浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 978-996.DOI: 10.3969/j.issn.1004-1524.20230660
• 综述 • 上一篇
牛钰1(), 李晶1, 王俊文1, 李瑞瑞1, 田强1, 武玥1,*(
), 郁继华1,2,*(
)
收稿日期:
2023-05-18
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
牛钰(1999—),女,甘肃卓尼人,藏族,硕士研究生,研究方向为设施蔬菜栽培生理与生长调控研究。E-mail:2262832454@qq.com
通讯作者:
*武玥,E-mail:wuy@gsau.edu.cn;郁继华,E-mail:yujihua@gsau.edu.cn
基金资助:
NIU Yu1(), LI Jing1, WANG Junwen1, LI Ruirui1, TIAN Qiang1, WU Yue1,*(
), YU Jihua1,2,*(
)
Received:
2023-05-18
Online:
2024-04-25
Published:
2024-04-29
Contact:
WU Yue,YU Jihua
摘要:
花青素是广泛存在于植物体中的一种重要次级代谢物,是影响植物呈色的关键物质,其生物合成具有一定的组织表达特异性,并能够受到内源和外源因素的调控,包括转录因子、植物生长调节剂以及环境条件。文章综述了近年来植物花青素的研究进展和现状,对花青素的生物合成、调控网络、影响因素、生物活性和检测策略进行了系统地阐述,并对存在的问题和未来研究方向进行了探讨。
中图分类号:
牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996.
NIU Yu, LI Jing, WANG Junwen, LI Ruirui, TIAN Qiang, WU Yue, YU Jihua. Research progress of anthocyanin biosynthesis, regulation, bioactivity and detection in higher plants[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 978-996.
花青素种类 Anthocyanins species | R1碳位官能团 R1 carbon funtional group | R2碳位官能团 R2 carbon funtional group | 物种 Plant species | 参考文献 References |
---|---|---|---|---|
天竺葵色素 Pelargonidin (Pe) | H | H | 桑葚Morus alba L. 玫瑰Rosa spp. | [ |
矢车菊色素Cyanidin (Cy) | OH | H | 蓝莓Vaccinium spp. | [ |
飞燕草色素 Delphindin (DP) | OH | OH | 黑枸杞Lycium ruthenicum Murr. 蓝莓Vaccinium spp. | [ |
芍药花色 Peonidin (Pn) | OMe | H | 玫瑰Rosa rugosa 黑胡萝卜Daucus carota L. | [ [ |
牵牛花色素 Petunidin (Pt) | OMe | OH | 马铃薯Solanum tuberosum 黑枸杞Lycium ruthenicum Murr. | [ |
锦葵色素 Malvidin (Mv) | OMe | OMe | 葡萄Vitis vinifera L. 越橘Vaccinium corymbosum | [ |
表1 六种常见的花青素及其取代官能团位置
Table 1 Six kinds of anthocyanins and their substituted chemical group
花青素种类 Anthocyanins species | R1碳位官能团 R1 carbon funtional group | R2碳位官能团 R2 carbon funtional group | 物种 Plant species | 参考文献 References |
---|---|---|---|---|
天竺葵色素 Pelargonidin (Pe) | H | H | 桑葚Morus alba L. 玫瑰Rosa spp. | [ |
矢车菊色素Cyanidin (Cy) | OH | H | 蓝莓Vaccinium spp. | [ |
飞燕草色素 Delphindin (DP) | OH | OH | 黑枸杞Lycium ruthenicum Murr. 蓝莓Vaccinium spp. | [ |
芍药花色 Peonidin (Pn) | OMe | H | 玫瑰Rosa rugosa 黑胡萝卜Daucus carota L. | [ [ |
牵牛花色素 Petunidin (Pt) | OMe | OH | 马铃薯Solanum tuberosum 黑枸杞Lycium ruthenicum Murr. | [ |
锦葵色素 Malvidin (Mv) | OMe | OMe | 葡萄Vitis vinifera L. 越橘Vaccinium corymbosum | [ |
类别 Category | 转录因子 Transcription factors | 物种 Plant species | 调节基因 Regulate genes | 参考文献 Reference |
---|---|---|---|---|
MYB | PmMYBa1 | 梅花Armeniaca mume Sieb. | DFR, ANS | [ |
EsAN2 | 淫羊藿Epimedium brevicornu Maxim. | CHIS, CHI, ANS | [ | |
CmMYB6 | 菊花Dendranthema morifolium Tzvel. | DFR | [ | |
GmMYB10 | 山竹Garcinia mangostana L. | DFR, UFGT | [ | |
TaMyb1D | 烟草Nicotiana tabacum L. | PAL, CHS, CHI, F3H, DFR, FLS | [ | |
OsPL | 水稻Oryza sativa L. | PAL, CHS, ANS | [ | |
AtMYBL2 | 拟南芥Arabidopsis thaliana | AtTT8, DFR | [ | |
TaPL1 | 小麦Triticum aestivum | PAL, CHS, CHI, F3H, DFR | [ | |
VvMYBA1/6/7 | 葡萄Vitis vinifera L. | UFGT, 3AT | [ | |
DcMYB6 | 黑胡萝卜Daucus carota L. | CHS, DFR | [ | |
PpMYB10.1 | 桃Prunus persica | DFR, UFGT | [ | |
PpMYBPA1 | 桃Prunus persica | LAR1 | [ | |
bHLH | PsbHLH1 | 牡丹Paeonia suffruticosaAndr. | DFR, ANS | [ |
PubHLH2 | 石榴Punica granatum L. | DFR, ANS | [ | |
AtGL3/TT8 | 拟南芥Arabidopsis thaliana | CHS, CHI, F3H, F3'H, DFR, ANS, GT | [ | |
LeAH | 番茄Lycopersicon esculentum Mill. | F3'5'H, DFR, ANS, 3GT, GST | [ | |
MdMYC2 | 苹果Malus×domestica | DFR, UF3GT, F3H, CHS | [ | |
MdbHLH3 | 苹果Malus×domestica | DFR, UFGT | [ | |
AcbHLH42 | 猕猴桃Actinidia chinensis Planch | F3GT1, ANS | [ | |
SmTT8 | 茄子Solanum melongena L. | CHI, F3H, DFR, 3GT, 5GT | [ | |
WD40 | MdTTG1 | 苹果Malus×domestica | PAL, CHI, CHS | [ |
PhAN11 | 矮牵牛Petunia hybrida Vilm. | DFR | [ | |
Pu TTG1 | 石榴Punica granatum L. | DFR, LDOX | [ | |
GhTTG1/TTG3 | 棉花Gossypium spp. | DFR | [ | |
StAN11 | 马铃薯Solanum tuberosum | DFR | [ |
表2 部分花青素合成途径相关转录因子
Table 2 Transcription factors related to anthocyanin synthesis pathway
类别 Category | 转录因子 Transcription factors | 物种 Plant species | 调节基因 Regulate genes | 参考文献 Reference |
---|---|---|---|---|
MYB | PmMYBa1 | 梅花Armeniaca mume Sieb. | DFR, ANS | [ |
EsAN2 | 淫羊藿Epimedium brevicornu Maxim. | CHIS, CHI, ANS | [ | |
CmMYB6 | 菊花Dendranthema morifolium Tzvel. | DFR | [ | |
GmMYB10 | 山竹Garcinia mangostana L. | DFR, UFGT | [ | |
TaMyb1D | 烟草Nicotiana tabacum L. | PAL, CHS, CHI, F3H, DFR, FLS | [ | |
OsPL | 水稻Oryza sativa L. | PAL, CHS, ANS | [ | |
AtMYBL2 | 拟南芥Arabidopsis thaliana | AtTT8, DFR | [ | |
TaPL1 | 小麦Triticum aestivum | PAL, CHS, CHI, F3H, DFR | [ | |
VvMYBA1/6/7 | 葡萄Vitis vinifera L. | UFGT, 3AT | [ | |
DcMYB6 | 黑胡萝卜Daucus carota L. | CHS, DFR | [ | |
PpMYB10.1 | 桃Prunus persica | DFR, UFGT | [ | |
PpMYBPA1 | 桃Prunus persica | LAR1 | [ | |
bHLH | PsbHLH1 | 牡丹Paeonia suffruticosaAndr. | DFR, ANS | [ |
PubHLH2 | 石榴Punica granatum L. | DFR, ANS | [ | |
AtGL3/TT8 | 拟南芥Arabidopsis thaliana | CHS, CHI, F3H, F3'H, DFR, ANS, GT | [ | |
LeAH | 番茄Lycopersicon esculentum Mill. | F3'5'H, DFR, ANS, 3GT, GST | [ | |
MdMYC2 | 苹果Malus×domestica | DFR, UF3GT, F3H, CHS | [ | |
MdbHLH3 | 苹果Malus×domestica | DFR, UFGT | [ | |
AcbHLH42 | 猕猴桃Actinidia chinensis Planch | F3GT1, ANS | [ | |
SmTT8 | 茄子Solanum melongena L. | CHI, F3H, DFR, 3GT, 5GT | [ | |
WD40 | MdTTG1 | 苹果Malus×domestica | PAL, CHI, CHS | [ |
PhAN11 | 矮牵牛Petunia hybrida Vilm. | DFR | [ | |
Pu TTG1 | 石榴Punica granatum L. | DFR, LDOX | [ | |
GhTTG1/TTG3 | 棉花Gossypium spp. | DFR | [ | |
StAN11 | 马铃薯Solanum tuberosum | DFR | [ |
物种 Species | 测定样品/部位 Measuring sample/parts | 方法 Method | 参考文献 Reference |
---|---|---|---|
葡萄Vitis vinifera L. | 果肉Pulp | 纤维素薄层色谱-密度分析法Thin-layer chromatography | [ |
葡萄Vitis vinifera L. | 果皮Pericarp | 高效液相色谱法High-performance liquid chromatography | [ |
越橘Vaccinium dunalianum | 叶片Leaf | 紫外分光光度计法The UV spectrophotometry | [ |
蓝莓Vaccinium spp. | 果实Fruit | 酶辅助提取Enzyme-assisted extraction | [ |
黑胡萝卜Daucus carota L. | 根Root | pH示差法The pH-differential spectrophotometry | [ |
葡萄Vitis vinifera L. | 果皮Pericarp | 反向高效液相色谱法 | [ |
Reversed phase high-performance liquid chromatography | |||
苹果Malus×domestica | 果实Fruit | 对-二甲基氨基肉桂醛法The P-dimethylamino-cinnamaldehyde method | [ |
覆盆子Rubus idaeus L. | 果实Fruit | 超高效液相色谱-光电二极管阵列检测器-四极杆飞行时间质谱法 | [ |
UPLC-PDA-Q/TOF-MS | |||
巴西莓 | 冻干巴西莓粉 | 液相色谱-质谱联用测定法LS-MS | [ |
Euterpe oleracea Mart. | Freeze-dried acaie powder | ||
蔓越莓Oxycoccos | 果肉Pulp | 香草醛法Vanillin method | [ |
蓝莓Vaccinium spp. | 果肉Pulp | 电化学发光法Electrochemiluminescence | [ |
甘草 | 根Root | 超高效液相色谱-二极管阵列检测器串联质谱法MS/MS- UPLC-PDA | [ |
Glycyrrhiza uralensis Fisch. | |||
山楂 | 果肉Pulp | 定量核磁共振法Quantitative NMR | [ |
Crataegus pinnatifida Bge. | |||
马铃薯Solanum tuberosum | 块茎Tuber | 超高效液相色谱-二极管阵列检测器法UPLC-PDA | [ |
黑稻Oryza sativa L. | 种子Seeding | 欧姆加热辅助萃取Ohmic heating assisted extraction | [ |
马齿苋Portulaca oleracea L. | 叶片Leaf | 超高效液相色谱-电喷雾串联三重四级杆质谱法UPLC-ESI-MS/MS | [ |
表3 花青素测定方法
Table 3 Analytical method of anthocyanin
物种 Species | 测定样品/部位 Measuring sample/parts | 方法 Method | 参考文献 Reference |
---|---|---|---|
葡萄Vitis vinifera L. | 果肉Pulp | 纤维素薄层色谱-密度分析法Thin-layer chromatography | [ |
葡萄Vitis vinifera L. | 果皮Pericarp | 高效液相色谱法High-performance liquid chromatography | [ |
越橘Vaccinium dunalianum | 叶片Leaf | 紫外分光光度计法The UV spectrophotometry | [ |
蓝莓Vaccinium spp. | 果实Fruit | 酶辅助提取Enzyme-assisted extraction | [ |
黑胡萝卜Daucus carota L. | 根Root | pH示差法The pH-differential spectrophotometry | [ |
葡萄Vitis vinifera L. | 果皮Pericarp | 反向高效液相色谱法 | [ |
Reversed phase high-performance liquid chromatography | |||
苹果Malus×domestica | 果实Fruit | 对-二甲基氨基肉桂醛法The P-dimethylamino-cinnamaldehyde method | [ |
覆盆子Rubus idaeus L. | 果实Fruit | 超高效液相色谱-光电二极管阵列检测器-四极杆飞行时间质谱法 | [ |
UPLC-PDA-Q/TOF-MS | |||
巴西莓 | 冻干巴西莓粉 | 液相色谱-质谱联用测定法LS-MS | [ |
Euterpe oleracea Mart. | Freeze-dried acaie powder | ||
蔓越莓Oxycoccos | 果肉Pulp | 香草醛法Vanillin method | [ |
蓝莓Vaccinium spp. | 果肉Pulp | 电化学发光法Electrochemiluminescence | [ |
甘草 | 根Root | 超高效液相色谱-二极管阵列检测器串联质谱法MS/MS- UPLC-PDA | [ |
Glycyrrhiza uralensis Fisch. | |||
山楂 | 果肉Pulp | 定量核磁共振法Quantitative NMR | [ |
Crataegus pinnatifida Bge. | |||
马铃薯Solanum tuberosum | 块茎Tuber | 超高效液相色谱-二极管阵列检测器法UPLC-PDA | [ |
黑稻Oryza sativa L. | 种子Seeding | 欧姆加热辅助萃取Ohmic heating assisted extraction | [ |
马齿苋Portulaca oleracea L. | 叶片Leaf | 超高效液相色谱-电喷雾串联三重四级杆质谱法UPLC-ESI-MS/MS | [ |
[1] | CARMEL Y. Human societal development: is it an evolutionary transition in individuality?[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2023, 378(1872): 20210409. |
[2] | SONG J Q, ZHANG A, GAO F, et al. Reduced nitrogen fertilization from pre-flowering to pre-veraison alters phenolic profiles of Vitis vinifera L. Cv. Cabernet Gernischt wine of Yantai, China[J]. Food Research International, 2023, 173(Pt 1): 113339. |
[3] | ŠEDBARĊ R, JANULIS V, RAMANAUSKIENE K. Edible gels with cranberry extract: evaluation of anthocyanin release kinetics[J]. Gels, 2023, 9(10): 796 |
[4] | ZHAO D Q, TAO J. Recent advances on the development and regulation of flower color in ornamental plants[J]. Frontiers in Plant Science, 2015, 6: 261. |
[5] | YUAN H, ZHANG J X, NAGESWARAN D, et al. Carotenoid metabolism and regulation in horticultural crops[J]. Horticulture Research, 2015, 2: 15036. |
[6] | CHRISTINET L, BURDET F X, ZAIKO M, et al. Characterization and functional identification of a novel plant 4, 5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora[J]. Plant Physiology, 2004, 134(1): 265-274. |
[7] | KOO Y, POETHIG R S. Expression pattern analysis of three R2R3-MYB transcription factors for the production of anthocyanin in different vegetative stages of Arabidopsis leaves[J]. Applied Biological Chemistry, 2021, 64(1): 1-7. |
[8] | LIU J Z, DU L D, CHEN S M, et al. Comparative analysis of the effects of internal factors on the floral color of four Chrysanthemum cultivars of different colors[J]. Agriculture, 2022, 12(5): 635. |
[9] | NODA Y, KNEYUKI T, IGARASHI K, et al. Antioxidant activity of nasunin, an anthocyanin in eggplant peels[J]. Toxicology, 2000, 148(2/3): 119-123. |
[10] | YAMAGISHI M. How genes paint lily flowers: regulation of colouration and pigmentation patterning[J]. Scientia Horticulturae, 2013, 163: 27-36. |
[11] | MOUSTAKA J, TANOU G, GIANNAKOULA A, et al. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress[J]. Environmental and Experimental Botany, 2020, 175: 104065. |
[12] | BOSS P K, DAVIES C. Molecular biology of anthocyanin accumulation in grape berries[M]//ROUBELAKIS-ANGELAKIS KA. Grapevine Molecular Physiology & Biotechnology. Dordrecht: Springer, 2009: 263-292. |
[13] | YE L J, MÖLLER M, LUO Y H, et al. Differential expressions of anthocyanin synthesis genes underlie flower color divergence in a sympatric Rhododendron sanguineum complex[J]. BMC Plant Biology, 2021, 21(1): 204. |
[14] | BAO X M, ZONG Y, HU N, et al. Functional R2R3-MYB transcription factor NsMYB1, regulating anthocyanin biosynthesis, was relative to the fruit color differentiation in Nitraria sibirica Pall[J]. BMC Plant Biology, 2022, 22(1): 186. |
[15] | LIM G H, KIM S W, RYU J, et al. Upregulation of the MYB2 transcription factor is associated with increased accumulation of anthocyanin in the leaves of Dendrobium bigibbum[J]. International Journal of Molecular Sciences, 2020, 21(16): 5653. |
[16] | MIZUTA D, BAN T, MIYAJIMA I, et al. Comparison of flower color with anthocyanin composition patterns in evergreen Azalea[J]. Scientia Horticulturae, 2009, 122(4): 594-602. |
[17] | TAKOS A M, JAFFÉ F W, JACOB S R, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J]. Plant Physiology, 2006, 142(3): 1216-1232. |
[18] | AZUMA A, YAKUSHIJI H, KOSHITA Y, et al. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions[J]. Planta, 2012, 236(4): 1067-1080. |
[19] | SANIEWSKI M, SZABLIŃSKA-PIERNIK J, MARASEK-CIOŁAKOWSKA A, et al. Accumulation of anthocyanins in detached leaves of Kalanchoë blossfeldiana: relevance to the effect of methyl jasmonate on this process[J]. International Journal of Molecular Sciences, 2022, 24(1): 626. |
[20] | LI C, CZ E A, HALITSCHKE R, et al. Evaluating potential of leaf reflectance spectra to monitor plant genetic variation[J]. Plant Methods, 2023, 19(1): 108. |
[21] | TEOW C C, TRUONG V D, MCFEETERS R F, et al. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours[J]. Food Chemistry, 2007, 103(3): 829-838. |
[22] | ZHANG Z F, FAN S H, ZHENG Y L, et al. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D[J]. Food and Chemical Toxicology, 2009, 47(2): 496-501. |
[23] | YOSHIMOTO M, OKUNO S, YAMAGUCHI M, et al. Antimutagenicity of deacylated anthocyanins in purple-fleshed sweetpotato[J]. Bioscience, Biotechnology, and Biochemistry, 2001, 65(7): 1652-1655. |
[24] | ZHAO J G, YAN Q Q, LU L Z, et al. In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato[J]. Nutrition Research and Practice, 2013, 7(5): 359-365. |
[25] | WANG B L, TANG X, MAO B Y, et al. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-17. |
[26] | HUANG W Y, SUI Z Q, ZHANG W M. Editorial: advances in anthocyanins: sources, preparation, analysis methods, bioavailability, physiochemical properties, and structural features[J]. Frontiers in Nutrition, 2023, 10: 1148051. |
[27] | HASSIMOTTO N M A, GENOVESE M I, LAJOLO F M. Identification and characterisation of anthocyanins from wild mulberry (Morus nigra L.) growing in Brazil[J]. Food Science and Technology International, 2007, 13(1): 17-25. |
[28] | WAN H H, YU C, HAN Y, et al. Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.)[J]. Frontiers in Plant Science, 2019, 10: 123. |
[29] | ASSUNÇÃO-JNIOR S O, RODRIGUES L S I, RAPOSO D S, et al. Amazonian Melastomataceae blueberries: determination of phenolic content, nutritional composition, and antioxidant and anti-glycation activities[J]. Food Research International, 2022, 158: 111519. |
[30] | HE B, ZHANG L L, YUE X Y, et al. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace[J]. Food Chemistry, 2016, 204: 70-76. |
[31] | WANG L W, WAN G M, WANG G, et al. Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin alleviates ultraviolet-induced apoptosis of human skin fibroblasts by regulating the death receptor pathway[J]. Clinical, Cosmetic and Investigational Dermatology, 2022, 15: 2925-2932. |
[32] | SEZGIN G C, OCSOY I. Anthocyanin-rich black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) and red cabbage (Brassica oleracea) extracts incorporated biosensor for colorimetric detection of Helicobacter pylori with color image processing[J]. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 2023, 54(2): 897-905. |
[33] | FIERRI I, DE MARCHI L, CHIGNOLA R, et al. Nanoencapsulation of anthocyanins from red cabbage (Brassica oleracea L. var. Capitata f. rubra) through coacervation of whey protein isolate and apple high methoxyl pectin[J]. Antioxidants, 2023, 12(9): 1757. |
[34] | FU H, CHAO H B, ZHAO X J, et al. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus[J]. Plant Molecular Biology, 2022, 110(1/2): 53-68. |
[35] | ABRAÃO A, MARTINS-GOMES C, DOMÍNGUEZ-PERLES R, et al. Molecular characterization of Prunus lusitanica L. fruit extracts and their health-promoting potential in inflammation, diabetes, and neurodegenerative diseases[J]. International Journal of Molecular Sciences, 2023, 24(10): 8830. |
[36] | MOYA-LEÓN M A, STAPPUNG Y, MATTUS-ARAYA E, et al. Insights into the genes involved in ABA biosynthesis and perception during development and ripening of the Chilean strawberry fruit[J]. International Journal of Molecular Sciences, 2023, 24(10): 8531. |
[37] | SHIN D H, CHOI M G, KANG C S, et al. A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis[J]. Biochemical and Biophysical Research Communications, 2016, 469(3): 686-691. |
[38] | ZHAO Y, JIANG C Q, LU J Y, et al. Research progress of proanthocyanidins and anthocyanidins[J]. Phytotherapy Research, 2023, 37(6): 2552-2577. |
[39] | JIANG W B, XIA Y Y, SU X J, et al. ARF2 positively regulates flavonols and proanthocyanidins biosynthesis in Arabidopsis thaliana[J]. Planta, 2022, 256(2): 44. |
[40] | WANG F, CHEN J L, TANG R N, et al. Research progress on anthocyanin-mediated regulation of ‘black’ phenotypes of plant organs[J]. Current Issues in Molecular Biology, 2023, 45(9): 7242-7256. |
[41] | WANG S L, CHU Z H, JIA R, et al. SlMYB12 regulates flavonol synthesis in three different cherry tomato varieties[J]. Scientific Reports, 2018, 8(1): 1582. |
[42] | SICILIA A, SCIALÒ E, PUGLISI I, et al. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit[Citrus sinensis L. (osbeck)] under cold stress[J]. Journal of Agricultural and Food Chemistry, 2020, 68(26): 7024-7031. |
[43] | WANG H L, WANG W, ZHANG P, et al. Gene transcript accumulation, tissue and subcellular localization of anthocyanidin synthase (ANS) in developing grape berries[J]. Plant Science, 2010, 179(1/2): 103-113. |
[44] | MONTEFIORI M, ESPLEY R V, STEVENSON D, et al. Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis)[J]. The Plant Journal, 2011, 65(1): 106-118. |
[45] | HAN Y P, VIMOLMANGKANG S, SORIA-GUERRA R E, et al. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin[J]. Journal of Experimental Botany, 2012, 63(7): 2437-2447. |
[46] | BAGAL U R, LEEBENS-MACK J H, LORENZ W W, et al. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage[J]. BMC Genomics, 2012, 13(Suppl 3): S1. |
[47] | POMBO M A, MARTÍNEZ G A, CIVELLO P M. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation[J]. Plant Science, 2011, 181(2): 111-118. |
[48] | FARAGHER J D, BROHIER R L. Anthocyanin accumulation in apple skin during ripening: regulation by ethylene and phenylalanine ammonia-lyase[J]. Scientia Horticulturae, 1984, 22(1/2): 89-96. |
[49] | SU N N, LIU Z, WANG L, et al. Improving the anthocyanin accumulation of hypocotyls in radish sprouts by hemin-induced NO[J]. BMC Plant Biology, 2022, 22(1): 224. |
[50] | GUO D M, WANG H Y, ZHANG S M, et al. The type Ⅲ polyketide synthase supergene family in plants: complex evolutionary history and functional divergence[J]. The Plant Journal, 2022, 112(2): 414-428. |
[51] | MEHDY M C, LAMB C J. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection[J]. The EMBO Journal, 1987, 6(6): 1527-1533. |
[52] | ABE I, MORITA H. Structure and function of the chalcone synthase superfamily of plant type Ⅲ polyketide synthases[J]. Natural Product Reports, 2010, 27(6): 809-838. |
[53] | 徐靖, 朱家红, 王效宁, 等. 甘薯查尔酮合成酶基因IbCHS1的克隆和表达分析[J]. 分子植物育种, 2018, 16(6): 1752-1757. |
XU J, ZHU J H, WANG X N, et al. Cloning and expression analysis of Chalcone synthase gene IbCHS1 in Ipomoea batatas[J]. Molecular Plant Breeding, 2018, 16(6): 1752-1757. (in Chinese with English abstract) | |
[54] | AIDA R, KISHIMOTO S, TANAKA Y, et al. Modification of flower color in Torenia (Torenia fournieri Lind.) by genetic transformation[J]. Plant Science, 2000, 153(1): 33-42. |
[55] | FUKUSAKI E I, KAWASAKI K, KAJIYAMA S, et al. Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference[J]. Journal of Biotechnology, 2004, 111(3): 229-240. |
[56] | KIM S, JONES R, YOO K S, et al. Gold color in Onions (Allium cepa): a natural mutation of the chalcone isomerase gene resulting in a premature stop codon[J]. Molecular Genetics and Genomics, 2004, 272(4): 411-419. |
[57] | WANG J Y, JIANG Y F, SUN T, et al. Genome-wide classification and evolutionary analysis reveal diverged patterns of Chalcone isomerase in plants[J]. Biomolecules, 2022, 12(7): 961. |
[58] | ELARABI N I, ABDELHADI A A, SIEF-ELDEIN A G M, et al. Overexpression of chalcone isomerase A gene in Astragalus trigonus for stimulating apigenin[J]. Scientific Reports, 2021, 11: 24176. |
[59] | MORITA Y, TAKAGI K, FUKUCHI-MIZUTANI M, et al. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation[J]. The Plant Journal, 2014, 78(2): 294-304. |
[60] | WANG H L, WANG W, ZHAN J C, et al. Tissue-specific accumulation and subcellular localization of chalcone isomerase (CHI) in grapevine[J]. Plant Cell, Tissue and Organ Culture, 2019, 137(1): 125-137. |
[61] | CHARRIER B, CORONADO C, KONDOROSI A, et al. Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes[J]. Plant Molecular Biology, 1995, 29(4): 773-786. |
[62] | 杨红丽, 王彦昌, 姜正旺, 等. ‘红阳’猕猴桃cDNA文库构建及F3H基因的表达初探[J]. 遗传, 2009, 31(12): 1265-1272. |
YANG H L, WANG Y C, JIANG Z W, et al. Construction of cDNA library of ‘Hongyang’ kiwifruit and analysis of F3H expression[J]. Hereditas, 2009, 31(12): 1265-1272. (in Chinese with English abstract) | |
[63] | DEBOO G B, ALBERTSEN M C, TAYLOR L P. Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers[J]. The Plant Journal, 1995, 7(5): 703-713. |
[64] | 邹庆军, 汪涛, 郭巧生, 等. 淹水胁迫对抗菌F3'H基因表达及其下游产物含量的影响[J]. 中国中药杂志, 2018, 43(1): 52-57. |
ZOU Q J, WANG T, GUO Q S, et al. Cloning and expression analysis of F3'H and quantification of downstream products in Chrysanthemum morifolium under flooding stress[J]. China Journal of Chinese Materia Medica, 2018, 43(1): 52-57. (in Chinese with English abstract) | |
[65] | TAKATORI Y, SHIMIZU K, OGATA J, et al. Cloning of the flavonoid 3'-hydroxylase gene of Eustoma grandiflorum(raf.) shinn. (EgF3'H) and complementation of an F3'H-deficient mutant of Ipomoea nil(L.) Roth. by heterologous expression of EgF3'H[J]. The Horticulture Journal, 2015, 84(2): 131-139. |
[66] | FLACHOWSKY H, HALBWIRTH H, TREUTTER D, et al. Silencing of flavanone-3-hydroxylase in apple (Malus×domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility[J]. Plant Physiology and Biochemistry: PPB, 2012, 51: 18-25. |
[67] | JIANG F, WANG J Y, JIA H F, et al. RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J]. Journal of Plant Growth Regulation, 2013, 32(1): 182-190. |
[68] | 张波, 赵志常, 高爱平, 等. 芒果二氢黄酮醇4-还原酶(DFR)基因的克隆及其表达分析[J]. 分子植物育种, 2015, 13(4): 816-821. |
ZHANG B, ZHAO Z C, GAO A P, et al. Cloning and expression analysis of DFR gene from mango(Mangifera indica)[J]. Molecular Plant Breeding, 2015, 13(4): 816-821. (in Chinese with English abstract) | |
[69] | LIEW C F, GOH C J, LOH C S, et al. Cloning and characterization of full-length cDNA clones encoding chalcone synthase from the orchid Bromheadia finlaysoniana[J]. Plant Physiology and Biochemistry, 1998, 36(9): 647-656. |
[70] | NAKATSUKA A, IZUMI Y, YAMAGISHI M. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the Asiatic hybrid lily[J]. Plant Science, 2003, 165(4): 759-767. |
[71] | JAAKOLA L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends in Plant Science, 2013, 18(9): 477-483. |
[72] | LI J, LÜ R H, ZHAO A C, et al. Isolation and expression analysis of anthocyanin biosynthetic genes in Morus alba L[J]. Biologia Plantarum, 2014, 58(4): 618-626. |
[73] | ZHANG Y Q, ZHENG S, LIU Z J, et al. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings[J]. Journal of Plant Physiology, 2011, 168(4): 367-374. |
[74] | YE J B, XU F, WANG G Y, et al. Molecular cloning and characterization of an anthocyanidin synthase gene in Prunus persica(L.) batsch[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45(1): 28-35. |
[75] | BUSCHE M, PUCKER B, WEISSHAAR B, et al. Three R2R3-MYB transcription factors from banana (Musa acuminata) activate structural anthocyanin biosynthesis genes as part of an MBW complex[J]. BMC Research Notes, 2023, 16(1): 103. |
[76] | AN X H, TIAN Y, CHEN K Q, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Journal of Plant Physiology, 2012, 169(7): 710-717. |
[77] | PAZ-ARES J, GHOSAL D, WIENAND U, et al. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators[J]. The EMBO Journal, 1987, 6(12): 3553-3558. |
[78] | BIAN S M, JIN D H, SUN G Q, et al. Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses[J]. Gene, 2020, 753: 144803. |
[79] | PALAPOL Y, KETSA S, KUI L W, et al. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening[J]. Planta, 2009, 229(6): 1323-1334. |
[80] | VIMOLMANGKANG S, HAN Y P, WEI G C, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development[J]. BMC Plant Biology, 2013, 13: 176. |
[81] | LI D, ZHANG X C, XU Y Q, et al. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit[J]. Food Chemistry, 2019, 289: 112-120. |
[82] | ZHU Z G, LI G R, LIU L, et al. A R2R3-MYB transcription factor, VvMYBC2L2, functions as a transcriptional repressor of anthocyanin biosynthesis in grapevine (Vitis vinifera L.)[J]. Molecules, 2018, 24(1): 92. |
[83] | COLANERO S, PERATA P, GONZALI S. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants[J]. Frontiers in Plant Science, 2018, 9: 830. |
[84] | SHAN X T, LI Y Q, YANG S, et al. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2019, 141: 60-72. |
[85] | BAUDRY A, HEIM M A, DUBREUCQ B, et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. The Plant Journal, 2004, 39(3): 366-380. |
[86] | QIU Z K, WANG X X, GAO J C, et al. The tomato hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J]. PLoS One, 2016, 11(3): e0151067. |
[87] | WANG L H, TANG W, HU Y W, et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. The Plant Journal, 2019, 99(2): 359-378. |
[88] | SOLANO R, NIETO C, AVILA J, et al. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida[J]. The EMBO Journal, 1995, 14(8): 1773-1784. |
[89] | VANDER KOOI C W, REN L P, XU P, et al. The Prp19 WD40 domain contains a conserved protein interaction region essential for its function[J]. Structure, 2010, 18(5): 584-593. |
[90] | DE VETTEN N, QUATTROCCHIO F, MOL J, et al. The an 11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals[J]. Genes & Development, 1997, 11(11): 1422-1434. |
[91] | SPRINGOB K, NAKAJIMA J I, YAMAZAKI M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports, 2003, 20(3): 288-303. |
[92] | ZHAO M R, LI J, ZHU L, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes, 2019, 10(7): 496. |
[93] | MENG Y Y, WANG Z Y, WANG Y Q, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula[J]. The Plant Cell, 2019, 31(11): 2751-2767. |
[94] | KANG S I, RAHIM M A, AFRIN K S, et al. Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato[J]. Horticulture, Environment, and Biotechnology, 2018, 59(3): 435-445. |
[95] | ZHANG Q, HAO R J, XU Z D, et al. Isolation and functional characterization of a R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2017, 131(3): 417-429. |
[96] | SCHWINN K E, NGO H, KENEL F, et al. The onion (Allium cepa L.) R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis[J]. Frontiers in Plant Science, 2016, 7: 1865. |
[97] | LIU X F, XIANG L L, YIN X R, et al. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers[J]. Scientia Horticulturae, 2015, 194: 278-285. |
[98] | WEI Q H, ZHANG F, SUN F S, et al. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants[J]. Plant Science, 2017, 265: 112-123. |
[99] | AKHTER D, QIN R, NATH U K, et al. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling[J]. Gene, 2019, 699: 62-72. |
[100] | MATSUI K, UMEMURA Y, OHME-TAKAGI M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis[J]. The Plant Journal, 2008, 55(6): 954-967. |
[101] | MATUS J T, CAVALLINI E, LOYOLA R, et al. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus[J]. The Plant Journal, 2017, 91(2): 220-236. |
[102] | XU Z S, FENG K, QUE F, et al. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots[J]. Scientific Reports, 2017, 7: 45324. |
[103] | ZHOU H, KUI L W, WANG F R, et al. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. The New Phytologist, 2019, 221(4): 1919-1934. |
[104] | QI Y, ZHOU L, HAN L L, et al. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa)[J]. Plant Physiology and Biochemistry, 2020, 154: 396-408. |
[105] | BEN-SIMHON Z, JUDEINSTEIN S, NADLER-HASSAR T, et al. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta, 2011, 234(5): 865-881. |
[106] | ZHOU L L, SHI M Z, XIE D Y. Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana[J]. Planta, 2012, 236(3): 825-837. |
[107] | AN J P, LI H H, SONG L Q, et al. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple[J]. Plant Physiology and Biochemistry, 2016, 108: 24-31. |
[108] | XIE X B, LI S, ZHANG R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant, Cell & Environment, 2012, 35(11): 1884-1897. |
[109] | GAO C, GUO Y, WANG J, et al. Brassica napus GLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana[J]. Plant Biology, 2018, 20(1): 3-9. |
[110] | HUMPHRIES J A, WALKER A R, TIMMIS J N, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene[J]. Plant Molecular Biology, 2005, 57(1): 67-81. |
[111] | GUO J L, YU C L, FAN C Y, et al. Cloning and characterization of a potato TFL1 gene involved in tuberization regulation[J]. Plant Cell, Tissue and Organ Culture, 2010, 103(1): 103-109. |
[112] | 张梦燕, 孙军利, 赵宝龙. 外源ALA对克瑞森无核葡萄叶片光合特性及果实品质的影响[J]. 西北植物学报, 2018, 38(3): 493-500. |
ZHANG M Y, SUN J L, ZHAO B L. Effect of 5-aminolevulinic acid(ALA)on leaf photosynthesis and fruit quality of crimson seedless grapevine[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 493-500. (in Chinese with English abstract) | |
[113] | FENG X X, AN Y Y, ZHENG J, et al. Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS 1[J]. Frontiers in Plant Science, 2016, 7: 1615. |
[114] | 杨朴丽. 5-氨基乙酰丙酸可促进桃果皮提前着色[J]. 中国果业信息, 2013, 30(7): 77. |
YANG P L. 5-aminolevulinic acid can promote the early coloring of peach peel[J]. China Fruit News, 2013, 30(7): 77. (in Chinese) | |
[115] | PREVITALI P, DOKOOZLIAN N K, PAN B S, et al. Crop load and plant water status influence the ripening rate and aroma development in berries of grapevine (Vitis vinifera L.) cv. cabernet sauvignon[J]. Journal of Agricultural and Food Chemistry, 2021, 69(27): 7709-7724. |
[116] | CHEN J X, MAO L C, MI H B, et al. Involvement of abscisic acid in postharvest water-deficit stress associated with the accumulation of anthocyanins in strawberry fruit[J]. Postharvest Biology and Technology, 2016, 111: 99-105. |
[117] | SHEN X J, ZHAO K, LIU L L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.)[J]. Plant and Cell Physiology, 2014, 55(5): 862-880. |
[118] | 徐梦珂, 李丹, 孟来生, 等. 拟南芥转录因子Ethylene-insensitive3(EIN3)抑制花青素的合成[J]. 植物研究, 2018, 38(1): 148-154. |
XU M K, LI D, MENG L S, et al. Arabidopsis thaliana transcription factor ethylene-insensitive3(EIN3) inhibits the synthesis of anthocyanins[J]. Bulletin of Botanical Research, 2018, 38(1): 148-154. (in Chinese with English abstract) | |
[119] | JEONG S W, DAS P K, JEOUNG S C, et al. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis[J]. Plant Physiology, 2010, 154(3): 1514-1531. |
[120] | EL-KEREAMY A, CHERVIN C, ROUSTAN J P, et al. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries[J]. Physiologia Plantarum, 2003, 119(2): 175-182. |
[121] | HARASIMOWICZ J, MARQUES K L, SILVA A F T, et al. Chemiluminometric evaluation of melatonin and selected melatonin precursors’ interaction with reactive oxygen and nitrogen species[J]. Analytical Biochemistry, 2012, 420(1): 1-6. |
[122] | ZHANG N, SUN Q Q, LI H F, et al. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage[J]. Frontiers in Plant Science, 2016, 7: 197. |
[123] | PANG L L, WU Y, PAN Y F, et al. Insights into exogenous melatonin associated with phenylalanine metabolism in postharvest strawberry[J]. Postharvest Biology and Technology, 2020, 168: 111244. |
[124] | WEI Z W, LI C, GAO T T, et al. Melatonin increases the performance of Malus hupehensis after UV-B exposure[J]. Plant Physiology and Biochemistry, 2019, 139: 30-641. |
[125] | WANG S Q, PAN D Z, LV X J, et al. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato[J]. Journal of Proteomics, 2016, 143: 298-305. |
[126] | AGHDAM M S, LUO Z S, JANNATIZADEH A, et al. Exogenous adenosine triphosphate application retards cap browning in Agaricus bisporus during low temperature storage[J]. Food Chemistry, 2019, 293: 285-290. |
[127] | ROLLAND F, SHEEN J. Sugar sensing and signalling networks in plants[J]. Biochemical Society Transactions, 2005, 33(1): 269-271. |
[128] | PREVITALI P, DOKOOZLIAN N K, PAN B S, et al. The effect of ripening rates on the composition of Cabernet Sauvignon and Riesling wines: further insights into the sugar/flavor nexus[J]. Food Chemistry, 2022, 373(Pt A): 131406. |
[129] | 路静, 马齐军, 刘晓, 等. 苹果蔗糖转运蛋白MdSUT2调控花青苷积累的研究[J]. 园艺学报, 2019, 46(1): 1-10. |
LU J, MA Q J, LIU X, et al. Studies on the regulation of anthocyanin accumulation by apple sucrose transporter MdSUT2[J]. Acta Horticulturae Sinica, 2019, 46(1): 1-10. (in Chinese with English abstract) | |
[130] | 刘卫, 刘杨, 任丽, 等. 光照对非光敏型茄子花青素合成相关基因的影响[J]. 分子植物育种, 2017, 15(3): 848-857. |
LIU W, LIU Y, REN L, et al. Effect of light on the anthocyanin biosythesis and expression related genes of non-photosensitive type eggplant[J]. Molecular Plant Breeding, 2017, 15(3): 848-857. (in Chinese with English abstract) | |
[131] | 王中华, 汤国辉, 李志强, 等. 5-氨基乙酰丙酸和金雀异黄素促进苹果果皮花青素形成的效应[J]. 园艺学报, 2006, 33(5): 1055-1058. |
WANG Z H, TANG G H, LI Z Q, et al. Promotion of 5-aminolevulinic acid and genistein on anthocyanin accumulation in apples[J]. Acta Horticulturae Sinica, 2006, 33(5): 1055-1058. (in Chinese with English abstract) | |
[132] | LOTKOWSKA M E, TOHGE T, FERNIE A R, et al. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress[J]. Plant Physiology, 2015, 169(3): 1862-1880. |
[133] | JIANG M M, REN L, LIAN H L, et al. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.)[J]. Plant Science, 2016, 249: 46-58. |
[134] | 杨慧勤, 王佳丽, 李思蕤, 等. 茄科蔬菜花青素苷分子调控研究进展[J]. 生物工程学报, 2022, 38(5): 1738-1752. |
YANG H Q, WANG J L, LI S R, et al. Advances in the molecular regulation of anthocyanins in solanaceous vegetables[J]. Chinese Journal of Biotechnology, 2022, 38(5): 1738-1752. (in Chinese with English abstract) | |
[135] | GUAN L, DAI Z W, WU B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries[J]. Planta, 2016, 243(1): 23-41. |
[136] | ARRIZABALAGA M, MORALES F, OYARZUN M, et al. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature[J]. Plant Science, 2018, 267: 74-83. |
[137] | ZHU Y C, ZHANG B, ALLAN A C, et al. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach[J]. The Plant Journal, 2020, 102(5): 965-976. |
[138] | LIU Y, LIU Y X, TAO C, et al. Effect of temperature and pH on stability of anthocyanin obtained from blueberry[J]. Journal of Food Measurement and Characterization, 2018, 12(3): 1744-1753. |
[139] | MATSUSHITA K, SAKAYORI A, IKEDA T. The effect of high air temperature on anthocyanin concentration and the expressions of its biosynthetic genes in strawberry ‘sachinoka’[J]. Environment Control in Biology, 2016, 54(2): 101-107. |
[140] | RYU S, HAN H H, JEONG J H, et al. Night temperatures affect fruit coloration and expressions of anthocyanin biosynthetic genes in ‘Hongro’ apple fruit skins[J]. European Journal of Horticultural Science, 2017, 82(5): 232-238. |
[141] | OLIVEIRA H, FERNANDES A, F BRÁS N, et al. Anthocyanins as antidiabetic agents-In vitro and in silico approaches of preventive and therapeutic effects[J]. Molecules, 2020, 25(17): 3813. |
[142] | KOSS-MIKOŁAJCZYK I, KUSZNIEREWICZ B, WICZKOWSKI W, et al. Phytochemical composition and biological activities of differently pigmented cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis) varieties[J]. Journal of the Science of Food and Agriculture, 2019, 99(12): 5499-5507. |
[143] | BUKO V, ZAVODNIK I, KANUKA O, et al. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats[J]. Food & Function, 2018, 9(3): 1850-1863. |
[144] | BAYNES J W. Role of oxidative stress in development of complications in diabetes[J]. Diabetes, 1991, 40(4): 405-412. |
[145] | VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84. |
[146] | WICZKOWSKI W, SZAWARA-NOWAK D, TOPOLSKA J. Red cabbage anthocyanins: profile, isolation, identification, and antioxidant activity[J]. Food Research International, 2013, 51(1): 303-309. |
[147] | WANG L S, SUN X D, CAO Y, et al. Antioxidant and pro-oxidant properties of acylated pelargonidin derivatives extracted from red radish (Raphanus sativus var. Niger, Brassicaceae)[J]. Food and Chemical Toxicology, 2010, 48(10): 2712-2718. |
[148] | FANG S, LIN F B, QU D F, et al. Characterization of purified red cabbage anthocyanins: improvement in HPLC separation and protective effect against H2O2-induced oxidative stress in HepG2 cells[J]. Molecules, 2018, 24(1): 124. |
[149] | KOU X H, HAN L H, LI X Y, et al. Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries[J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 108-119. |
[150] | 李卫林, 季广华, 章新展, 等. 紫甘薯花色苷对膀胱癌BIV87细胞增殖的影响及其机制探讨[J]. 中华医学杂志, 2018, 98(6): 457-459. |
LI W L, JI G H, ZHANG X Z, et al. The influence and mechanisms of purple sweet potato anthocyanins on the growth of bladder cancer BIU87 cell[J]. National Medical Journal of China, 2018, 98(6): 457-459. (in Chinese with English abstract) | |
[151] | TAN J Q, LI Q, XUE H K, et al. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: optimization, identification, and antitumor activity[J]. Journal of Food Science, 2020, 85(11): 3731-3744. |
[152] | YANG S, WANG C, LI X Y, et al. Investigation on the biological activity of anthocyanins and polyphenols in blueberry[J]. Journal of Food Science, 2021, 86(2): 614-627. |
[153] | BRADER L, OVERGAARD A, CHRISTENSEN L P, et al. Polyphenol-rich bilberry ameliorates total cholesterol and LDL-cholesterol when implemented in the diet of Zucker diabetic fatty rats[J]. The Review of Diabetic Studies, 2013, 10(4): 270-282. |
[154] | AL-DOSARI M S. Red cabbage (Brassica oleracea L.) mediates redox-sensitive amelioration of dyslipidemia and hepatic injury induced by exogenous cholesterol administration[J]. The American Journal of Chinese Medicine, 2014, 42(1): 189-206. |
[155] | ARJINAJARN P, CHUEAKULA N, PONGCHAIDECHA A, et al. Anthocyanin-rich Riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats[J]. Biomedicine & Pharmacotherapy, 2017, 92: 412-420. |
[156] | RAHMAN M M, ICHIYANAGI T, KOMIYAMA T, et al. Effects of anthocyanins on psychological stress-induced oxidative stress and neurotransmitter status[J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7545-7550. |
[157] | KHAN M S, ALI T, KIM M W, et al. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/akt/GSK3β signaling in LPS-treated adult mice[J]. Molecular Neurobiology, 2019, 56(1): 671-687. |
[158] | KHAN M S, ALI T, KIM M W, et al. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex[J]. Neurochemistry International, 2016, 100: 1-10. |
[159] | REHMAN S U, ALI SHAH S, ALI T, et al. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats[J]. Molecular Neurobiology, 2017, 54(1): 255-271. |
[160] | SUN J C, WU Y F, LONG C Z, et al. Anthocyanins isolated from blueberry ameliorates CCl4 induced liver fibrosis by modulation of oxidative stress, inflammation and stellate cell activation in mice[J]. Food and Chemical Toxicology, 2018, 120: 491-499. |
[161] | MATSUI T, EBUCHI S, KOBAYASHI M, et al. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the alpha-glucosidase inhibitory action[J]. Journal of Agricultural and Food Chemistry, 2002, 50(25): 7244-7248. |
[162] | ZHANG X, YANG Y, WU Z F, et al. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro[J]. Journal of Agricultural and Food Chemistry, 2016, 64(12): 2582-2590. |
[163] | ZHANG P W, CHEN F X, LI D, et al. A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease[J]. Medicine, 2015, 94(20): e758. |
[164] | SPORMANN T M, ALBERT F W, RATH T, et al. Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis[J]. Cancer Epidemiology, Biomarkers & Prevention, 2008, 17(12): 3372-3380. |
[165] | CASTILLA P, DÁVALOS A, TERUEL J L, et al. Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients[J]. The American Journal of Clinical Nutrition, 2008, 87(4): 1053-1061. |
[166] | OHTA H, AKUTA S, OSAJIMA Y. A simple and rapid analytical method of grape anthocyanin pigments by cellulose thin-layer chromatography and densitometry[J]. Nippon Shokuhin Kogyo Gakkaishi, 1979, 26(5): 204-208. |
[167] | PRESTON N W, TIMBERLAKE C F. Separation of anthocyanin chalcones by high-performance liquid chromatography[J]. Journal of Chromatography A, 1981, 214(2): 222-228. |
[168] | KRAWCZYK U, PETRI G. Application of RP-HPLC and spectrophotometry in standardization of bilberry anthocyanin extract[J]. Archiv Der Pharmazie, 1992, 325(3): 147-149. |
[169] | BUCHERT J, KOPONEN J M, SUUTARINEN M, et al. Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices[J]. Journal of the Science of Food and Agriculture, 2005, 85(15): 2548-2556. |
[170] | ELHAM G, REZA H, JABBAR K, et al. Isolation and structure charactrisation of anthocyanin pigments in black carrot (Daucus carota L.)[J]. Pakistan Journal of Biological Sciences, 2006, 9(15): 2905-2908. |
[171] | DOWNEY M O, ROCHFORT S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin[J]. Journal of Chromatography A, 2008, 1201(1): 43-47. |
[172] | VIEIRA F G K, BORGES G D, COPETTI C, et al. Activity and contents of polyphenolic antioxidants in the whole fruit, flesh and peel of three apple cultivars[J]. Archivos Latinoamericanos De Nutricion, 2009, 59(1): 101-106. |
[173] | HEO S, LEE D Y, CHOI H K, et al. Metabolite fingerprinting of bokbunja (Rubus coreanus miquel) by UPLC-qTOF-MS[J]. Food Science and Biotechnology, 2011, 20(2): 567-570. |
[174] | MULABAGAL V, CALDERÓN A I. Liquid chromatography/mass spectrometry based fingerprinting analysis and mass profiling of Euterpe oleracea(açaí) dietary supplement raw materials[J]. Food Chemistry, 2012, 134(2): 1156-1164. |
[175] | JETHAWA S, GOPALE O, SHELKE S. Herbal mouthwash: a review[J]. Research Journal of Pharmaceutical Dosage Forms and Technology, 2022: 217-223. |
[176] | CHEN J A, TAO X Y, LI L N, et al. Protective effect of blueberry anthocyanins in a CCl4-induced injury model in human embryonic liver cells[J]. Food and Agricultural Immunology, 2014, 25(2): 274-286. |
[177] | HE M, LV H Y, LI Y P, et al. A multiplex approach for the UPLC-PDA-MS/MS data: analysis of licorice[J]. Analytical Methods, 2014, 6(7): 2239-2246. |
[178] | 崔同, 陈剑桥, 王晓科, 等. 定量核磁共振法测定山楂提取物中的原花青素[J]. 现代食品科技, 2015, 31(6): 279-283, 314. |
CUI T, CHEN J Q, WANG X K, et al. Determination of procyanidins in extracts of Chinese hawthorn fruits by quantitative1H-NMR[J]. Modern Food Science and Technology, 2015, 31(6): 279-283, 314. (in Chinese with English abstract) | |
[179] | HE W, ZENG M M, CHEN J, et al. Identification and quantitation of anthocyanins in purple-fleshed sweet potatoes cultivated in China by UPLC-PDA and UPLC-QTOF-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2016, 64(1): 171-177. |
[180] | LOYPIMAI P, MOONGNGARM A, CHOTTANOM P, et al. Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant[J]. Innovative Food Science & Emerging Technologies, 2015, 27: 102-110. |
[181] | FARAG M A, ABDEL SHAKOUR Z T. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics[J]. Phytochemistry, 2019, 161: 117-129. |
[182] | 孙婧超, 刘玉田, 赵玉平, 等. pH示差法测定蓝莓酒中花色苷条件的优化[J]. 中国酿造, 2011, 30(11): 171-174. |
SUN J C, LIU Y T, ZHAO Y P, et al. Optimization of analytical condition of determining anthocyanins content in blueberry wine by pH-differential method[J]. China Brewing, 2011, 30(11): 171-174. (in Chinese with English abstract) | |
[183] | TANAKA R, HASEBE Y, NAGATSU A. Application of quantitative1H-NMR method to determination of gentiopicroside in Gentianae radix and Gentianae scabrae radix[J]. Journal of Natural Medicines, 2014, 68(3): 630-635. |
[184] | 张佰清, 闫冬雪. 薄层及凝胶色谱法测定树莓籽原花青素的平均聚合度[J]. 食品工业科技, 2013, 34(11): 317-319. |
ZHANG B Q, YAN D X. Determination of the mean degree of polymerization (mDP) from raspberry seeds by thin layer chromatography (TLC) and gel chromatography (GPC)[J]. Science and Technology of Food Industry, 2013, 34(11): 317-319. (in Chinese with English abstract) |
[1] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[2] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
[3] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[4] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[5] | 林东璞, 臧要强, 张霄鹏, 周徐子鑫, 马均. 红苞凤梨AbF3'5'H基因上游调控因子筛选[J]. 浙江农业学报, 2023, 35(1): 79-89. |
[6] | 夏煜琪, 孙宇, 刘志鑫, 孙瑞青, 杨楠, 蒲金基, 张贺. 杧果转录因子BES1s家族全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2022, 34(5): 984-994. |
[7] | 赵宇洪, 何文, 李根, 王强, 谢锐, 王燕, 陈清, 王小蓉. 四川地区琯溪蜜柚及其芽变品种的果实品质[J]. 浙江农业学报, 2022, 34(5): 995-1004. |
[8] | 邓哲宇, 王乙婷, 王颖洁, 胡菜, 吴宇慧, 赵宗仪, 左其生, 张亚妮. 鸡gga-miR-31-5p 启动子真核表达载体的构建及其转录因子结合位点预测[J]. 浙江农业学报, 2022, 34(4): 713-719. |
[9] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[10] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[11] | 谢子玉, 王可尔, 赵雯靓, 文祖会, 程林润, 徐丽珊. 不同肉色甘薯的营养成分与生物活性[J]. 浙江农业学报, 2021, 33(2): 183-192. |
[12] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[13] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[14] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[15] | 云涛, 华炯钢, 叶伟成, 倪征, 陈柳, 张存. 新型鸭呼肠孤病毒一步法TaqMan-MGB荧光定量RT-PCR检测方法的建立与应用[J]. 浙江农业学报, 2020, 32(4): 571-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||