变化。**表示差异极显著(P<0.01)。下同。
Fig.2 Investigation of prevalence viruses in experimental colonies A, Detection of common viruses; B. Changes of the epidemic viruses in experimental colonies within 7 days. ** indicates the significant difference (P<0.01). The same as below.
图3 四种天然产物对蜜蜂多种病毒的作用效果 A,对IAPV作用效果;B,对BQCV作用效果;C,对SBV作用效果。
Fig.3 Effect of 4 natural products on various viruses of honeybee A, Effect on IAPV; B, Effect on BQCV; C, Effect on SBV.
[1] | KLEIN A M, VAISSIÈRE B E, CANE J H, et al. Importance of pollinators in changing landscapes for world crops[J]. Proceedings Biological Sciences, 2007, 274(1608): 303-313. |
[2] | GALLAI N, SALLES J M, SETTELE J, et al. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline[J]. Ecological Economics, 2009, 68(3): 810-821. |
[3] | GROZINGER C M, FLENNIKEN M L. Bee viruses: ecology, pathogenicity, and impacts[J]. Annual Review of Entomology, 2019, 64: 205-226. |
[4] | CASTELLI L, GENCHI GARCÍA M L, DALMON A, et al. Intra-colonial viral infections in western honey bees (Apis mellifera)[J]. Microorganisms, 2021, 9(5): 1087. |
[5] | BHATIA S, BARAL S S, VEGA MELENDEZ C, et al. Comparing survival of Israeli acute paralysis virus infection among stocks of U.S. honey bees[J]. Insects, 2021, 12(1): 60. |
[6] | CHEN Y P, PETTIS J S, CORONA M, et al. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health[J]. PLoS Pathogens, 2014, 10(7): e1004261. |
[7] | PALMER-YOUNG E C, TOZKAR C Ö, SCHWARZ R S, et al. Nectar and pollen phytochemicals stimulate honey bee (Hymenoptera: Apidae) immunity to viral infection[J]. Journal of Economic Entomology, 2017, 110(5): 1959-1972. |
[8] | HSIEH E M, BERENBAUM M R, DOLEZAL A G. Ameliorative effects of phytochemical ingestion on viral infection in honey bees[J]. Insects, 2020, 11(10): 698. |
[9] | SUN L P, ZHANG X Q, XU S F, et al. Antiviral activities of a medicinal plant extract against sacbrood virus in honeybees[J]. Virology Journal, 2021, 18(1): 83. |
[10] | PAREKH F, DAUGHENBAUGH K F, FLENNIKEN M L. Chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees (Apis mellifera)[J]. Frontiers in Immunology, 2021, 12: 747848. |
[11] | GLAVINIC U, BLAGOJEVIC J, RISTANIC M, et al. Use of thymol in Nosema ceranae control and health improvement of infected honey bees[J]. Insects, 2022, 13(7): 574. |
[12] | KIM J H, PARK J K, LEE J K. Evaluation of antimicrosporidian activity of plant extracts on Nosema ceranae[J]. Journal of Apicultural Science, 2016, 60(2): 167-178. |
[13] | SCHULZ M, ĹOŚ A, GRZYBEK M, et al. Piperine as a new natural supplement with beneficial effects on the life-span and defence system of honeybees[J]. The Journal of Agricultural Science, 2019, 157(2): 140-149. |
[14] | LIAO L H, WU W Y, BERENBAUM M R. Impacts of dietary phytochemicals in the presence and absence of pesticides on longevity of honey bees (Apis mellifera)[J]. Insects, 2017, 8(1): 22. |
[15] | TAUBER J P, TOZKAR C Ö, SCHWARZ R S, et al. Colony-level effects of amygdalin on honeybees and their microbes[J]. Insects, 2020, 11(11): 783. |
[16] | LIAO L H, WU W Y, BERENBAUM M R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food[J]. Scientific Reports, 2017, 7: 15924. |
[17] | MULLAPUDI E, PŘIDAL A, PÁLKOVÁ L, et al. Virion structure of Israeli acute bee paralysis virus[J]. Journal of Virology, 2016, 90(18): 8150-8159. |
[18] | SACHMAN-RUIZ B, NARVÁEZ-PADILLA V, REYNAUD E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México[J]. Biological Invasions, 2015, 17(7): 2043-2053. |
[19] | CHEN G W, WU Y Q, DENG J, et al. Seasonal variation of viral infections between the eastern honey bee (Apis cerana) and the western honey bee (Apis mellifera)[J]. MicrobiologyOpen, 2021, 10(1): e1162. |
[20] | RIBIERE M, TRIBOULOT C, MATHIEU L, et al. Molecular diagnosis of chronic bee paralysis virus infection[J]. Apidologie, 2002, 33(3): 339-351. |
[21] | HIGHFIELD A C, EL NAGAR A, MACKINDER L C M, et al. Deformed wing virus implicated in overwintering honeybee colony losses[J]. Applied and Environmental Microbiology, 2009, 75(22): 7212-7220. |
[22] | CHEN Y P, ZHAO Y, HAMMOND J, et al. Multiple virus infections in the honey bee and genome divergence of honey bee viruses[J]. Journal of Invertebrate Pathology, 2004, 87(2/3): 84-93. |
[23] | BLANCHARD P, GUILLOT S, ANTÙNEZ K, et al. Development and validation of a real-time two-step RT-qPCR TaqMan assay for quantitation of Sacbrood virus (SBV) and its application to a field survey of symptomatic honey bee colonies[J]. Journal of Virological Methods, 2014, 197: 7-13. |
[24] | AI H X, YAN X, HAN R C. Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China[J]. Journal of Invertebrate Pathology, 2012, 109(1): 160-164. |
[25] | SCHWARZ R S, MORAN N A, EVANS J D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33): 9345-9350. |
[26] | YANG X L, COX-FOSTER D L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(21): 7470-7475. |
[27] | GALBRAITH D A, YANG X Y, NIÑO E L, et al. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera)[J]. PLoS Pathogens, 2015, 11(3): e1004713. |
[28] | BRUTSCHER L M, DAUGHENBAUGH K F, FLENNIKEN M L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense[J]. Scientific Reports, 2017, 7: 6448. |
[29] | MCKINSTRY M, CHUNG C, TRUONG H, et al. The heat shock response and humoral immune response are mutually antagonistic in honey bees[J]. Scientific Reports, 2017, 7(1): 8850. |
[30] | HARVEY A L. Natural products as a screening resource[J]. Current Opinion in Chemical Biology, 2007, 11(5): 480-484. |
[31] | LAMY M. Vitellogenesis, vitellogenin and vitellin in the males of insects: a review[J]. International Journal of Invertebrate Reproduction and Development, 1984, 7(5): 311-321. |
[32] | EXCELS W. Occurrence and significance of vitellogenins in female castes of social Hymenoptera[J]. Integrative and Comparative Biology, 1974, 14(4): 1229-1237. |
[33] | TRENCZEK T, ENGELS W. Occurrence of vitellogenin in drone honeybees (Apis mellifica)[J]. International Journal of Invertebrate Reproduction and Development, 1986, 10(3): 307-311. |
[34] | PIULACHS M D, GUIDUGLI K R, BARCHUK A R, et al. The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies[J]. Insect Biochemistry and Molecular Biology, 2003, 33(4): 459-465. |
[35] | AMDAM G V, SIMÕES Z L P, HAGEN A, et al. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees[J]. Experimental Gerontology, 2004, 39(5): 767-773. |
[36] | GUIDUGLI K R, NASCIMENTO A M, AMDAM G V, et al. Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect[J]. FEBS Letters, 2005, 579(22): 4961-4965. |
[37] | NELSON C M, IHLE K E, FONDRK M K, et al. The gene vitellogenin has multiple coordinating effects on social organization[J]. PLoS Biology, 2007, 5(3): e62. |
[38] | MARCHESE A, ORHAN I E, DAGLIA M, et al. Antibacterial and antifungal activities of thymol: a brief review of the literature[J]. Food Chemistry, 2016, 210: 402-414. |
[39] | KOWALCZYK A, PRZYCHODNA M, SOPATA S, et al. Thymol and thyme essential oil-new insights into selected therapeutic applications[J]. Molecules, 2020, 25(18): 4125. |
[40] | WIESE N, FISCHER J, HEIDLER J, et al. The terpenes of leaves, pollen, and nectar of thyme (Thymus vulgaris) inhibit growth of bee disease-associated microbes[J]. Scientific Reports, 2018, 8(1): 14634. |
[41] | PALMER-YOUNG E C, SADD B M, IRWIN R E, et al. Synergistic effects of floral phytochemicals against a bumble bee parasite[J]. Ecology and Evolution, 2017, 7(6): 1836-1849. |
[1] | 杨蕾, 汪小福, 魏巍, 陈笑芸, 彭城, 徐晓丽, 徐俊锋. 昆虫抗白僵菌免疫应答及其在害虫防治中的应用潜力[J]. 浙江农业学报, 2024, 36(4): 825-836. |
[2] | 余欢, 李辉, 陈友波, 石钰仕, 赵德鹏, 龙霞, 谭启松. 鸡腺苷琥珀酸裂解酶互作蛋白的筛选及其功能分析[J]. 浙江农业学报, 2024, 36(3): 515-526. |
[3] | 班学, 马翔宇, 张飞鹏, 张王斌. 梨火疫病防治用药对意大利蜜蜂的急性毒性与风险评价[J]. 浙江农业学报, 2023, 35(9): 2160-2168. |
[4] | 汪梦竹, 杨光美, 吴玉湖, 杨宣叶, 王慧慧, 曹小安, 李勇, 马忠仁, 马晓霞. 三株分离于新生小牛的牛病毒性腹泻病毒株的基因组特征[J]. 浙江农业学报, 2023, 35(8): 1814-1822. |
[5] | 李镜锐, 陶文扬, 杨颖, 周万怡, 陆胜民, 王阳光. 三种浙产铁皮石斛多糖的结构及免疫功效探究[J]. 浙江农业学报, 2023, 35(8): 1888-1895. |
[6] | 孙仁杰, 单颖, 安慧婷, 王雅婷, 谢荣辉, 张传亮, 赵灵燕, 方维焕, 李肖梁. 猪圆环病毒3型与宿主相互作用机制研究进展[J]. 浙江农业学报, 2023, 35(7): 1755-1762. |
[7] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
[8] | 罗海林, 袁雷, 闫佳会, 郭青云. 侵染青海辣椒的辣椒隐症病毒2基因组克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1368-1374. |
[9] | 刘琪, 曹影丽, 魏宁波, 杨侃侃, 梁月巧, 宋祥军, 邵颖, 涂健, 祁克宗. 鸡DDX41基因克隆表达、细胞定位及其在禽腺病毒4型感染调控天然免疫中的作用[J]. 浙江农业学报, 2023, 35(5): 1028-1036. |
[10] | 贾北平, 吕炫, 杨庆, 王一楠, 李皖萧, 解新迪, 朱英奇, 王蓓, 殷冬冬, 张云凯, 王晴, 王桂军. 安徽省5株新型鹅星状病毒的分离鉴定与遗传进化分析[J]. 浙江农业学报, 2023, 35(5): 1048-1057. |
[11] | 夏伦斌, 马龙龙, 乔德亮, 何燕飞, 蒋平. 三角帆蚌多糖对肉仔鸡生长性能、抗氧化及免疫功能的影响[J]. 浙江农业学报, 2023, 35(3): 547-555. |
[12] | 张宇昊, 马卫华, 刘晋佳, 马秀梅, 姜玉锁. 亚致死剂量呋虫胺对意大利蜜蜂采集蜂免疫解毒相关基因表达和酶活性的影响[J]. 浙江农业学报, 2023, 35(3): 575-581. |
[13] | 向江, 程建徽, 魏灵珠, 吴江. 植物病原菌Nep1-Like蛋白研究进展[J]. 浙江农业学报, 2023, 35(3): 708-716. |
[14] | 杨悦, 邵靓, 张鹏飞, 陈弟诗, 陈婉婷, 王印, 罗燕, 杨泽晓, 姚学萍, 任梅渗. 基于PMA-qPCR方法检测兽用消毒剂对非洲猪瘟病毒的灭活效率[J]. 浙江农业学报, 2023, 35(2): 301-307. |
[15] | 周力, 桂林生. 饲粮中小麦颗粒用量对藏羊公羔瘤胃内环境的影响[J]. 浙江农业学报, 2023, 35(11): 2543-2554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||