浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1009-1016.DOI: 10.3969/j.issn.1004-1524.20240827
收稿日期:2024-09-22
出版日期:2025-05-25
发布日期:2025-06-11
作者简介:陈琳(1985—),女,黑龙江牡丹江人,博士,副教授,研究方向为食品生物技术。E-mail: chenlinlucky@163.com
通讯作者:
*顾青,E-mail:guqing2002@hotmail.com
基金资助:Received:2024-09-22
Online:2025-05-25
Published:2025-06-11
摘要:
通过构建乙醇致急性胃溃疡大鼠模型,解析新型食品原料——柳叶蜡梅多糖保护胃损伤的作用机制。研究表明,柳叶蜡梅多糖的主要成分为甘露糖、鼠李糖、葡萄糖、半乳糖和海藻糖。大鼠灌胃柳叶蜡梅多糖低剂量组(200 mg·kg-1,以体重计)和高剂量组(400 mg·kg-1,以体重计)28 d可缓解乙醇致急性胃溃疡,显著(P<0.05)降低胃溃疡指数。与模型组相比,柳叶蜡梅多糖高剂量组显著提高超氧化物歧化酶(SOD)活性和前列腺素E2(PGE2)、表皮生长因子(EGF)的含量,降低丙二醛(MDA)含量,抑制肿瘤坏死因子-α(TNF-α)、白介素6(IL-6)、白介素1β(IL-1β)的产生。柳叶蜡梅多糖提取物通过调控丝裂原活化蛋白激酶(MAPKs)和基质金属蛋白酶(MMPs)信号通路,缓解大鼠胃部氧化应激反应和乙醇引致的胃黏膜损伤。
中图分类号:
陈琳, 顾青. 柳叶蜡梅多糖对大鼠急性胃黏膜损伤的保护机制研究[J]. 浙江农业学报, 2025, 37(5): 1009-1016.
CHEN Lin, GU Qing. Gastroprotective effect of polysaccharides extracted from Chimonanthus salicifolius on ethanol-induced gastric injury in rats[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1009-1016.
图1 柳叶蜡梅多糖的组成分析 1~7依次代表甘露糖、鼠李糖、葡萄糖、半乳糖、木糖、阿拉伯糖、海藻糖。A图展示单糖标准物质,B图展示柳叶蜡梅多糖。
Fig.1 Composition analysis of Chimonanthus salicifolius polysaccharides 1-7 represent mannose, rhamnose, glucose, galactose, xylose, arabinose and trehalose, respectively. Fig. A shows the result of reference standard of monosaccharides, while Fig. B shows the result of Chimonanthus salicifolius polysaccharides.
图2 不同处理的胃组织形态学影像 A,对照组;B,模型组;C,奥美拉唑组;D,柳叶蜡梅多糖低剂量组;E,柳叶蜡梅多糖高剂量组。
Fig.2 Histomorphology images of stomach tissue under treatments A, Control group; B, Model group; C, Omeprazole group; D, Low dose Chimonanthus salicifolius polysaccharides group; E, High dose Chimonanthus salicifolius polysaccharides group.
图3 不同处理胃组织的溃疡指数(UI) C,对照组;M,模型组;O,奥美拉唑组;L,柳叶蜡梅多糖低剂量组;H,柳叶蜡梅多糖高剂量组。柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.3 Ulcer index (UI) of gastric tissues under treatments C, Control group; M, Model group; O, Omeprazole group; L, Low dose Chimonanthus salicifolius polysaccharides group; H, High dose Chimonanthus salicifolius polysaccharides group. Bars marked without the same letters indicate significant difference at P<0.05.
图4 不同处理下胃黏膜的组织学观察结果 从左至右各列依次展示对照组(C)、模型组(M)、奥美拉唑组(O)、柳叶蜡梅多糖低剂量组(L)、柳叶蜡梅多糖高剂量组(H)的结果。上面一行与下面一行的放大倍数分别为100倍和400倍。
Fig.4 Histological observation of gastric mucosal under treatments Lines from left to right show the results of control group (C), model group (M), omeprazole group (O), low dose Chimonanthus salicifolius polysaccharides group (L), high dose Chimonanthus salicifolius polysaccharides group (H), respectively. The magnification multiples in the upper row and lower row are 100 and 400, respectively.
| 处理 Treatment | SOD活性 SOD activity/ (U·mg-1) | MDA含量 MDA content/ (nmol·mg-1) | EGF含量 EGF content/ (ng·L-1) | PGE2含量 PEG2 content/ (ng·L-1) | TNF-α含量 TNF-α content/ (pg·mL-1) | IL-6含量 IL-6 content/ (pg·mL-1) | IL-1β含量 IL-1β content/ (pg·mL-1) |
|---|---|---|---|---|---|---|---|
| C | 258.23±6.36 a | 4.68±0.14 c | 480.34±56.23 a | 418.43±24.65 a | 80.24±3.36 b | 60.68±3.14 b | 20.34±1.23 c |
| M | 176.35±5.24 c | 6.56±0.46 a | 220.43±53.87 c | 303.45±34.23 b | 120.35±4.17 a | 136.56±6.87 a | 50.43±1.87 a |
| O | 192.45±4.87 c | 5.25±0.54 bc | 368.98±76.23 b | 432.25±33.43 a | 92.45±3.23 b | 75.25±0.54 b | 35.12±2.23 b |
| L | 187.65±9.56 c | 6.23±0.34 ab | 267.98±66.43 bc | 450.24±23.45 a | 87.25±4.14 b | 76.23±0.34 b | 37.98±2.43 ab |
| H | 202.36±10.62 b | 4.87±0.34 c | 428.65±59.76 a | 489.34±34.54 a | 80.36±8.26 b | 66.87±0.34 b | 30.65±3.76 b |
表1 不同处理对大鼠生理生化指标的影响
Table 1 Effects of treatments on biological and biochemical indexes of rats
| 处理 Treatment | SOD活性 SOD activity/ (U·mg-1) | MDA含量 MDA content/ (nmol·mg-1) | EGF含量 EGF content/ (ng·L-1) | PGE2含量 PEG2 content/ (ng·L-1) | TNF-α含量 TNF-α content/ (pg·mL-1) | IL-6含量 IL-6 content/ (pg·mL-1) | IL-1β含量 IL-1β content/ (pg·mL-1) |
|---|---|---|---|---|---|---|---|
| C | 258.23±6.36 a | 4.68±0.14 c | 480.34±56.23 a | 418.43±24.65 a | 80.24±3.36 b | 60.68±3.14 b | 20.34±1.23 c |
| M | 176.35±5.24 c | 6.56±0.46 a | 220.43±53.87 c | 303.45±34.23 b | 120.35±4.17 a | 136.56±6.87 a | 50.43±1.87 a |
| O | 192.45±4.87 c | 5.25±0.54 bc | 368.98±76.23 b | 432.25±33.43 a | 92.45±3.23 b | 75.25±0.54 b | 35.12±2.23 b |
| L | 187.65±9.56 c | 6.23±0.34 ab | 267.98±66.43 bc | 450.24±23.45 a | 87.25±4.14 b | 76.23±0.34 b | 37.98±2.43 ab |
| H | 202.36±10.62 b | 4.87±0.34 c | 428.65±59.76 a | 489.34±34.54 a | 80.36±8.26 b | 66.87±0.34 b | 30.65±3.76 b |
图5 蛋白质表达的结果 A,基质金属蛋白酶-2(MMP-2);B,磷酸化细胞外调节蛋白激酶(p-ERK);C,基质金属蛋白酶-9(MMP-9);D,磷酸化末端激酶(p-JNK);E,磷酸化丝裂原活化蛋白激酶(p-p38)。GAPDH,甘油醛-3-磷酸脱氢酶。
Fig.5 Result of proteins' expression A, Matrix metalloproteinase-2 (MMP-2); B, Phospho-extracellular regulated protein kinases (p-ERK); C, Matrix metalloproteinase-9 (MMP-9); D, Phospho-c-Jun N-terminal kinase (p-JNK); E, Phospho-mitogen-activated protein kinase (p-p38). GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.
| [1] | XUE C, WITHOWSKI K, ST PIERRE A, et al. Case 12.1: gastric ulcer disease[M]// ORSINIJ A, GRENAGERN S, DE LAHUNTA A. Comparative veterinary anatomy:a clinical approach. New York: Academic Press, 2021: 724-731. |
| [2] | LANAS A, CHAN F K L. Peptic ulcer disease[J]. Lancet, 2017, 390(10094): 613-624. |
| [3] | GOSWAMI S, JAIN S, SANTANI D. Anti-ulcer activity of cromakalim (BRL 34915), a potassium-channel opener, against experimentally induced gastric and duodenal ulcers in rats and Guinea-pigs[J]. Journal of Pharmacy and Pharmacology, 1997, 49(2): 195-199. |
| [4] | SØREIDE K, THORSEN K, HARRISON E M, et al. Perforated peptic ulcer[J]. The Lancet, 2015, 386(10000): 1288-1298. |
| [5] | CZEKAJ R, MAJKA J, MAGIEROWSKA K, et al. Mechanisms of curcumin-induced gastroprotection against ethanol-induced gastric mucosal lesions[J]. Journal of Gastroenterology, 2018, 53(5): 618-630. |
| [6] | VERA-ARZAVE C, ANTONIO L C, ARRIETA J, et al. Gastroprotection of suaveolol, isolated from Hyptis suaveolens, against ethanol-induced gastric lesions in Wistar rats: role of prostaglandins, nitric oxide and sulfhydryls[J]. Molecules, 2012, 17(8): 8917-8927. |
| [7] | ZHANG Y, WANG H X, MEI N N, et al. Protective effects of polysaccharide from Dendrobium nobile against ethanol-induced gastric damage in rats[J]. International Journal of Biological Macromolecules, 2018, 107: 230-235. |
| [8] | LIU G H, FU J Y. Squalene synthase cloning and functional identification in wintersweet plant (Chimonanthus zhejiangensis)[J]. Botanical Studies, 2018, 59(1): 30. |
| [9] | LV Q D, QIU J, LIU J, et al. The Chimonanthus salicifolius genome provides insight into magnoliid evolution and flavonoid biosynthesis[J]. The Plant Journal, 2020, 103(5): 1910-1923. |
| [10] | CHEN H, JIANG Y, YANG Z W, et al. Effects of Chimonanthus nitens Oliv. leaf extract on glycolipid metabolism and antioxidant capacity in diabetic model mice[J]. Oxidative Medicine and Cellular Longevity, 2017: 7648505. |
| [11] | CHEN H, OUYANG K H, JIANG Y, et al. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity[J]. International Journal of Biological Macromolecules, 2017, 98: 829-836. |
| [12] | WANG K W, LI D, WU B, et al. New cytotoxic dimeric and trimeric coumarins from Chimonanthus salicifolius[J]. Phytochemistry Letters, 2016, 16: 115-120. |
| [13] | WEN H P, LEI W M, HOU J, et al. Main components of ethyl acetate extract of Chimonanthus salicifolius and its effects on intestinal mucositis in mice induced by 5-fluorouracil[J]. Food Science and Technology, 2022, 42: e55720. |
| [14] | LIU Z Z, XI J, SCHRÖDER S, et al. Chimonanthus nitens var. salicifolius aqueous extract protects against 5-fluorouracil induced gastrointestinal mucositis in a mouse model[J]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013(1): 789263. |
| [15] | LI X, CHEN L. Chimonanthus salicifolius S. Y. Hu extract improve constipation symptoms and regulate intestinal microbiota in mice[J]. Food Science and Technology Research, 2023, 29(2): 101-112. |
| [16] | CHEN L, LI X, GU Q. Chimonanthus salicifolius extract alleviates DSS-induced colitis and regulates gut microbiota in mice[J]. Food Science & Nutrition, 2023, 11(6): 3019-3030. |
| [17] | HATWARE K V, SHARMA S, PATIL K, et al. Evidence for gastroprotective, anti-inflammatory and antioxidant potential of methanolic extract of Cordia dichotoma leaves on indomethacin and stress induced gastric lesions in Wistar rats[J]. Biomedicine & Pharmacotherapy, 2018, 103: 317-325. |
| [18] | PRADEEPKUMAR SINGH L, KUNDU P, GANGULY K, et al. Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer[J]. Free Radical Biology and Medicine, 2007, 43(2): 289-299. |
| [19] | GANGULY K, KUNDU P, BANERJEE A, et al. Hydrogen peroxide-mediated downregulation of matrix metalloprotease-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants[J]. Free Radical Biology and Medicine, 2006, 41(6): 911-925. |
| [20] | 洪一平, 谢辉, 于莎莎, 等. 胡椒碱的分离鉴定及对乙醇诱导胃黏膜损伤的保护作用[J]. 食品科技, 2023, 48(10): 228-233. |
| HONG Y P, XIE H, YU S S, et al. Isolation, identification and protection against ethanol-induced gastric mucosal injury of piperine[J]. Food Science and Technology, 2023, 48(10): 228-233. (in Chinese with English abstract) | |
| [21] | WANG G Y, CHEN S Y, CHEN Y Y, et al. Protective effect of rosmarinic acid-rich Trichodesma khasianum Clarke leaves against ethanol-induced gastric mucosal injury in vitro and in vivo[J]. Phytomedicine, 2021, 80: 153382. |
| [22] | BHATTACHARYYA A, CHATTOPADHYAY R, MITRA S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiological Reviews, 2014, 94(2): 329-354. |
| [23] | CAMPBELL E L, COLGAN S P. Control and dysregulation of redox signalling in the gastrointestinal tract[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(2): 106-120. |
| [24] | HWANG D, KANG M J, JO M J, et al. Anti-inflammatory activity of β-thymosin peptide derived from Pacific oyster (Crassostrea gigas) on NO and PGE2 production by down-regulating NF-κB in LPS-induced RAW264.7 macrophage cells[J]. Marine Drugs, 2019, 17(2): 129. |
| [25] | DUAN Z W, YU S S, WANG S P, et al. Protective effects of piperine on ethanol-induced gastric mucosa injury by oxidative stress inhibition[J]. Nutrients, 2022, 14(22): 4744. |
| [26] | ZHANG Y, WANG H X, WANG P, et al. Optimization of PEG-based extraction of polysaccharides from Dendrobium nobile Lindl. and bioactivity study[J]. International Journal of Biological Macromolecules, 2016, 92: 1057-1066. |
| [27] | BUJANDA L, GARCÍA-BARCINA M, JUAN V G, et al. Effect of resveratrol on alcohol-induced mortality and liver lesions in mice[J]. BMC Gastroenterology, 2006, 6: 35. |
| [28] | BANERJEE S, BUESO-RAMOS C, AGGARWAL B B. Suppression of 7, 12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9[J]. Cancer Research, 2002, 62(17): 4945-4954. |
| [29] | HOLMES-MCNARY M, BALDWIN A S, Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase[J]. Cancer Research, 2000, 60(13): 3477-3483. |
| [30] | NÚÑEZ O, FERNÁNDEZ-MARTÍNEZ A, MAJANO P L, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins[J]. Gut, 2004, 53(11): 1665-1672. |
| [31] | TILG H, DIEHL A M. Cytokines in alcoholic and nonalcoholic steatohepatitis[J]. New England Journal of Medicine, 2000, 343(20): 1467-1476. |
| [1] | 黄浩, 汤涛, 许振岚, 赵学平. 吡唑醚菌酯对铁皮石斛中多糖和黄酮的影响研究[J]. 浙江农业学报, 2025, 37(1): 115-125. |
| [2] | 张妮, 陶文扬, 罗梦帆, 周万怡, 郑晓杰, 李彦坡, 金火喜, 杨颖. 酶解辅助提取对铁皮石斛多糖结构和菌群调节功能的影响[J]. 浙江农业学报, 2024, 36(9): 2099-2109. |
| [3] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
| [4] | 曹乃馨, 罗阳兰, 阎勇, 解修超, 张雯龙. 桑树桑黄JM-1胞外多糖液态培养基优化及其抗氧化性研究[J]. 浙江农业学报, 2024, 36(6): 1245-1255. |
| [5] | 吕国英, 王梦雨, 张作法. 猴头菇多糖对小鼠肠道菌群的影响[J]. 浙江农业学报, 2024, 36(12): 2794-2802. |
| [6] | 李镜锐, 陶文扬, 杨颖, 周万怡, 陆胜民, 王阳光. 三种浙产铁皮石斛多糖的结构及免疫功效探究[J]. 浙江农业学报, 2023, 35(8): 1888-1895. |
| [7] | 张璐, 李翘楚, 王增利, 丁强, 王鸿磊. 金耳类酵母型菌株分离与高产胞外多糖培养基优化[J]. 浙江农业学报, 2023, 35(5): 1154-1160. |
| [8] | 夏伦斌, 马龙龙, 乔德亮, 何燕飞, 蒋平. 三角帆蚌多糖对肉仔鸡生长性能、抗氧化及免疫功能的影响[J]. 浙江农业学报, 2023, 35(3): 547-555. |
| [9] | 马波, 陶震, 周瑞, 王雪, 吕茜茜, 孙士红, 王寒, 高金秋, 张楚涵, 陈凤清. 花叶万年青功能成分提取条件优化与活性探究[J]. 浙江农业学报, 2023, 35(2): 383-393. |
| [10] | 陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658. |
| [11] | 林雨晴, 陆胜民, 周万怡, 邢建荣, 杨颖. 铁皮石斛叶多糖结构及其益生性质初探[J]. 浙江农业学报, 2022, 34(11): 2504-2511. |
| [12] | 吴卫成, 戴建波, 曹艳, 夏其乐, 陈剑兵, 孟祥河. 物理改性对甘薯皮膳食纤维含量、多糖组成及其结构的影响[J]. 浙江农业学报, 2020, 32(3): 490-498. |
| [13] | 王明哲, 杨颖, 唐伟敏, 刘哲, 孙培龙, 陆胜民. 戊糖乳杆菌YY112产胞外多糖的发酵工艺条件优化[J]. 浙江农业学报, 2020, 32(2): 327-336. |
| [14] | 张文平, 王清, 黄诗宸, 吴佩佳, 程新. 乳酸菌胞外多糖对水稻生长及土壤理化性质的影响[J]. 浙江农业学报, 2019, 31(1): 130-138. |
| [15] | 韩春杨, 杨明川, 杨孜生, 冯伉梨, 刘翠艳. 黄精多糖的提取及其对CCl4致大鼠肝损伤的保护作用[J]. 浙江农业学报, 2018, 30(4): 537-547. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
