[1] |
RUEDAS-TORRES I, THI TO NGA B, SALGUERO F J. Pathogenicity and virulence of African swine fever virus[J]. Virulence, 2024, 15(1): 2375550.
|
[2] |
WILLIAMS D T, METTENLEITER T C, BLOME S. African swine fever: advances and challenges[J]. Revue Scientifique et Technique(International Office of Epizootics), 2024, Special Edition: 58-69.
|
[3] |
张振江, 孙恩成, 朱远茂, 等. 中国非洲猪瘟研究进展[J]. 中国科学: 生命科学, 2023, 53(12): 1767-1779.
|
|
ZHANG Z J, SUN E C, ZHU Y M, et al. Research progress on African swine fever in China[J]. Scientia Sinica(Vitae), 2023, 53(12): 1767-1779. (in Chinese with English abstract)
|
[4] |
WANG N, ZHAO D M, WANG J L, et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366(6465): 640-644.
|
[5] |
LIU S, LUO Y Z, WANG Y J, et al. Cryo-EM structure of the African swine fever virus[J]. Cell Host & Microbe, 2019, 26(6): 836-843.
|
[6] |
ZHU Y S, ZHANG M, JIE Z J, et al. Strategic nucleic acid detection approaches for diagnosing African swine fever (ASF): navigating disease dynamics[J]. Veterinary Research, 2024, 55(1): 131.
|
[7] |
QU H L, GE S Q, ZHANG Y Q, et al. A systematic review of genotypes and serogroups of African swine fever virus[J]. Virus Genes, 2022, 58(2): 77-87.
|
[8] |
URBANO A C, FERREIRA F. African swine fever control and prevention: an update on vaccine development[J]. Emerging Microbes & Infections, 2022, 11(1): 2021-2033.
|
[9] |
VU H L X, MCVEY D S. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines[J]. NPJ Vaccines, 2024, 9: 60.
|
[10] |
HU Z Q, TIAN X G, LAI R R, et al. Current detection methods of African swine fever virus[J]. Frontiers in Veterinary Science, 2023, 10: 1289676.
|
[11] |
LABADIE-BRACHO M Y, ADHIN M R. Advocating for PCR-RFLP as molecular tool within malaria programs in low endemic areas and low resource settings[J]. PLoS Neglected Tropical Diseases, 2023, 17(11): e0011747.
|
[12] |
MU X R, GUO J C, WANG H C, et al. Establishment and preliminary application of PCR-RFLP genotyping method for Giardia duodenalis in goats[J]. BMC Veterinary Research, 2024, 20(1): 527.
|
[13] |
AL DAHOUK S, TOMASO H, PRENGER-BERNINGHOFF E, et al. Identification of Brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)[J]. Critical Reviews in Microbiology, 2005, 31(4): 191-196.
|
[14] |
赵灵燕, 张璐, 安慧婷, 等. 猪圆环病毒3型和猪伪狂犬病病毒双重荧光定量PCR方法的建立和应用[J]. 中国兽医科学, 2023, 53(1): 16-22.
|
|
ZHAO L Y, ZHANG L, AN H T, et al. Development and application of a duplex real-time PCR for detection of porcine circovirus type 3 and pseudorabies virus[J]. Chinese Veterinary Science, 2023, 53(1): 16-22. (in Chinese with English abstract)
|
[15] |
GALLARDO C, FERNÁNDEZ-PINERO J, ARIAS M. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation[J]. Virus Research, 2019, 271: 197676.
|
[16] |
WEN X X, HE X J, ZHANG X, et al. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018[J]. Emerging Microbes & Infections, 2019, 8(1): 303-306.
|
[17] |
SUN E C, ZHANG Z J, WANG Z L, et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020[J]. Science China Life Sciences, 2021, 64(5): 752-765.
|
[18] |
SUN E C, HUANG L Y, ZHANG X F, et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection[J]. Emerging Microbes & Infections, 2021, 10(1): 2183-2193.
|
[19] |
ZHAO D M, SUN E C, HUANG L Y, et al. Highly lethal genotype I and Ⅱ recombinant African swine fever viruses detected in pigs[J]. Nature Communications, 2023, 14: 3096.
|
[20] |
JAING C, ROWLAND R R R, ALLEN J E, et al. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses[J]. Scientific Reports, 2017, 7: 10115.
|
[21] |
O'DONNELL V K, GRAU F R, MAYR G A, et al. Rapid sequence-based characterization of African swine fever virus by use of the Oxford nanopore MinION sequence sensing device and a companion analysis software tool[J]. Journal of Clinical Microbiology, 2019, 58(1): e01104-19.
|
[22] |
TORMA G, TOMBÁCZ D, CSABAI Z, et al. Combined short and long-read sequencing reveals a complex transcriptomic architecture of African swine fever virus[J]. Viruses, 2021, 13(4): 579.
|
[23] |
樊晓旭, 吴晓东, 赵洋, 等. 一种对非洲猪瘟病毒基因Ⅰ型和Ⅱ型的快速鉴别诊断方法:CN110438265B[P]. 2022.12.16.
|
[24] |
沈海燕, 张春红, 刘志成, 等. 一种快速区分非洲猪瘟病毒基因Ⅱ型与其它基因型的引物、探针及其检测方法:CN111676316B[P]. 2021-08-31.
|
[25] |
LI X D, HU Y X, LIU P G, et al. Development and application of a duplex real-time PCR assay for differentiation of genotypes I and Ⅱ African swine fever viruses[J]. Transboundary and Emerging Diseases, 2022, 69(5): 2971-2979.
|
[26] |
陈雪蓉, 徐林, 王远微, 等. 恒温隔绝式荧光PCR检测非洲猪瘟病毒核酸方法的建立[J]. 中国动物检疫, 2022, 39(3): 80-84.
|
|
CHEN X R, XU L, WANG Y W, et al. Development of an insulated isothermal PCR assay for detecting African swine fever virus[J]. China Animal Health Inspection, 2022, 39(3): 80-84. (in Chinese with English abstract)
|
[27] |
DING L L, REN T, HUANG L Y, et al. Developing a duplex ARMS-qPCR method to differentiate genotype I and Ⅱ African swine fever viruses based on their B646L genes[J]. Journal of Integrative Agriculture, 2023, 22(5): 1603-1607.
|
[28] |
LUGO-TRAMPE Á, DEL C TRUJILLO-MURILLO K, RODRIGUEZ-SANCHEZ I P, et al. A PCR-RFLP method for typing human papillomavirus type 16 variants[J]. Journal of Virological Methods, 2013, 187(2): 338-344.
|
[29] |
ZHANG C M, YU Y L, YANG H Y, et al. Development of a PCR-RFLP assay for the detection and differentiation of canine parvovirus and mink enteritis virus[J]. Journal of Virological Methods, 2014, 210: 1-6.
|
[30] |
KAWAUCHI K, TAKAHASHI C, ISHIHARA R, et al. Development of a novel PCR-RFLP assay for improved detection and typing of bovine papillomaviruses[J]. Journal of Virological Methods, 2015, 218: 23-26.
|
[31] |
VERNA F, GIORDA F, MICELI I, et al. Detection of morbillivirus infection by RT-PCR RFLP analysis in cetaceans and carnivores[J]. Journal of Virological Methods, 2017, 247: 22-27.
|
[32] |
OCHIAI C, KATAGIRI Y, KOBAYASHI S, et al. Development of a microchip electrophoresis-based, high-throughput PCR-RFLP method to type Tax 233 variants of bovine leukemia virus in Japan[J]. Archives of Virology, 2020, 165(12): 2961-2966.
|
[33] |
CONESA A, DIESER S, BARBERIS C, et al. Differentiation of non-aureus staphylococci species isolated from bovine mastitis by PCR-RFLP of groEL and gap genes in comparison to MALDI-TOF mass spectrometry[J]. Microbial Pathogenesis, 2020, 149: 104489.
|
[34] |
ROSA N M, PENATI M, FUSAR-POLI S, et al. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis[J]. Veterinary Research, 2022, 53(1): 84.
|
[35] |
LEITE I G C, BENARD G, CAVALCANTI S C, et al. Comparison between PCR-RFLP and sequencing techniques in the analysis of Paracoccidioides spp. biodiversity: limitations and insights into species and variant differentiation[J]. Mycopathologia, 2024, 189(6): 97.
|