浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1121-1129.DOI: 10.3969/j.issn.1004-1524.20240469
卓文琪1,2(), 麻万诸2,*(
), 卓志清2, 朱康莹2
收稿日期:
2024-05-28
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
卓文琪(1998—),女,广东珠海人,硕士研究生,从事农业(土地)资源开发与利用研究。E-mail:zhuo-wenqi@qq.com
通讯作者:
*麻万诸,E-mail:mawzh@zaas.ac.cn
基金资助:
ZHUO Wenqi1,2(), MA Wanzhu2,*(
), ZHUO Zhiqing2, ZHU Kangying2
Received:
2024-05-28
Online:
2025-05-25
Published:
2025-06-11
摘要:
母质类型是影响土壤形成的五大因素之一。残积物与坡积物是形成山地土壤的两大类母质,但关于它们形成的土壤之间差异的研究较少。该研究以浙西钱江源国家森林公园为例,通过对剖面土壤颜色、颗粒组成、有机碳含量、全氮含量、风化强度和铁活化度的检测分析,比较了低山区残积物与坡积物发育的林地土壤性状之间的差异。结果表明,坡积物发育土壤的风化淋溶强度低于残积物发育的土壤,前者全剖面具有较高的砾石含量和较高的风化淋溶系数。坡积物发育土壤形态在上下层之间的分异较小,细土有机碳分布较深,具有较大的有机碳库。同时,坡积物发育土壤的细土容重较低,具有较高的渗透性和较大的蓄水潜力。残积物发育土壤剖面上下层之间同位素δ13C差异明显,而坡积物发育土壤的同位素差异较小,说明残积物发育土壤剖面下层土壤有机碳形成的年龄较长。综上所述,残积物与坡积物发育的低山林地土壤在性状上存在明显差异,在土壤类型划分上应区别对待。
中图分类号:
卓文琪, 麻万诸, 卓志清, 朱康莹. 亚热带残积与坡积母质发育的低山林地土壤性状比较[J]. 浙江农业学报, 2025, 37(5): 1121-1129.
ZHUO Wenqi, MA Wanzhu, ZHUO Zhiqing, ZHU Kangying. Comparison of properties between soils developed from eluvium and deluvium in subtropical low mountain forest land[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1121-1129.
土壤样本 Soil samples | 深度 Depth/cm | 砾石含量 Gravel content/% | 细土组成Fine soil composition/% | ||
---|---|---|---|---|---|
砂粒含量Sand content | 粉砂含量Silt content | 黏粒含量Clay content | |||
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 21.3±9.6 c | 35.2±5.3 bc | 37.3±4.6 ab | 27.5±4.2 b |
>15~30 | 7.8±3.5 d | 31.4±4.9 c | 37.1±5.8 ab | 31.5±3.5 ab | |
>30~50 | 5.7±2.8 d | 32.8±5.8 c | 32.0±6.3 bc | 35.2±4.1 a | |
>50~70 | 9.7±4.3 d | 35.9±5.7 bc | 29.8±5.2 c | 34.3±5.3 a | |
>70~100 | 35.4±17.5 ab | 38.6±4.5 ab | 29.8±3.8 c | 31.6±4.4 ab | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 32.5±6.3 ab | 42.4±7.5 ab | 41.1±9.5 a | 16.5±3.2 c |
>15~30 | 27.4±10.2 bc | 38.6±5.8 ab | 43.6±6.4 a | 17.8±4.2 c | |
>30~50 | 34.5±11.7 ab | 41.7±6.3 ab | 40.7±7.5 a | 17.6±4.7 c | |
>50~70 | 36.8±10.4 ab | 44.3±5.4 a | 39.2±5.2 ab | 16.5±5.6 c | |
>70~100 | 42.4±15.6 a | 42.4±8.9 ab | 42.4±8.4 a | 15.2±8.5 c |
表1 土壤颗粒组成
Table 1 Composition of soil particles
土壤样本 Soil samples | 深度 Depth/cm | 砾石含量 Gravel content/% | 细土组成Fine soil composition/% | ||
---|---|---|---|---|---|
砂粒含量Sand content | 粉砂含量Silt content | 黏粒含量Clay content | |||
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 21.3±9.6 c | 35.2±5.3 bc | 37.3±4.6 ab | 27.5±4.2 b |
>15~30 | 7.8±3.5 d | 31.4±4.9 c | 37.1±5.8 ab | 31.5±3.5 ab | |
>30~50 | 5.7±2.8 d | 32.8±5.8 c | 32.0±6.3 bc | 35.2±4.1 a | |
>50~70 | 9.7±4.3 d | 35.9±5.7 bc | 29.8±5.2 c | 34.3±5.3 a | |
>70~100 | 35.4±17.5 ab | 38.6±4.5 ab | 29.8±3.8 c | 31.6±4.4 ab | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 32.5±6.3 ab | 42.4±7.5 ab | 41.1±9.5 a | 16.5±3.2 c |
>15~30 | 27.4±10.2 bc | 38.6±5.8 ab | 43.6±6.4 a | 17.8±4.2 c | |
>30~50 | 34.5±11.7 ab | 41.7±6.3 ab | 40.7±7.5 a | 17.6±4.7 c | |
>50~70 | 36.8±10.4 ab | 44.3±5.4 a | 39.2±5.2 ab | 16.5±5.6 c | |
>70~100 | 42.4±15.6 a | 42.4±8.9 ab | 42.4±8.4 a | 15.2±8.5 c |
土壤样本 Soil samples | 深度 Depth/cm | 容重 Bulk density/ (g·cm-3) | 饱和导水率 Saturated hydraulic conductivity/(mm·d-1) | 饱和持水量 Saturated water capacity/% |
---|---|---|---|---|
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 1.14±0.12 d | 46.8±5.54 a | 49.94±3.78 a |
>15~30 | 1.29±0.08 c | 37.5±3.41 ab | 39.82±2.24 b | |
>30~50 | 1.38±0.05 bc | 32.6±3.64 b | 34.70±1.54 c | |
>50~70 | 1.43±0.03 b | 24.6±4.98 c | 32.15±1.22 c | |
>70~100 | 1.61±0.05 a | 17.5±5.22 d | 24.36±1.42 d | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 1.19±0.21 cd | 45.2±6.14 a | 46.33±7.24 ab |
>15~30 | 1.21±0.13 cd | 41.6±5.24 a | 44.94±4.52 ab | |
>30~50 | 1.19±0.12 cd | 35.4±4.87 b | 46.33±4.72 ab | |
>50~70 | 1.28±0.09 c | 38.7±5.23 ab | 40.42±3.14 b | |
>70~100 | 1.35±0.07 bc | 32.5±7.32 b | 36.32±2.14 bc |
表2 土壤容重、饱和导水率与饱和持水量
Table 2 Soil bulk density, saturated hydraulic conductivity and saturated water capacity
土壤样本 Soil samples | 深度 Depth/cm | 容重 Bulk density/ (g·cm-3) | 饱和导水率 Saturated hydraulic conductivity/(mm·d-1) | 饱和持水量 Saturated water capacity/% |
---|---|---|---|---|
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 1.14±0.12 d | 46.8±5.54 a | 49.94±3.78 a |
>15~30 | 1.29±0.08 c | 37.5±3.41 ab | 39.82±2.24 b | |
>30~50 | 1.38±0.05 bc | 32.6±3.64 b | 34.70±1.54 c | |
>50~70 | 1.43±0.03 b | 24.6±4.98 c | 32.15±1.22 c | |
>70~100 | 1.61±0.05 a | 17.5±5.22 d | 24.36±1.42 d | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 1.19±0.21 cd | 45.2±6.14 a | 46.33±7.24 ab |
>15~30 | 1.21±0.13 cd | 41.6±5.24 a | 44.94±4.52 ab | |
>30~50 | 1.19±0.12 cd | 35.4±4.87 b | 46.33±4.72 ab | |
>50~70 | 1.28±0.09 c | 38.7±5.23 ab | 40.42±3.14 b | |
>70~100 | 1.35±0.07 bc | 32.5±7.32 b | 36.32±2.14 bc |
土壤样本 Soil samples | 深度 Depth/cm | 有机碳含量 Organic carbon content/(g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碳氮比 C/N ratio | 微生物生物量碳含量 Microbial biomass carbon content/(mg·kg-1) | 微生物生物量熵 Soil microbial entropy |
---|---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 37.24±5.32 a | 2.48±0.32 a | 15.02±3.65 a | 542±58 a | 0.014 3±0.001 1 b |
>15~30 | 21.48±5.14 c | 1.50±0.23 bc | 14.32±2.54 ab | 324±41 b | 0.015 2±0.001 2 b | |
>30~50 | 9.86±2.41 e | 0.74±0.14 e | 13.32±2.13 bc | 82±9 e | 0.008 2±0.000 7 d | |
>50~70 | 6.87±2.31 ef | 0.55±0.11 ef | 12.49±3.15 bc | 45±5 f | 0.006 6±0.000 5 e | |
>70~100 | 4.57±1.54 f | 0.40±0.12 f | 11.43±2.67 c | 29±3 f | 0.006 2±0.000 4 e | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 28.54±4.66 b | 1.87±0.43 a | 15.26±4.21 a | 512±61 a | 0.017 8±0.001 4 a |
>15~30 | 24.65±5.84 b | 1.65±0.29 b | 14.94±3.11 ab | 354±32 b | 0.014 5±0.001 2 b | |
>30~50 | 17.59±4.67 cd | 1.24±0.24 cd | 14.18±2.74 b | 198±22 c | 0.011 3±0.001 0 c | |
>50~70 | 19.25±4.13 cd | 1.47±0.27 bc | 13.10±2.65 bc | 153±12 c | 0.008 1±0.000 9 d | |
>70~100 | 14.25±3.25 d | 1.05±0.23 d | 13.58±3.14 bc | 124±10 d | 0.008 8±0.000 7 d |
表3 土壤有机碳和全氮含量
Table 3 Soil organic carbon and total nitrogen content
土壤样本 Soil samples | 深度 Depth/cm | 有机碳含量 Organic carbon content/(g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碳氮比 C/N ratio | 微生物生物量碳含量 Microbial biomass carbon content/(mg·kg-1) | 微生物生物量熵 Soil microbial entropy |
---|---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 37.24±5.32 a | 2.48±0.32 a | 15.02±3.65 a | 542±58 a | 0.014 3±0.001 1 b |
>15~30 | 21.48±5.14 c | 1.50±0.23 bc | 14.32±2.54 ab | 324±41 b | 0.015 2±0.001 2 b | |
>30~50 | 9.86±2.41 e | 0.74±0.14 e | 13.32±2.13 bc | 82±9 e | 0.008 2±0.000 7 d | |
>50~70 | 6.87±2.31 ef | 0.55±0.11 ef | 12.49±3.15 bc | 45±5 f | 0.006 6±0.000 5 e | |
>70~100 | 4.57±1.54 f | 0.40±0.12 f | 11.43±2.67 c | 29±3 f | 0.006 2±0.000 4 e | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 28.54±4.66 b | 1.87±0.43 a | 15.26±4.21 a | 512±61 a | 0.017 8±0.001 4 a |
>15~30 | 24.65±5.84 b | 1.65±0.29 b | 14.94±3.11 ab | 354±32 b | 0.014 5±0.001 2 b | |
>30~50 | 17.59±4.67 cd | 1.24±0.24 cd | 14.18±2.74 b | 198±22 c | 0.011 3±0.001 0 c | |
>50~70 | 19.25±4.13 cd | 1.47±0.27 bc | 13.10±2.65 bc | 153±12 c | 0.008 1±0.000 9 d | |
>70~100 | 14.25±3.25 d | 1.05±0.23 d | 13.58±3.14 bc | 124±10 d | 0.008 8±0.000 7 d |
土壤 Soils | 深度 Depth/cm | 游离态轻组有机碳 Free light group organic carbon/(g·kg-1) | 粗颗粒有机碳 Coarse particulate organic carbon/(g·kg-1) | 细颗粒有机碳 Fine particulate organic carbon/(g·kg-1) | 矿物结合态有机碳 Mineral bound organic carbon/(g·kg-1) |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived Soils (n=6) | 0~15 | 8.47±2.14 a | 20.63±2.24 a | 10.58±2.21 a | 60.32±3.25 e |
>15~30 | 6.97±1.14 ab | 12.21±1.65 c | 11.24±1.98 a | 69.58±4.25 cd | |
>30~50 | 4.58±1.03 bc | 4.65±1.14 e | 8.52±2.69 b | 82.25±3.98 b | |
>50~70 | 2.28±0.56 d | 4.12±0.98 ef | 5.97±1.59 c | 87.63±4.26 ab | |
>70~100 | 1.12±0.45 e | 3.05±0.52 f | 6.58±2.21 bc | 89.25±4.98 a | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 7.52±1.65 a | 16.79±2.45 b | 11.21±1.96 a | 64.48±3.42 de |
>15~30 | 5.89±1.14 b | 13.25±1.89 bc | 10.25±2.33 a | 70.61±3.77 cd | |
>30~50 | 5.35±0.68 b | 8.54±1.45 d | 9.57±2.14 ab | 76.54±3.54 bc | |
>50~70 | 4.63±0.52 bc | 9.14±1.14 d | 8.68±1.98 b | 77.55±4.25 bc | |
>70~100 | 3.58±0.49 c | 5.89±0.65 e | 9.99±2.03 ab | 80.54±3.98 b |
表4 土壤不同形态有机碳的构成
Table 4 Composition of different forms of soil organic carbon
土壤 Soils | 深度 Depth/cm | 游离态轻组有机碳 Free light group organic carbon/(g·kg-1) | 粗颗粒有机碳 Coarse particulate organic carbon/(g·kg-1) | 细颗粒有机碳 Fine particulate organic carbon/(g·kg-1) | 矿物结合态有机碳 Mineral bound organic carbon/(g·kg-1) |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived Soils (n=6) | 0~15 | 8.47±2.14 a | 20.63±2.24 a | 10.58±2.21 a | 60.32±3.25 e |
>15~30 | 6.97±1.14 ab | 12.21±1.65 c | 11.24±1.98 a | 69.58±4.25 cd | |
>30~50 | 4.58±1.03 bc | 4.65±1.14 e | 8.52±2.69 b | 82.25±3.98 b | |
>50~70 | 2.28±0.56 d | 4.12±0.98 ef | 5.97±1.59 c | 87.63±4.26 ab | |
>70~100 | 1.12±0.45 e | 3.05±0.52 f | 6.58±2.21 bc | 89.25±4.98 a | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 7.52±1.65 a | 16.79±2.45 b | 11.21±1.96 a | 64.48±3.42 de |
>15~30 | 5.89±1.14 b | 13.25±1.89 bc | 10.25±2.33 a | 70.61±3.77 cd | |
>30~50 | 5.35±0.68 b | 8.54±1.45 d | 9.57±2.14 ab | 76.54±3.54 bc | |
>50~70 | 4.63±0.52 bc | 9.14±1.14 d | 8.68±1.98 b | 77.55±4.25 bc | |
>70~100 | 3.58±0.49 c | 5.89±0.65 e | 9.99±2.03 ab | 80.54±3.98 b |
土壤样本 Soil samples | 深度 Depth/cm | pH | ba值 ba value | 黏粒Sa值 Sa value of clay | 铁活化度 Activation degree of iron oxide/% |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 5.32±0.11 a | — | — | 34.2±3.5 a |
>15~30 | 5.17±0.09 ab | 0.304±0.031 b | 2.42±0.02 b | 29.6±4.6 ab | |
>30~50 | 4.87±0.14 c | 0.281±0.024 b | 2.38±0.02 b | 18.9±2.5 c | |
>50~70 | 5.12±0.08 ab | — | — | 21.4±4.2 c | |
>70~100 | 5.24±0.13 ab | — | — | 17.5±3.7 c | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 5.17±0.14 ab | — | — | 32.5±4.0 ab |
>15~30 | 5.19±0.12 ab | 0.368±0.028 a | 2.61±0.03 a | 31.2±3.4 ab | |
>30~50 | 5.07±0.07 b | 0.372±0.021 a | 2.59±0.03 a | 27.5±3.6 b | |
>50~70 | 5.05±0.09 b | — | — | 32.5±4.2 ab | |
>70~100 | 5.14±0.11 b | — | — | 31.3±5.2 ab |
表5 土壤风化指标与铁活化度
Table 5 Soil weathering indexes and iron activity
土壤样本 Soil samples | 深度 Depth/cm | pH | ba值 ba value | 黏粒Sa值 Sa value of clay | 铁活化度 Activation degree of iron oxide/% |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 5.32±0.11 a | — | — | 34.2±3.5 a |
>15~30 | 5.17±0.09 ab | 0.304±0.031 b | 2.42±0.02 b | 29.6±4.6 ab | |
>30~50 | 4.87±0.14 c | 0.281±0.024 b | 2.38±0.02 b | 18.9±2.5 c | |
>50~70 | 5.12±0.08 ab | — | — | 21.4±4.2 c | |
>70~100 | 5.24±0.13 ab | — | — | 17.5±3.7 c | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 5.17±0.14 ab | — | — | 32.5±4.0 ab |
>15~30 | 5.19±0.12 ab | 0.368±0.028 a | 2.61±0.03 a | 31.2±3.4 ab | |
>30~50 | 5.07±0.07 b | 0.372±0.021 a | 2.59±0.03 a | 27.5±3.6 b | |
>50~70 | 5.05±0.09 b | — | — | 32.5±4.2 ab | |
>70~100 | 5.14±0.11 b | — | — | 31.3±5.2 ab |
[1] | 章明奎. 土壤地理学与土壤调查技术[M]. 北京: 中国农业科学技术出版社, 2011. |
[2] | 季方, 王秀红. 阿尔泰山西北部土壤垂直带有机质性质的变化特征[J]. 干旱区地理, 1989, 12(3): 17-24. |
JI F, WANG X H. The soil vertical sequence of varied feature of organic matter nature in the northwestern Altai Mountains[J]. Arid Land Geography, 1989, 12(3): 17-24. (in Chinese with English abstract) | |
[3] | 蒲玉琳, 龙高飞, 刘世全, 等. 山地土壤坡向性分异的研究概况[J]. 土壤通报, 2007, 38(4): 753-757. |
PU Y L, LONG G F, LIU S Q, et al. Research progress in slope-directive variation of mountain soils[J]. Chinese Journal of Soil Science, 2007, 38(4): 753-757. (in Chinese with English abstract) | |
[4] | 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. |
[5] | 孙建, 程根伟. 山地垂直带谱研究评述[J]. 生态环境学报, 2014, 23(9): 1544-1550. |
SUN J, CHENG G W. Mountain altitudinal belt: a review[J]. Ecology and Environmental Sciences, 2014, 23(9): 1544-1550. (in Chinese with English abstract) | |
[6] | 张珍明, 贺红早, 张玉武, 等. 雷公山自然保护区不同植被类型土壤的肥力及碳含量[J]. 西南农业学报, 2014, 27(3): 1202-1206. |
ZHANG Z M, HE H Z, ZHANG Y W, et al. Soil fertility and carbon content of different vegetation types in Leigong Mountain natural reserve area[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1202-1206. (in Chinese with English abstract) | |
[7] | 张累德. 托木尔峰地区土壤垂直分布规律及土壤性质垂直变化特征[J]. 干旱区研究, 1984, 1(1): 16-27. |
ZHANG L D. Vertical distribution of soil and soil properties in Tomur Peak area[J]. Arid Zone Research, 1984, 1(1): 16-27. (in Chinese) | |
[8] | 邱堋星, 叶飞. 武夷山土壤性状及其垂直变化规律[J]. 东北林业大学学报, 2008, 36(1): 55-57. |
QIU P X, YE F. Characteristic and vertical changing regularities of soils in Wuyi Mountain[J]. Journal of Northeast Forestry University, 2008, 36(1): 55-57. (in Chinese with English abstract) | |
[9] | 徐华君. 阿尔泰山区土壤有机碳氧化稳定性的初步比较分析[J]. 水土保持研究, 2007, 14(6): 27-29. |
XU H J. Comparative analysis of the soil organic carbon oxidation stability in Altai Mountain, Xinjiang[J]. Research of Soil and Water Conservation, 2007, 14(6): 27-29. (in Chinese with English abstract) | |
[10] | 徐国良, 莫凌梓, 王嘉珊, 等. 广东罗浮山土壤动物多样性垂直变化特征[J]. 广州大学学报(自然科学版), 2016, 15(6): 9-16. |
XU G L, MO L Z, WANG J S, et al. Vertical zonality of soil fauna biodiversity in Loufushan, Guangdong[J]. Journal of Guangzhou University(Natural Science Edition), 2016, 15(6): 9-16. (in Chinese with English abstract) | |
[11] | 胡正超, 阿布都克热木江·杂依提, 杨晓东, 等. 天山北坡中段土壤有机碳含量的空间分异[J]. 安徽农业科学, 2018, 46(24): 100-104. |
HU Z C, ZAYITI A, YANG X D, et al. Soil organic carbon content's spatial differentiation in the northern slope of Tianshan Mountainous[J]. Journal of Anhui Agricultural Sciences, 2018, 46(24): 100-104. (in Chinese with English abstract) | |
[12] | 邓小华, 李源环, 周米良, 等. 武陵山地植烟土壤养分和酸度垂直分布特征[J]. 中国烟草科学, 2018, 39(3): 48-58. |
DENG X H, LI Y H, ZHOU M L, et al. Vertical distribution characteristics of main nutrients and acid parameters of tobacco-planting soils in Wuling Mountains[J]. Chinese Tobacco Science, 2018, 39(3): 48-58. (in Chinese with English abstract) | |
[13] | 徐华君, 王文欣, 王丹彤. 中天山北坡垂直带土壤有机碳密度分布特征[J]. 水土保持研究, 2015, 22(5): 35-38. |
XU H J, WANG W X, WANG D T. Distribution characteristics of soil organic carbon density on the northern slope in the middle section of Tianshan Mountainous[J]. Research of Soil and Water Conservation, 2015, 22(5): 35-38. (in Chinese with English abstract) | |
[14] | 冯秀伟. 庐山土壤有机质及氮磷钾含量与海拔关系研究[J]. 安徽农业科学, 2017, 45(28): 118-121. |
FENG X W. Study on the relationship between soil organic matter and N, P, K content and altitude in Mountain Lu[J]. Journal of Anhui Agricultural Sciences, 2017, 45(28): 118-121. (in Chinese with English abstract) | |
[15] | 张家春, 贺红早, 张玉武, 等. 黔东南不同林地土壤物理性质及养分含量差异[J]. 河南农业科学, 2014, 43(8): 49-53. |
ZHANG J C, HE H Z, ZHANG Y W, et al. Analysis of nutrient content and physical property of soil from different forest lands in southeast Guizhou Province[J]. Journal of Henan Agricultural Sciences, 2014, 43(8): 49-53. (in Chinese with English abstract) | |
[16] | 李超, 张凤荣, 王秀丽, 等. 华北山地土壤CaCO3含量/石灰反应垂直分布特征及其发生学解释[J]. 土壤学报, 2018, 55(5): 1074-1084. |
LI C, ZHANG F R, WANG X L, et al. Vertical distribution of soil CaCO3 content/lime reaction in mountainous regions of north China and its genetic explanation[J]. Acta Pedologica Sinica, 2018, 55(5): 1074-1084. (in Chinese with English abstract) | |
[17] | 侯海潮, 丁丽, 许中旗, 等. 燕山北部山地典型造林树种幼树根系分布特征[J]. 林业资源管理, 2018(4): 10-16. |
HOU H C, DING L, XU Z Q, et al. Root distribution of young trees of typical species in the northern region of Yanshan Mountains[J]. Forest Resources Management, 2018(4): 10-16. (in Chinese with English abstract) | |
[18] | 杨瑞红, 王新军. 伊犁河谷山地北坡土壤特性及植被群落多样性垂直分布格局[J]. 水土保持研究, 2016, 23(6): 32-39. |
YANG R H, WANG X J. The vertical distribution of vegetation patterns and soil properties at the northern slope of Ili River valley[J]. Research of Soil and Water Conservation, 2016, 23(6): 32-39. (in Chinese with English abstract) | |
[19] | 王景明, 卢志红, 吴建富, 等. 庐山土壤类型的特点与分布规律[J]. 江西农业大学学报, 2010, 32(6): 1284-1290. |
WANG J M, LU Z H, WU J F, et al. The characteristics and distribution patterns of the soil types in MT.Lushan[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(6): 1284-1290. (in Chinese with English abstract) | |
[20] | 宋萍. 基于地学信息图谱的胶东山区景观格局过程分析[D]. 泰安: 山东农业大学, 2013. |
SONG P. Landscape pattern process analysis based on the Geo-information Tupu in Jiaodong Mountain Area[D]. Tai'an: Shandong Agricultural University, 2013. (in Chinese with English abstract) | |
[21] | 李国明. 数字山地框架下典型植被垂直带谱的空间模式识别与气候环境分析: 以西藏吉隆沟为例[D]. 成都: 成都理工大学, 2012. |
LI G M. Research on the typical altitudinal belts of vegetation spatial pattern recognition and the climate and environment under the framework of digital mountain: a case study of Kuala Ditch in Tibet[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese with English abstract) | |
[22] | 胡正华, 于明坚, 索福喜. 古田山国家自然保护区常绿阔叶林植物物种多样性研究[J]. 中国农学通报, 2005, 21(3): 134-137. |
HU Z H, YU M J, SUO F X. The plant species diversity of the evergreen broad-leaved forest in Gutian Mountain National Nature Reserve[J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 134-137. (in Chinese with English abstract) | |
[23] | 于明坚, 胡正华, 余建平, 等. 浙江古田山自然保护区森林植被类型[J]. 浙江大学学报(农业与生命科学版), 2001, 27(4): 375-380. |
YU M J, HU Z H, YU J P, et al. Forest vegetation types in Gutianshan Natural Reserve in Zhejiang[J]. Journal of Zhejiang Agricultural University(Agriculture & Life Sciences), 2001, 27(4): 375-380. (in Chinese with English abstract) | |
[24] | 王宁宁, 米湘成, 童光蓉, 等. 2018年浙江古田山24公顷亚热带常绿阔叶林动态监测样地林冠结构与地形数据集[J]. 中国科学数据, 2024, 9(1): 190-201. |
WANG N N, MI X C, TONG G R, et al. The canopy structure and topography dataset of Zhejiang Gutianshan 24-hectare subtropical evergreen broad-leaved forest dynamic plot in 2018[J]. China Scientific Data, 2024, 9(1): 190-201. (in Chinese with English abstract) | |
[25] | 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. |
[26] | JENKINSON D S, POWLSON D S. The effects of biocidal treatments on metabolism in soil: V: a method for measuring soil biomass[J]. Soil Biology and Biochemistry, 1976, 8(3): 209-213. |
[27] | SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981-1987. |
[28] | 黄承标, 罗远周, 张建华, 等. 广西猫儿山自然保护区森林土壤化学性质垂直分布特征研究[J]. 安徽农业科学, 2009, 37(1): 245-247. |
HUANG C B, LUO Y Z, ZHANG J H, et al. The vertical distribution characters of forest soil chemical properties in Guangxi Maoer Mountain Nature Reserve[J]. Journal of Anhui Agricultural Sciences, 2009, 37(1): 245-247. (in Chinese with English abstract) | |
[29] | 刘桂林, 蒋家淡, 张鼎华, 等. 亚热带山地土壤碳动态与吸存研究进展[J]. 福建林业科技, 2007, 34(2): 163-168. |
LIU G L, JIANG J D, ZHANG D H, et al. The research progress on the carbon dynamics and adsorption in subtropic forest soil[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(2): 163-168. (in Chinese with English abstract) | |
[30] | 李向富, 刘目兴, 易军, 等. 三峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(8): 1809-1818. |
LI X F, LIU M X, YI J, et al. Soil hydrological function of different altitudinal hillslopes of the Three Gorges Mountain and its impact factors[J]. Resources and Environment in the Yangtze Basin, 2018, 27(8): 1809-1818. (in Chinese with English abstract) | |
[31] | 刘目兴, 吴丹, 崔文虎. 长江三峡山地不同垂直带土壤入渗研究[J]. 水土保持学报, 2015, 29(3): 56-61. |
LIU M X, WU D, CUI W H. Study on soil infiltration in different altitudinal mountain belts of the Three Gorges Region of Yangtze River[J]. Journal of Soil and Water Conservation, 2015, 29(3): 56-61. (in Chinese with English abstract) |
[1] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
[2] | 王塑天, 孟繁明, 胡斌, 辛海云, 李宝红, 杜宗亮, 李剑豪. 藏猪在亚热带条件下的生长特性及其杂交利用效果[J]. 浙江农业学报, 2020, 32(11): 1963-1969. |
[3] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||