浙江农业学报 ›› 2025, Vol. 37 ›› Issue (6): 1319-1326.DOI: 10.3969/j.issn.1004-1524.20240215
收稿日期:
2024-03-05
出版日期:
2025-06-25
发布日期:
2025-07-08
作者简介:
何昕昀(1999—),女,浙江临海人,硕士研究生,研究方向为土壤养分管理。E-mail:hexinyun0615@163.com
通讯作者:
*郭彦彪,E-mail:guoyanbiao@scau.edu.cn
基金资助:
HE Xinyun(), DENG Bichun, HU Qingyu, FENG Hong, GUO Yanbiao*(
)
Received:
2024-03-05
Online:
2025-06-25
Published:
2025-07-08
摘要:
香蕉是需氮量特别大的作物,合理施氮是保证香蕉产量、提高氮肥利用率、减轻环境负荷的基础,而合理施氮的前提是快速准确地判断土壤氮素供应水平。植物主要通过土壤溶液吸收氮素,因此土壤溶液中的氮素浓度在理论上能够更好地反映土壤的氮素供应强度,但是基于土壤溶液中氮素浓度的施肥方案研究非常缺乏。本研究旨在建立以监测土壤溶液中硝态氮浓度判断氮素供应水平,从而指导香蕉施肥的方法。分别于2019年和2020年相继开展香蕉营养液砂培试验和土壤盆栽试验,营养液砂培试验设置7个氮浓度(0、35、70、140、210、280、420 mg·L-1),土壤盆栽试验设置3个土壤溶液硝态氮浓度范围(<70、70~280、>280 mg·L-1)。研究结果表明:在砂培试验中,当氮浓度在70~280 mg·L-1时,香蕉植株的株高、叶绿素相对含量(SPAD值)、叶面积和总干物质量显著(P<0.05)高于氮浓度低于70 mg·L-1和高于280 mg·L-1的处理。在土壤盆栽试验中,将土壤溶液中的硝态氮浓度控制在70~280 mg·L-1,香蕉苗期的生长状况最优、生物量最大,与砂培结果具有一致性。土壤溶液中的硝态氮浓度在70~280 mg·L-1,可以作为香蕉苗期氮肥施用的参考指标。
中图分类号:
何昕昀, 邓碧纯, 胡清钰, 冯宏, 郭彦彪. 基于土壤溶液中硝态氮浓度的香蕉氮肥施用研究[J]. 浙江农业学报, 2025, 37(6): 1319-1326.
HE Xinyun, DENG Bichun, HU Qingyu, FENG Hong, GUO Yanbiao. Application of nitrogen fertilizer for banana based on nitrate nitrogen concentration in soil solution[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1319-1326.
处理 Treatment | 营养液配方中各化合物的用量Dosage of compounds in nutrient solution | ||||||
---|---|---|---|---|---|---|---|
Ca(NO3)2·4H2O | KNO3 | KH2PO3 | MgSO4·7H2O | KCl | CaCl2 | NH4Cl | |
T1 | — | — | 68 | 346.5 | 186.25 | 277.5 | — |
T2 | 295 | — | 68 | 346.5 | 186.25 | 138.75 | — |
T3 | 590 | — | 68 | 346.5 | 186.25 | — | — |
T4 | 590 | 253 | 68 | 346.5 | — | — | 133.75 |
T5 | 590 | 253 | 68 | 346.5 | — | — | 401.25 |
T6 | 590 | 253 | 68 | 346.5 | — | — | 668.75 |
T7 | 590 | 253 | 68 | 346.5 | — | — | 1 203.75 |
表1 各处理的营养液配方
Table 1 Formulations of nutrient solution of treatments mg·L-1
处理 Treatment | 营养液配方中各化合物的用量Dosage of compounds in nutrient solution | ||||||
---|---|---|---|---|---|---|---|
Ca(NO3)2·4H2O | KNO3 | KH2PO3 | MgSO4·7H2O | KCl | CaCl2 | NH4Cl | |
T1 | — | — | 68 | 346.5 | 186.25 | 277.5 | — |
T2 | 295 | — | 68 | 346.5 | 186.25 | 138.75 | — |
T3 | 590 | — | 68 | 346.5 | 186.25 | — | — |
T4 | 590 | 253 | 68 | 346.5 | — | — | 133.75 |
T5 | 590 | 253 | 68 | 346.5 | — | — | 401.25 |
T6 | 590 | 253 | 68 | 346.5 | — | — | 668.75 |
T7 | 590 | 253 | 68 | 346.5 | — | — | 1 203.75 |
处理 Treatment | 株高 Plant height/cm | SPAD | 叶面积 Leaf area/cm2 |
---|---|---|---|
T1 | 11.20±0.46 c | 25.28±0.62 e | 62.10±3.27 d |
T2 | 53.40±3.46 ab | 39.22±0.82 d | 562.35±27.61 b |
T3 | 64.60±3.93 a | 42.08±1.20 c | 711.53±39.52 ab |
T4 | 64.20±4.16 a | 44.10±0.78 bc | 654.83±21.57 ab |
T5 | 64.80±4.32 a | 44.32±1.04 bc | 702.90±52.74 ab |
T6 | 64.00±4.39 a | 45.22±1.10 b | 752.33±99.28 a |
T7 | 43.20±3.62 b | 49.24±0.80 a | 389.33±55.47 c |
表2 不同处理对香蕉苗期表观生长指标的影响
Table 2 Effects of treatments on apparent growth indices of banana seedlings
处理 Treatment | 株高 Plant height/cm | SPAD | 叶面积 Leaf area/cm2 |
---|---|---|---|
T1 | 11.20±0.46 c | 25.28±0.62 e | 62.10±3.27 d |
T2 | 53.40±3.46 ab | 39.22±0.82 d | 562.35±27.61 b |
T3 | 64.60±3.93 a | 42.08±1.20 c | 711.53±39.52 ab |
T4 | 64.20±4.16 a | 44.10±0.78 bc | 654.83±21.57 ab |
T5 | 64.80±4.32 a | 44.32±1.04 bc | 702.90±52.74 ab |
T6 | 64.00±4.39 a | 45.22±1.10 b | 752.33±99.28 a |
T7 | 43.20±3.62 b | 49.24±0.80 a | 389.33±55.47 c |
处理 Treatment | 地上部干重 Shoot dry weight | 根干重 Root dry weight | 总干重 Total dry weight |
---|---|---|---|
T1 | 2.35±0.42 c | 1.63±0.45 c | 3.98±0.83 c |
T2 | 31.53±5.26 a | 8.53±2.22 a | 40.06±7.35 a |
T3 | 33.84±4.78 a | 7.48±0.76 a | 41.32±5.44 a |
T4 | 27.79±4.82 a | 5.19±1.02 b | 32.98±5.76 a |
T5 | 28.29±4.62 a | 5.06±0.83 b | 33.35±5.42 a |
T6 | 34.17±12.15 a | 5.66±1.64 b | 39.83±13.76 a |
T7 | 17.61±7.00 b | 2.94±0.83 c | 20.56±7.80 b |
表3 不同处理对香蕉苗期生物量的影响
Table 3 Effects of treatments on biomass of banana seedlings g
处理 Treatment | 地上部干重 Shoot dry weight | 根干重 Root dry weight | 总干重 Total dry weight |
---|---|---|---|
T1 | 2.35±0.42 c | 1.63±0.45 c | 3.98±0.83 c |
T2 | 31.53±5.26 a | 8.53±2.22 a | 40.06±7.35 a |
T3 | 33.84±4.78 a | 7.48±0.76 a | 41.32±5.44 a |
T4 | 27.79±4.82 a | 5.19±1.02 b | 32.98±5.76 a |
T5 | 28.29±4.62 a | 5.06±0.83 b | 33.35±5.42 a |
T6 | 34.17±12.15 a | 5.66±1.64 b | 39.83±13.76 a |
T7 | 17.61±7.00 b | 2.94±0.83 c | 20.56±7.80 b |
处理 Treatment | 氮含量N content | 磷含量P content | 钾含量K content | 钙含量Ca content | 镁含量Mg content | |||||
---|---|---|---|---|---|---|---|---|---|---|
根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | |
T1 | 5.73± 0.27 g | 7.72± 0.60 f | 3.17± 0.17 a | 4.24± 0.22 a | 75.71± 9.20 a | 68.52± 4.38 a | 10.76± 0.58 c | 8.90± 0.41 c | 3.36± 0.18 c | 3.41± 0.14 bc |
T2 | 10.02± 0.76 f | 11.31± 0.78 e | 1.96± 0.05 c | 1.32± 0.03 d | 63.70± 3.18 ab | 40.00± 1.44 d | 11.99± 0.44 abc | 29.73± 2.57 b | 8.45± 0.40 b | 6.01± 0.56 a |
T3 | 14.15± 0.24 e | 17.54± 0.55 d | 1.97± 0.08 c | 1.38± 0.05 d | 62.70± 4.44 ab | 45.17± 0.60 cd | 11.71± 0.80 bc | 42.11± 8.21 a | 10.52± 1.18 a | 5.29± 0.20 a |
T4 | 19.85± 0.34 d | 22.83± 0.90 c | 2.08± 0.05 bc | 1.85± 0.19 c | 64.18± 0.87 ab | 47.34± 1.94 cd | 14.18± 1.21 ab | 25.71± 4.33 b | 8.48± 0.55 b | 5.24± 0.20 a |
T5 | 21.34± 0.03 c | 26.19± 0.19 b | 2.39± 0.07 b | 2.53± 0.1 b | 57.64± 2.19 b | 51.56± 1.42 bc | 13.32± 0.97 abc | 32.69± 1.70 ab | 7.78± 0.22 b | 4.06± 0.13 bc |
T6 | 24.32± 0.8 b | 29.35± 0.68 a | 2.10± 0.13 bc | 2.06± 0.12 c | 56.40± 3.09 b | 49.07± 3.40 bc | 12.76± 0.40 abc | 29.16± 2.04 b | 8.54± 0.23 b | 4.26± 0.47 b |
T7 | 26.53± 0.37 a | 30.94± 0.23 a | 2.16± 0.11 bc | 1.91± 0.09 c | 51.87± 3.36 b | 55.32± 1.55 b | 14.75± 1.13 a | 24.74± 4.31 b | 7.31± 0.89 b | 3.24± 0.11 c |
表4 不同处理对香蕉氮、磷、钾、钙、镁含量的影响
Table 4 Effect of treatments on N, P, K, Ca, Mg content of banana g·kg-1
处理 Treatment | 氮含量N content | 磷含量P content | 钾含量K content | 钙含量Ca content | 镁含量Mg content | |||||
---|---|---|---|---|---|---|---|---|---|---|
根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | 根 Root | 地上部 Shoot | |
T1 | 5.73± 0.27 g | 7.72± 0.60 f | 3.17± 0.17 a | 4.24± 0.22 a | 75.71± 9.20 a | 68.52± 4.38 a | 10.76± 0.58 c | 8.90± 0.41 c | 3.36± 0.18 c | 3.41± 0.14 bc |
T2 | 10.02± 0.76 f | 11.31± 0.78 e | 1.96± 0.05 c | 1.32± 0.03 d | 63.70± 3.18 ab | 40.00± 1.44 d | 11.99± 0.44 abc | 29.73± 2.57 b | 8.45± 0.40 b | 6.01± 0.56 a |
T3 | 14.15± 0.24 e | 17.54± 0.55 d | 1.97± 0.08 c | 1.38± 0.05 d | 62.70± 4.44 ab | 45.17± 0.60 cd | 11.71± 0.80 bc | 42.11± 8.21 a | 10.52± 1.18 a | 5.29± 0.20 a |
T4 | 19.85± 0.34 d | 22.83± 0.90 c | 2.08± 0.05 bc | 1.85± 0.19 c | 64.18± 0.87 ab | 47.34± 1.94 cd | 14.18± 1.21 ab | 25.71± 4.33 b | 8.48± 0.55 b | 5.24± 0.20 a |
T5 | 21.34± 0.03 c | 26.19± 0.19 b | 2.39± 0.07 b | 2.53± 0.1 b | 57.64± 2.19 b | 51.56± 1.42 bc | 13.32± 0.97 abc | 32.69± 1.70 ab | 7.78± 0.22 b | 4.06± 0.13 bc |
T6 | 24.32± 0.8 b | 29.35± 0.68 a | 2.10± 0.13 bc | 2.06± 0.12 c | 56.40± 3.09 b | 49.07± 3.40 bc | 12.76± 0.40 abc | 29.16± 2.04 b | 8.54± 0.23 b | 4.26± 0.47 b |
T7 | 26.53± 0.37 a | 30.94± 0.23 a | 2.16± 0.11 bc | 1.91± 0.09 c | 51.87± 3.36 b | 55.32± 1.55 b | 14.75± 1.13 a | 24.74± 4.31 b | 7.31± 0.89 b | 3.24± 0.11 c |
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 叶面积 Leaf area/cm2 |
---|---|---|---|
N1 | 109.05± 5.25 a | 64.00± 3.68 b | 1 569.33± 95.51 b |
N2 | 128.73± 7.08 a | 71.22± 2.20 a | 2 783.33± 92.32 a |
N3 | 118.50± 6.03 a | 69.94± 1.01 a | 2 676.67± 179.85 a |
表5 土壤溶液硝态氮质量浓度对香蕉表观生长指标的影响
Table 5 Effects of nitrate nitrogen concentrations in soil solution on apparent growth indices of banana
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 叶面积 Leaf area/cm2 |
---|---|---|---|
N1 | 109.05± 5.25 a | 64.00± 3.68 b | 1 569.33± 95.51 b |
N2 | 128.73± 7.08 a | 71.22± 2.20 a | 2 783.33± 92.32 a |
N3 | 118.50± 6.03 a | 69.94± 1.01 a | 2 676.67± 179.85 a |
处理 Treatment | 根干重 Root dry weight | 假茎干重 Pseudo-stem dry weight | 叶干重 Leaf dry weight | 地上部干重 Shoot dry weight |
---|---|---|---|---|
N1 | 20.42±0.85 a | 72.90±1.79 ab | 34.52±6.82 b | 107.42±5.03 c |
N2 | 14.49±0.93 b | 76.11±0.72 a | 66.48±4.06 a | 142.59±4.72 a |
N3 | 12.10±0.82 b | 67.14±3.52 b | 58.55±1.42 a | 125.68±3.75 b |
表6 土壤溶液硝态氮质量浓度对香蕉生物量的影响
Table 6 Effects of nitrate nitrogen concentrations in soil solution on banana biomass g
处理 Treatment | 根干重 Root dry weight | 假茎干重 Pseudo-stem dry weight | 叶干重 Leaf dry weight | 地上部干重 Shoot dry weight |
---|---|---|---|---|
N1 | 20.42±0.85 a | 72.90±1.79 ab | 34.52±6.82 b | 107.42±5.03 c |
N2 | 14.49±0.93 b | 76.11±0.72 a | 66.48±4.06 a | 142.59±4.72 a |
N3 | 12.10±0.82 b | 67.14±3.52 b | 58.55±1.42 a | 125.68±3.75 b |
处理 Treatment | 氮含量N content | 磷含量P content | 钾含量K content | ||||||
---|---|---|---|---|---|---|---|---|---|
根 Root | 假茎 Pseudo-stem | 叶片 Leaf | 根 Root | 假茎 Pseudo-stem | 叶片 Leaf | 根 Root | 假茎 Pseudo-stem | 叶片 Leaf | |
N1 | 7.13± 0.59 b | 3.96± 0.14 b | 25.50± 1.07 c | 1.47± 0.11 a | 2.68± 0.08 a | 4.07± 0.03 a | 46.51± 2.63 a | 57.56± 2.76 c | 77.19± 5.27 a |
N2 | 16.24± 0.22 a | 21.77± 0.51 a | 58.64± 0.73 b | 1.22± 0.02 ab | 2.19± 0.22 a | 4.52± 0.11 a | 44.67± 3.98 a | 86.98± 3.52 a | 65.91± 2.73 a |
N3 | 18.05± 0.78 a | 22.98± 0.90 a | 63.03± 0.80 a | 1.16± 0.08 b | 2.36± 0.21 a | 4.28± 0.22 a | 33.58± 1.83 b | 74.53± 1.39 b | 64.35± 4.18 a |
表7 土壤溶液硝态氮质量浓度对香蕉氮、磷、钾含量的影响
Table 7 Effect of nitrate nitrogen concentrations in soil solution on N, P, K content of banana g·kg-1
处理 Treatment | 氮含量N content | 磷含量P content | 钾含量K content | ||||||
---|---|---|---|---|---|---|---|---|---|
根 Root | 假茎 Pseudo-stem | 叶片 Leaf | 根 Root | 假茎 Pseudo-stem | 叶片 Leaf | 根 Root | 假茎 Pseudo-stem | 叶片 Leaf | |
N1 | 7.13± 0.59 b | 3.96± 0.14 b | 25.50± 1.07 c | 1.47± 0.11 a | 2.68± 0.08 a | 4.07± 0.03 a | 46.51± 2.63 a | 57.56± 2.76 c | 77.19± 5.27 a |
N2 | 16.24± 0.22 a | 21.77± 0.51 a | 58.64± 0.73 b | 1.22± 0.02 ab | 2.19± 0.22 a | 4.52± 0.11 a | 44.67± 3.98 a | 86.98± 3.52 a | 65.91± 2.73 a |
N3 | 18.05± 0.78 a | 22.98± 0.90 a | 63.03± 0.80 a | 1.16± 0.08 b | 2.36± 0.21 a | 4.28± 0.22 a | 33.58± 1.83 b | 74.53± 1.39 b | 64.35± 4.18 a |
处理 Treatment | 钙含量Ca content | 镁含量Mg content | ||||
---|---|---|---|---|---|---|
根Root | 假茎Pseudo-stem | 叶片Leaf | 根Root | 假茎Pseudo-stem | 叶片Leaf | |
N1 | 5.83±1.35 a | 5.06±0.55 a | 5.39±0.66 a | 3.71±0.53 a | 1.59±0.08 a | 3.56±0.19 a |
N2 | 8.66±0.58 a | 6.64±0.90 a | 5.89±0.51 a | 4.84±0.49 a | 1.85±0.17 a | 3.71±0.07 a |
N3 | 7.76±0.53 a | 6.82±0.31 a | 5.87±0.27 a | 4.27±0.49 a | 1.47±0.10 a | 2.71±0.14 b |
表8 土壤溶液硝态氮质量浓度对香蕉钙、镁含量的影响
Table 8 Effect of nitrate nitrogen concentrations in soil solution on Ca, Mg content of banana g·kg-1
处理 Treatment | 钙含量Ca content | 镁含量Mg content | ||||
---|---|---|---|---|---|---|
根Root | 假茎Pseudo-stem | 叶片Leaf | 根Root | 假茎Pseudo-stem | 叶片Leaf | |
N1 | 5.83±1.35 a | 5.06±0.55 a | 5.39±0.66 a | 3.71±0.53 a | 1.59±0.08 a | 3.56±0.19 a |
N2 | 8.66±0.58 a | 6.64±0.90 a | 5.89±0.51 a | 4.84±0.49 a | 1.85±0.17 a | 3.71±0.07 a |
N3 | 7.76±0.53 a | 6.82±0.31 a | 5.87±0.27 a | 4.27±0.49 a | 1.47±0.10 a | 2.71±0.14 b |
[1] | 赵凤亮, 邹刚华, 单颖, 等. 香蕉园化肥施用现状、面源污染风险及其养分综合管理措施[J]. 热带作物学报, 2020, 41(11): 2346-2352. |
ZHAO F L, ZOU G H, SHAN Y, et al. Current status of chemical fertilizer application in banana plantation, environmental risks and integrated nutrient management practices[J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2346-2352. (in Chinese with English abstract) | |
[2] | 涂攀峰, 邓兰生, 龚林, 等. 香蕉水肥一体化技术: 按叶片数滴灌施肥[J]. 广东农业科学, 2011, 38(2): 59-61. |
TU P F, DENG L S, GONG L, et al. Technology of fertigation on banana by drip irrigation according to leaves[J]. Guangdong Agricultural Sciences, 2011, 38(2): 59-61. (in Chinese with English abstract) | |
[3] | 姚丽贤, 周修冲, 彭志平, 等. 巴西蕉的营养特性及钾镁肥配施技术研究[J]. 植物营养与肥料学报, 2005, 11(1): 116-121. |
YAO L X, ZHOU X C, PENG Z P, et al. Nutritional characteristics and K and Mg fertilizer combination in Baxi banana[J]. Plant Nutrition and Fertilizing Science, 2005, 11(1): 116-121. (in Chinese with English abstract) | |
[4] | DE SOUZA E R, DE MELO H F, DE ALMEIDA B G, et al. Comparação de métodos de extração da solução do solo[J]. Revista Brasileira de Engenharia Agrícola e Ambiental, 2013, 17(5): 510-517. |
[5] | LAO M U D A, JIMÉNEZ S C D I, EYMAR E U A D, et al. Nutrient levels of the soil solution obtained by means of suction cups in intensive tomato cultivation[J]. Phyton (Buenos Aires), 2004, 73: 29-37. |
[6] | RODRÍGUEZ A, PEÑA-FLEITAS M T, PADILLA F M, et al. Soil monitoring methods to assess immediately available soil N for fertigated sweet pepper[J]. Agronomy, 2020, 10(12): 2000. |
[7] | CABRERA CORRAL F J, BONACHELA CASTAÑO S, FERNÁNDEZ FERNÁNDEZ M D, et al. Lysimetry methods for monitoring soil solution electrical conductivity and nutrient concentration in greenhouse tomato crops[J]. Agricultural Water Management, 2016, 178: 171-179. |
[8] | 李世清, 李生秀, 李凤民. 石灰性土壤剖面氮素的矿化和硝化作用[J]. 兰州大学学报, 2000, 36(1): 98-104. |
LI S Q, LI S X, LI F M. Mineralization and nitrification of soil nitrogen in calcareous soil profile[J]. Journal of Lanzhou University, 2000, 36(1): 98-104. (in Chinese with English abstract) | |
[9] | 李世清, 卜彤英, 李生秀. 石灰性土壤中NH4+-N的硝化与NH4+-N的粘(黏)土矿物固定[J]. 干旱地区农业研究, 1993, 11(S1): 99-107. |
LI S Q, BU T Y, LI S X. Ammonium nitrification and fixation by clay minerals in calcareous soil[[J]. Agricultural Research in the Arid Areas, 1993, 11(S1): 99-107. (in Chinese) | |
[10] | 张艺磊, 韩建, 张丽娟, 等. 新型尿素对农田土壤N2O排放、氨挥发及土壤氮素转化的影响[J]. 江苏农业科学, 2019, 47(11): 313-316. |
ZHANG Y L, HAN J, ZHANG L J, et al. Effects of new type of urea on N2O emission, ammonia volatilization and soil nitrogen transformation in farmland soil[J]. Jiangsu Agricultural Sciences, 2019, 47(11): 313-316. (in Chinese with English abstract) | |
[11] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. |
[12] | DE OLIVEIRA MARQUES J D, LUIZÃO F J, TEIXEIRA W G, et al. Variações do carbono orgânico dissolvido e de atributos físicos do solo sob diferentes sistemas de uso da Terra na Amazônia central[J]. Revista Brasileira de Ciência Do Solo, 2012, 36(2): 611-622. |
[13] | DE SOUZA T R, BARDIVIESSO D M, DE ANDRADE T F, et al. Nutrientes no solo e na solução do solo na citricultura fertirrigada por gotejamento[J]. Engenharia Agrícola, 2015, 35(3): 484-493. |
[14] | 王露, 杨帅, 陈玉子, 等. 不同供氮水平下加硅对香蕉生长与氮营养的影响[J]. 热带作物学报, 2019, 40(4): 664-669. |
WANG L, YANG S, CHEN Y Z, et al. Effect of silicate on banana growth and nitrogen nutrition with different nitrogen supply level[J]. Chinese Journal of Tropical Crops, 2019, 40(4): 664-669. (in Chinese with English abstract) | |
[15] | 黄小娟, 杨腊英, 谢德啸, 等. 巴西香蕉苗静置水培营养液配方的初步筛选[J]. 热带农业科学, 2012, 32(9): 44-48. |
HUANG X J, YANG L Y, XIE D X, et al. Screening of the nutrient solution formulas for static hydroponics of banana(Musa AAA cavendish subgroup ‘Brazil’) plantlets[J]. Chinese Journal of Tropical Agriculture, 2012, 32(9): 44-48. (in Chinese with English abstract) | |
[16] | 杨旭, 邹志荣, 贺忠群, 等. 蔬菜无土栽培营养液中的氮素及其调控[J]. 西北植物学报, 2003, 23(9): 1644-1649. |
YANG X, ZOU Z R, HE Z Q, et al. The solution nitrogen of vegetable in nutrient solution and its regulation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(9): 1644-1649. (in Chinese with English abstract) | |
[17] | 杨苞梅, 林电, 李家均, 等. 香蕉营养规律的研究[J]. 云南农业大学学报, 2007, 22(1): 117-121. |
YANG B M, LIN D, LI J J, et al. Studies on the nutrition characteristics of banana[J]. Journal of Yunnan Agricultural University, 2007, 22(1): 117-121. (in Chinese with English abstract) | |
[18] | ADINARAYANA V, BALAGURAVAIAH D, RAO Y N, et al. Potassium and sodium disorders in banana[J]. Journal of Potassium Research, 1986, 2(3): 102-107. |
[19] | ZHANG J B, TIAN P, TANG J L, et al. The characteristics of soil N transformations regulate the composition of hydrologic N export from terrestrial ecosystem[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1409-1419. |
[20] | GRANADOS M R, THOMPSON R B, FERNÁNDEZ M D, et al. Prescriptive-corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches[J]. Agricultural Water Management, 2013, 119: 121-134. |
[21] | BENAVIDES-MENDOZA A, DE ALBA-ROMENUS K, FRANCISCO-FRANCISCO N. Relation between soil solution composition and petiole cellular extract of crops in western Mexico[J]. Revista Terra Latinoamericana, 2021, 39: 1-13. |
[1] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
[2] | 吴昊霖, 王淑珍, 朱祝军, 何勇. 基于近红外光谱技术和机器学习模型的基质氮含量快速检测[J]. 浙江农业学报, 2025, 37(5): 1159-1171. |
[3] | 何国欣, 李素娟, 王剑, 陶晓园, 叶子弘, 陈光, 徐盛春. 大豆种质苗期低氮耐性筛选和鉴定[J]. 浙江农业学报, 2025, 37(5): 965-976. |
[4] | 刘奇华, 孙召文, 郑崇珂. 氮肥运筹对旱直播稻地上部微量元素吸收分配的影响[J]. 浙江农业学报, 2025, 37(5): 987-997. |
[5] | 董智超, 岳宁燕, 吕魏, 余晓燚, 郑凯文, 宋海星, 陈海飞. 高、低含油量油菜品种的产量、品质和氮利用效率对施氮量的响应差异[J]. 浙江农业学报, 2025, 37(5): 998-1008. |
[6] | 秦宇坤, 陈俊英, 王玉萍, 张丽娟. 减氮增碳对长江流域棉花生产和氮素吸收利用的影响[J]. 浙江农业学报, 2025, 37(4): 869-879. |
[7] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
[8] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
[9] | 陈俊霖, 蒋娜, 刘鑫, 卓红, 田昌, 韩永亮, 张玉平, 荣湘民. 控释氮肥减量对作物产量、氮素吸收与径流损失的影响[J]. 浙江农业学报, 2024, 36(4): 846-858. |
[10] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
[11] | 龚娜, 刘国丽, 陈珣, 马晓颖, 肇莹, 肖军. 一株野生肺形侧耳的鉴定及其液体发酵培养基的优化[J]. 浙江农业学报, 2024, 36(11): 2535-2545. |
[12] | 陈钰佩, 单英杰, 陆若辉, 朱伟锋, 孔海民. 浙江省主要作物的施肥现状与减施潜力[J]. 浙江农业学报, 2024, 36(11): 2566-2574. |
[13] | 王佳丽, 王梓宇, 马咏琪, 唐德富, 孙丽坤. 氮素转化菌群对牛粪好氧堆肥的保氮效果[J]. 浙江农业学报, 2024, 36(1): 177-186. |
[14] | 孙丽娟, 李世民, 郭焕仙, 金友帆, 李树萍, 董琼. 树番茄幼苗生长与氮磷钾化学计量特征对光照、肥料的响应[J]. 浙江农业学报, 2023, 35(8): 1793-1804. |
[15] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||