浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1811-1819.DOI: 10.3969/j.issn.1004-1524.20230922
王健霖1(), 田兴苗1, 王景松1,2, 戴莎莎1, 郭亚男2, 何生虎1, 李继东1,*(
)
收稿日期:
2023-07-28
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*李继东,E-mail: lijidongi@foxmail.com通讯作者:
李继东
基金资助:
WANG Jianlin1(), TIAN Xingmiao1, WANG Jingsong1,2, DAI Shasha1, GUO Yanan2, HE Shenghu1, LI Jidong1,*(
)
Received:
2023-07-28
Online:
2024-08-25
Published:
2024-09-06
Contact:
LI Jidong
摘要:
为建立一种对牛支原体高效、快捷的可视化重组酶聚合酶扩增(LFD-RPA)临床诊断方法,以牛支原体uvrc基因序列为靶基因,设计特异性引物和探针,通过筛选引物和探针、优化反应条件,并通过灵敏度、特异性、重复性和临床样本检测试验进行验证。结果显示,该试验建立的牛支原体LFD-RPA最佳引物为F2/R2,最佳反应条件为39 ℃、 25 min;检测灵敏度可达2.08 copies·μL-1,是普通PCR灵敏度的100倍;与滑液囊支原体、沙门氏菌、绵羊肺炎支原体、多杀性巴氏杆菌、金黄色葡萄球菌、无乳链球菌和产气荚膜梭菌之间无交叉反应;重复性稳定;对50份鼻拭子样本进行检测,阳性率为26%,与我国行业标准PCR检测方法的符合率为89.6%。该试验成功建立了牛支原体LFD-RPA检测方法,该方法具有操作简便、快速、高效、敏感等优点,为牛支原体的临床快速诊断提供了技术支撑。
中图分类号:
王健霖, 田兴苗, 王景松, 戴莎莎, 郭亚男, 何生虎, 李继东. 牛支原体可视化重组酶聚合酶扩增检测方法的建立[J]. 浙江农业学报, 2024, 36(8): 1811-1819.
WANG Jianlin, TIAN Xingmiao, WANG Jingsong, DAI Shasha, GUO Yanan, HE Shenghu, LI Jidong. Establishment of a visual recombinase polymerase amplification assays for Mycoplasma bovis[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1811-1819.
引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 长度 Length/bp |
---|---|---|
F1 | CCTGGTGTTTATCTATGAAAAGATGCTAAA | 119 |
R1 | TTAGTTTTATATGAATTAATAGCGCCGTCA | |
F2 | CACAAAACCAAAGCCTTAATTGACCTAGAT | 173 |
R2 | CCTTTTATGTTTCTTAGTTTGCCTTCTAGTGA | |
F3 | TTTACTATGGTCCTTTTCCTTCTGGTTATG | 207 |
R3 | TGGCTGCTTGATGCATTTTGTTAGTTAGTT | |
uvrc-LFD-F | CACAAAACCAAAGCCTTAATTGACCTAGAT | |
uvrc-LFD-R | [5’-biotin]-CCTTTTATGTTTCTTAGTTTGCCTTCTAGTGA | |
uvrc-LFD-Probe | [5'FAM]-ATGACTTAGAACTATACAACTACTTAGTTCAAAT/idSp/CAAGTTGAAGTTGACC-[3'C3 Spacer] | |
NY-T-F | TTTTAGCTCTTTTTGAACAAAT | 1 900 |
NY-T-R | GGCTCTCATTAAGAATGTC | |
uvrc-F | GTGGATGCAATTGAAGCTGAAC | 2 098 |
uvrc-R | AAAGAGCAGAAGAGAGAGAGCT |
表1 引物和探针序列信息
Table 1 Primer and probe sequences information
引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 长度 Length/bp |
---|---|---|
F1 | CCTGGTGTTTATCTATGAAAAGATGCTAAA | 119 |
R1 | TTAGTTTTATATGAATTAATAGCGCCGTCA | |
F2 | CACAAAACCAAAGCCTTAATTGACCTAGAT | 173 |
R2 | CCTTTTATGTTTCTTAGTTTGCCTTCTAGTGA | |
F3 | TTTACTATGGTCCTTTTCCTTCTGGTTATG | 207 |
R3 | TGGCTGCTTGATGCATTTTGTTAGTTAGTT | |
uvrc-LFD-F | CACAAAACCAAAGCCTTAATTGACCTAGAT | |
uvrc-LFD-R | [5’-biotin]-CCTTTTATGTTTCTTAGTTTGCCTTCTAGTGA | |
uvrc-LFD-Probe | [5'FAM]-ATGACTTAGAACTATACAACTACTTAGTTCAAAT/idSp/CAAGTTGAAGTTGACC-[3'C3 Spacer] | |
NY-T-F | TTTTAGCTCTTTTTGAACAAAT | 1 900 |
NY-T-R | GGCTCTCATTAAGAATGTC | |
uvrc-F | GTGGATGCAATTGAAGCTGAAC | 2 098 |
uvrc-R | AAAGAGCAGAAGAGAGAGAGCT |
图1 标准质粒PCR扩增凝胶电泳图 M,DNA 标准 DL 5 000;1,目的片段;C,阴性对照。
Fig.1 Standard plasmid PCR amplification gel electrophoresis M, DNA marker DL 5 000; 1, Target fragment; C, Negative control.
图2 基础RPA引物的筛选 M,DNA 标准 DL 500;1~6,反应时间5、10、15、20、25、30 min;C,阴性对照。下同。
Fig.2 Screening of basic RPA primers M, DNA marker DL500; 1-6, Reaction time was 5, 10, 15, 20, 25, 30 min; C, Negative control. The same as below.
图7 LFD-RPA特异性试验 1,绵羊肺炎支原体;2,滑液囊支原体;3,沙门氏菌;4,多杀性巴氏杆菌;5,金黄色葡萄球菌;6,无乳链球菌;7,产气荚膜梭菌。
Fig.7 LFD-RPA specific assay 1, Mycoplasma ovipneumoniae; 2, Mycoplasma synoviae; 3, Salmonella; 4, Pasteurella multocida; 5, Staphylococcus aureus; 6, Streptococcus agalactiae; 7, Clostridium perfringens.
行业标准PCR Industry standard PCR | 总计 Total | ||||
---|---|---|---|---|---|
阳性Positive | 阴性Negative | ||||
LFD-RPA | 阳性Positive | 12 | 1 | 13 | 92.31% (PPV) |
阴性Negative | 0 | 36 | 37 | 97.29% (NPV) | |
总计Total | 12 | 38 | 50 | ||
92.31% (灵敏度) (Sensitivity) | 97.30% (特异度) (Specificity) | 0.896(Kappa值) (Kappa value) |
表2 基础RPA与行业标准PCR检测方法结果比较分析
Table 2 The results of basic RPA and industry standard PCR detection methods were compared and analyzed
行业标准PCR Industry standard PCR | 总计 Total | ||||
---|---|---|---|---|---|
阳性Positive | 阴性Negative | ||||
LFD-RPA | 阳性Positive | 12 | 1 | 13 | 92.31% (PPV) |
阴性Negative | 0 | 36 | 37 | 97.29% (NPV) | |
总计Total | 12 | 38 | 50 | ||
92.31% (灵敏度) (Sensitivity) | 97.30% (特异度) (Specificity) | 0.896(Kappa值) (Kappa value) |
[1] | NICHOLAS R A J, AYLING R D. Mycoplasma bovis: disease, diagnosis, and control[J]. Research in Veterinary Science, 2003, 74(2): 105-112. |
[2] | KANDA T, TANAKA S, SUWANRUENGSRI M, et al. Bovine endocarditis associated with Mycoplasma bovis[J]. Journal of Comparative Pathology, 2019, 171: 53-58. |
[3] | HAAPALA V, POHJANVIRTA T, VÄHÄNIKKILÄ N, et al. Semen as a source of Mycoplasma bovis mastitis in dairy herds[J]. Veterinary Microbiology, 2018, 216: 60-66. |
[4] | GILLE L, EVRARD J, CALLENS J, et al. The presence of Mycoplasma bovis in colostrum[J]. Veterinary Research, 2020, 51(1): 54. |
[5] | ASKAR H, CHEN S L, HAO H F, et al. Immune evasion of Mycoplasma bovis[J]. Pathogens, 2021, 10(3): 297. |
[6] | 季文恒, 储岳峰, 赵萍, 等. 牛支原体逃避宿主免疫的研究进展[J]. 畜牧兽医学报, 2017, 48(3): 393-402. |
JI W H, CHU Y F, ZHAO P, et al. Advances in the research of immune evasion by Mycoplasma bovis[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(3): 393-402. (in Chinese with English abstract) | |
[7] | NICHOLAS R A J. Bovine mycoplasmosis: silent and deadly[J]. The Veterinary Record, 2011, 168(17): 459-462. |
[8] | HALE H H, HELMBOLDT C F, PLASTRIDGE W N, et al. Bovine mastitis caused by a Mycoplasma species[J]. The Cornell Veterinarian, 1962, 52: 582-591. |
[9] | 温靖, 李丹, 郭婷, 等. 中国奶牛牛支原体流行病学调查分析[J]. 中国农业大学学报, 2022, 27(3): 75-82. |
WEN J, LI D, GUO T, et al. Epidemiological investigation and analysis of Mycoplasma bovis in different dairy farming areas in China[J]. Journal of China Agricultural University, 2022, 27(3): 75-82. (in Chinese with English abstract) | |
[10] | PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. PLoS Biology, 2006, 4(7): e204. |
[11] | DAHER R K, STEWART G, BOISSINOT M, et al. Recombinase polymerase amplification for diagnostic applications[J]. Clinical Chemistry, 2016, 62(7): 947-958. |
[12] | LIU Y L, LIU L B, WANG J F, et al. Rapid detection of bovine rotavirus a by isothermal reverse transcription recombinase polymerase amplification assays[J]. BMC Veterinary Research, 2022, 18(1): 339. |
[13] | LIU L, LI R, ZHANG R, et al. Rapid and sensitive detection of Mycoplasma hyopneumoniae by recombinase polymerase amplification assay[J]. Journal of Microbiological Methods, 2019, 159: 56-61. |
[14] | DUDEK K, NICHOLAS R A J, SZACAWA E, et al. Mycoplasma bovis infections-occurrence, diagnosis and control[J]. Pathogens, 2020, 9(8): 640. |
[15] | THOMAS A, DIZIER I, LINDEN A, et al. Conservation of the uvrC gene sequence in Mycoplasma bovis and its use in routine PCR diagnosis[J]. Veterinary Journal, 2004, 168(1): 100-102. |
[16] | BOONYAYATRA S, FOX L K, BESSER T E, et al. A PCR assay and PCR-restriction fragment length polymorphism combination identifying the 3 primary Mycoplasma species causing mastitis[J]. Journal of Dairy Science, 2012, 95(1): 196-205. |
[17] | BEHERA S, RANA R, GUPTA P K, et al. Development of real-time PCR assay for the detection of Mycoplasma bovis[J]. Tropical Animal Health and Production, 2018, 50(4): 875-882. |
[18] | ASHRAF A, IMRAN M, YAQUB T, et al. Development and validation of a loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis in mastitic milk[J]. Folia Microbiologica, 2018, 63(3): 373-380. |
[19] | NIELSEN P K, PETERSEN M B, NIELSEN L R, et al. Latent class analysis of bulk tank milk PCR and ELISA testing for herd level diagnosis of Mycoplasma bovis[J]. Preventive Veterinary Medicine, 2015, 121(3/4): 338-342. |
[20] | SALGADU A, FIRESTONE S M, WATT A, et al. Evaluation of the MilA ELISA for the diagnosis of herd infection with Mycoplasma bovis using bulk tank milk and estimation of the prevalence of M. bovis in Australia[J]. Veterinary Microbiology, 2022, 270: 109454. |
[21] | DUDEK K, SZACAWA E, NICHOLAS R A J. Recent developments in vaccines for bovine mycoplasmoses caused by Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides[J]. Vaccines, 2021, 9(6): 549. |
[22] | CLOTHIER K A, JORDAN D M, THOMPSON C J, et al. Mycoplasma bovis real-time polymerase chain reaction assay validation and diagnostic performance[J]. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 2010, 22(6): 956-960. |
[23] | PARKER A M, SHEEHY P A, HAZELTON M S, et al. A review of mycoplasma diagnostics in cattle[J]. Journal of Veterinary Internal Medicine, 2018, 32(3): 1241-1252. |
[24] | DEVI K R, LEE L J, YAN L T, et al. Occupational exposure and challenges in tackling M. bovis at human-animal interface: a narrative review[J]. International Archives of Occupational and Environmental Health, 2021, 94(6): 1147-1171. |
[25] | 于新友, 李天芝, 李书光, 等. 牛病毒性腹泻病毒和牛支原体SYBR GreenⅠ双重荧光PCR检测方法的建立[J]. 中国兽医科学, 2021, 51(10): 1227-1232. |
YU X Y, LI T Z, LI S G, et al. Establishment of a duplex SYBR GreenⅠ real-time RT-PCR assay for simultaneous detection of emerging BVDV and Mycoplasma bovis[J]. Chinese Veterinary Science, 2021, 51(10): 1227-1232. (in Chinese with English abstract) | |
[26] | 刘立兵, 史云鹏, 高雅欣, 等. 牛支原体微滴式数字PCR检测方法的建立及应用[J]. 中国预防兽医学报, 2022, 44(5): 502-507. |
LIU L B, SHI Y P, GAO Y X, et al. Development and application of droplet digital PCR for detection of Mycoplasma bovis[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(5): 502-507. (in Chinese with English abstract) | |
[27] | ZHANG H, WANG Z, CAO X D, et al. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis[J]. Archives of Microbiology, 2016, 198(9): 905-911. |
[28] | HIGGINS M, RAVENHALL M, WARD D, et al. PrimedRPA: primer design for recombinase polymerase amplification assays[J]. Bioinformatics, 2019, 35(4): 682-684. |
[29] | LI R W, WANG J F, SUN X X, et al. Direct and rapid detection of Mycoplasma bovis in bovine milk samples by recombinase polymerase amplification assays[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 639083. |
[30] | ZHAO G M, HOU P L, HUAN Y J, et al. Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the Mycoplasma bovis[J]. BMC Veterinary Research, 2018, 14(1): 412. |
[31] | 孙魁. 基于LFD-RPA的核酸可视化检测技术的建立及应用[D]. 北京: 中国人民解放军军事医学科学院, 2017. |
SUN K. Establishment of nucleic acid visual detection based on LFD-RPA and its application[D]. Beijing: Academy of Military Medical Sciences, 2017. (in Chinese with English abstract) |
[1] | 陆胜民, 黄子馨, 李小琼, 郑美瑜, 韩永斌. 热加工食品中晚期糖基化终末产物和5-羟甲基糠醛的形成、检测与控制[J]. 浙江农业学报, 2024, 36(6): 1458-1468. |
[2] | 牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996. |
[3] | 王晨薇, 汪小福, 魏巍, 陈笑芸, 沈洁, 徐俊锋, 蔡健. 西瓜细菌性果斑病菌现场快速双模荧光RPA检测方法的建立[J]. 浙江农业学报, 2022, 34(7): 1519-1528. |
[4] | 尤琪, 吴文文, 姜艺. 作物基因编辑效果可视化鉴定软件[J]. 浙江农业学报, 2022, 34(12): 2759-2766. |
[5] | 罗跃, 吴小毛, 刘阿丽, 姚小龙, 李荣玉, 耿广东. 基于LAMP的果蔬斯高维尔炭疽菌可视化检测方法[J]. 浙江农业学报, 2022, 34(1): 98-103. |
[6] | 云涛, 华炯钢, 叶伟成, 倪征, 陈柳, 张存. 新型鸭呼肠孤病毒一步法TaqMan-MGB荧光定量RT-PCR检测方法的建立与应用[J]. 浙江农业学报, 2020, 32(4): 571-576. |
[7] | 蒋丰千, 李旸, 余大为, 孙敏, 张恩宝. 基于Caffe卷积神经网络的大豆病害检测系统[J]. 浙江农业学报, 2019, 31(7): 1177-1183. |
[8] | 程辉, 梁奕, 俞圣韬, 叶仲杜, 蒋晗, 朱诚. 双重RT-RPA法快速检测沙门氏菌及其1类整合酶基因[J]. 浙江农业学报, 2019, 31(4): 661-668. |
[9] | 杨万风, 刘艳, 陆辰晨, 邵沛泽, 谌运清, 赵文军. 双重PCR方法检测检疫性细菌洋葱腐烂病菌和菊基腐病菌[J]. 浙江农业学报, 2018, 30(3): 426-431. |
[10] | 单颖, 许伟成, 施杏芬, 刘子琦, 陈聪, 罗浩, 刘亚杰, 方维焕, 李肖梁. 猪代尔塔冠状病毒荧光定量PCR检测方法的建立及其S基因分子特征分析[J]. 浙江农业学报, 2018, 30(2): 220-227. |
[11] | 付珍珍, 曾月, 李增威, 何利, 周康, 刘书亮, 邹立扣, 敖晓琳, 陈姝娟. 分子印迹固相萃取-高效液相色谱法测定牛奶中四环素类抗生素残留[J]. 浙江农业学报, 2018, 30(2): 314-322. |
[12] | 罗书吉1,2,3,王钫2,3,陈文学1,王伟2,3,胡桂仙2,3,王强1,2,3,*. 离子色谱法测定茭白中总亚硫酸盐的应用研究[J]. 浙江农业学报, 2016, 28(5): 870-. |
[13] | 杨万风1,刘艳2,刘翔1,邵沛泽1,谌运清1,赵文军3. 双重PCR法同步检测菜豆晕疫病菌和萎蔫病菌[J]. 浙江农业学报, 2015, 27(9): 1612-. |
[14] | 杨万风1,刘艳2,刘翔1,邵沛泽1,谌运清1,赵文军3. 巢式PCR检测菜豆细菌性萎蔫病菌[J]. 浙江农业学报, 2015, 27(7): 1202-. |
[15] | 叶伟成1,余斌1,刘跃生2,华炯钢1,云涛1,张存1,*. 番鸭呼肠孤病毒通用RT\|PCR检测方法的建立 [J]. 浙江农业学报, 2014, 26(6): 1453-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||