浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1789-1796.DOI: 10.3969/j.issn.1004-1524.2021.10.01
刘寒1,2(
), 戴远兴1,2, 吕明芳2, 袁正杰2, 李静2, 严成其2, 张恒木2,*(
)
收稿日期:2021-04-15
出版日期:2021-10-25
发布日期:2021-11-02
作者简介:张恒木,E-mail: zhhengmu@tsinghua.org.cn通讯作者:
张恒木
基金资助:
LIU Han1,2(
), DAI Yuanxing1,2, LYU Mingfang2, YUAN Zhengjie2, LI Jing2, YAN Chengqi2, ZHANG Hengmu2,*(
)
Received:2021-04-15
Online:2021-10-25
Published:2021-11-02
Contact:
ZHANG Hengmu
摘要:
为探究外源水杨酸(SA)对水稻苗期生长与SA相关防卫反应的影响,用不同浓度外源SA喷施苗期日本晴水稻,利用分光光度计测定水稻苗期生长关键指标叶绿素含量,采用qRT-PCR定量分析外源SA对水稻苗期SA合成基因PAL1、SA受体基因NPR1、SA信号途径下游的转录因子WRKY45/WRKY76和防卫基因PR1a/PR1b的表达水平。结果表明,外源SA对上述水稻基因的影响不同,即低浓度SA在一定程度上促进水稻苗期叶绿素积累,并显著影响水稻苗期防卫相关基因的表达水平;高浓度SA抑制叶绿素的积累,影响水稻的正常生长。综合比较结果显示,喷施2.0 mmol·L-1外源SA对水稻苗期防卫相关基因表达的影响最为有效,该结果为进一步探索外源SA促进水稻苗期生长并提高水稻苗期防卫能力的作用研究奠定基础。
中图分类号:
刘寒, 戴远兴, 吕明芳, 袁正杰, 李静, 严成其, 张恒木. 外源水杨酸对水稻苗期生长与防卫相关基因表达的影响[J]. 浙江农业学报, 2021, 33(10): 1789-1796.
LIU Han, DAI Yuanxing, LYU Mingfang, YUAN Zhengjie, LI Jing, YAN Chengqi, ZHANG Hengmu. Effects of exogenous salicylic acid on growth and defense-related genes of rice seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1789-1796.
| 目的基因 Target gene | 上游引物(5'→3') Forward primer (5'→3') | 下游引物(5'→3') Reverse primer (5'→3') | 参考文献 Reference |
|---|---|---|---|
| OsNPR1 | TTTCCGATGGAGGCAAGAG | GCTGTCATCCGAGCTAAGTGTT | [ |
| OsPR1b | CAGCAACTGGAACAACCTTGG | TATGGACCGTGAAGGCGTGG | [ |
| PAL1 | CCGACCACCTGACTCACAA | ATCTCACGCTCGATGGACTT | |
| OsPR1a | TATGCTATGCTACGTGTTTATGC | CACTAAGCAAATACGGCTGACA | |
| OsWRKY45 | TCCACGCGTGTGTACAGAAA | TGCTAGCATGTCTGCAGCTTA | [ |
| OsWRKY76 | CTGCCCGAATTCTAGCTTCCT | GCCCAAGGACCAACAGGTTAT | |
| UBC | CCGTTTGTAGAGCCATAATTGCA | AGGTTGCCTGAGTCACAGTTAAGTG | [ |
表1 qPCR采用的引物
Table 1 Primers used in qPCR
| 目的基因 Target gene | 上游引物(5'→3') Forward primer (5'→3') | 下游引物(5'→3') Reverse primer (5'→3') | 参考文献 Reference |
|---|---|---|---|
| OsNPR1 | TTTCCGATGGAGGCAAGAG | GCTGTCATCCGAGCTAAGTGTT | [ |
| OsPR1b | CAGCAACTGGAACAACCTTGG | TATGGACCGTGAAGGCGTGG | [ |
| PAL1 | CCGACCACCTGACTCACAA | ATCTCACGCTCGATGGACTT | |
| OsPR1a | TATGCTATGCTACGTGTTTATGC | CACTAAGCAAATACGGCTGACA | |
| OsWRKY45 | TCCACGCGTGTGTACAGAAA | TGCTAGCATGTCTGCAGCTTA | [ |
| OsWRKY76 | CTGCCCGAATTCTAGCTTCCT | GCCCAAGGACCAACAGGTTAT | |
| UBC | CCGTTTGTAGAGCCATAATTGCA | AGGTTGCCTGAGTCACAGTTAAGTG | [ |
图1 SA处理的水稻苗叶绿素含量和表型变化 *表示与0 h相比差异达显著水平(P<0.05)。下同。
Fig.1 Changes in chlorophyll content and phenotypes of rice seedlings caused by SA * represented significant differences at 0.05 level compared with 0 h. The same as below.
| [1] |
PENG Y J, VAN WERSCH R, ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions, 2018, 31(4):403-409.
DOI URL |
| [2] |
RESJÖ S, ZAHID M A, BURRA D D, et al. Proteomics of PTI and two ETI immune reactions in potato leaves[J]. International Journal of Molecular Sciences, 2019, 20(19):4726.
DOI URL |
| [3] |
DING P T, DING Y L. Stories of salicylic acid: a plant defense hormone[J]. Trends in Plant Science, 2020, 25(6):549-565.
DOI URL |
| [4] |
JIANG G H, YIN D D, SHI Y, et al. OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight[J]. Scientific Reports, 2020, 10:6313.
DOI URL |
| [5] |
DUAN L, LIU H B, LI X H, et al. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice[J]. Physiologia Plantarum, 2014, 152(3):486-500.
DOI URL |
| [6] |
RIVAS-SAN VICENTE M, PLASENCIA J. Salicylic acid beyond defence: its role in plant growth and development[J]. Journal of Experimental Botany, 2011, 62(10):3321-3338.
DOI URL |
| [7] |
BETSUYAKU S, KATOU S, TAKEBAYASHI Y, et al. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2018, 59(1):8-16.
DOI URL |
| [8] |
SHEN C J, YANG Y J, LIU K D, et al. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(14):4179-4193.
DOI URL |
| [9] |
DE VLEESSCHAUWER D, GHEYSEN G, HÖFTE M. Hormone defense networking in rice: tales from a different world[J]. Trends in Plant Science, 2013, 18(10):555-565.
DOI URL |
| [10] |
SILVERMAN P, SESKAR M, KANTER D, et al. Salicylic acid in rice (biosynjournal, conjugation, and possible role)[J]. Plant Physiology, 1995, 108(2):633-639.
DOI URL |
| [11] | YALPANI N, SILVERMAN P, WILSON T M, et al. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco[J]. The Plant Cell, 1991, 3(8):809-818. |
| [12] | LEMARIÉ S, ROBERT-SEILANIANTZ A, LARIAGON C, et al. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(11):2158-2168. |
| [13] |
ENYEDI A J, YALPANI N, SILVERMAN P, et al. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus[J]. Proceedings of the National Academy of Sciences of USA, 1992, 89(6):2480-2484.
DOI URL |
| [14] |
LOVE A J, GERI C, LAIRD J, et al. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity[J]. PLoS One, 2012, 7(10):e47535.
DOI URL |
| [15] | ZHANG W N, CHEN W L. Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana[J]. Photochemical & Photobiological Sciences, 2011, 10(6):947-955. |
| [16] |
LOVELOCK D A, ŠOLA I, MARSCHOLLEK S, et al. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease[J]. Molecular Plant Pathology, 2016, 17(8):1237-1251.
DOI URL |
| [17] |
WHITE R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco[J]. Virology, 1979, 99(2):410-412.
DOI URL |
| [18] |
CHEN Z, CHEN T, SATHE A, et al. Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice[J]. International Journal of Molecular Sciences, 2018, 19(12):3766.
DOI URL |
| [19] |
STELLA DE FREITAS T F, STOUT M J, SANT'ANA J. Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax[J]. Pest Management Science, 2019, 75(3):744-752.
DOI URL |
| [20] |
FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18(1):245.
DOI URL |
| [21] |
LOPES F B, SANT’ANA J. Responses of Spodoptera frugiperda and Trichogramma pretiosum to rice plants exposed to herbivory and phytohormones[J]. Neotropical Entomology, 2019, 48(3):381-390.
DOI URL |
| [22] |
MOU S L, SHI L P, LIN W, et al. Over-expression of rice CBS domain containing protein, OsCBSX3, confers rice resistance to Magnaporthe oryzae inoculation[J]. International Journal of Molecular Sciences, 2015, 16(7):15903-15917.
DOI URL |
| [23] |
PENG X X, WANG H H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1):1-14.
DOI URL |
| [24] |
LIU H, DONG S Y, SUN D Y, et al. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11):e0166249.
DOI URL |
| [25] |
XIE X Z, XUE Y J, ZHOU J J, et al. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea[J]. Molecular Plant, 2011, 4(4):688-696.
DOI URL |
| [26] | 李燕, 龙湍, 吴昌银. 组培水稻种子发芽[EB/OL].(2018-03-16)[2021-04-15]. Bio-101, 2018: e1010183. DOI: 10.21769/BioProtoc.1010183. |
| LI Y, LONG T, WU C Y. Germination of rice seeds with tissue culture method [EB/OL].(2018-03-16)[2021-04-15]. Bio-101, 2018: e1010183. DOI: 10.21769/BioProtoc.1010183. | |
| [27] | 徐春梅, 陈丽萍, 王丹英, 等. 低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响[J]. 中国农业科学, 2016, 49(8):1625-1634. |
| XU C M, CHEN L P, WANG D Y, et al. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings[J]. Scientia Agricultura Sinica, 2016, 49(8):1625-1634.(in Chinese with English abstract) | |
| [28] | 项聪英, 蔡年俊, 李静, 等. 一个水稻小热休克蛋白基因的克隆和鉴定[J]. 中国水稻科学, 2016, 30(6):587-592. |
| XIANG C Y, CAI N J, LI J, et al. Cloning and characterization of a small heat shock protein (SHSP) gene in rice plant[J]. Chinese Journal of Rice Science, 2016, 30(6):587-592.(in Chinese with English abstract) | |
| [29] |
SHIMONO M, SUGANO S, NAKAYAMA A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. The Plant Cell, 2007, 19(6):2064-2076.
DOI URL |
| [30] | 周勇, 范晓磊, 林拥军, 等. 水稻叶绿素含量的测定[EB/OL].(2018-06-12)[2021-04-15]. Bio-101, 2018: e1010147.DOI: 10.21769/BioProtoc.1010147. |
| ZHOU Y, FAN X L, LIN Y J, et al. Determination of chlorophyll content in rice[EB/OL].(2018-06-12)[2021-04-15]. Bio-101, 2018: e1010147. DOI: 10.21769/BioProtoc.1010147. | |
| [31] |
DEMPSEY D A, VLOT A C, WILDERMUTH M C, et al. Salicylic acid biosynjournal and metabolism[J]. The Arabidopsis Book, 2011, 9:e0156.
DOI URL |
| [32] |
PAJEROWSKA-MUKHTAR K M, EMERINE D K, MUKHTAR M S. Tell me more: roles of NPRs in plant immunity[J]. Trends in Plant Science, 2013, 18(7):402-411.
DOI URL |
| [33] |
DING Y L, SUN T J, AO K, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity[J]. Cell, 2018, 173(6):1454-1467.
DOI URL |
| [34] |
ZHANG Y L, LI X. Salicylic acid: biosynjournal, perception, and contributions to plant immunity[J]. Current Opinion in Plant Biology, 2019, 50:29-36.
DOI URL |
| [35] |
RYU H S, HAN M, LEE S K, et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response[J]. Plant Cell Reports, 2006, 25(8):836-847.
DOI URL |
| [36] |
LIANG X X, CHEN X J, LI C, et al. Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice[J]. Scientific Reports, 2017, 7:2474.
DOI URL |
| [37] |
HUANGFU J Y, LI J C, LI R, et al. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens[J]. International Journal of Molecular Sciences, 2016, 17(6):697.
DOI URL |
| [38] |
PENG Y, BARTLEY L E, CANLAS P, et al. OsWRKY IIa transcription factors modulate rice innate immunity[J]. Rice, 2010, 3(1):36-42.
DOI URL |
| [39] |
LIU X Y, ROCKETT K S, KØRNER C J, et al. Salicylic acid signalling: new insights and prospects at a quarter-century milestone[J]. Essays in Biochemistry, 2015, 58:101-113.
DOI URL |
| [40] |
KU Y S, SINTAHA M, CHEUNG M Y, et al. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10):3206.
DOI URL |
| [41] |
MUR L A J, KENTON P, ATZORN R, et al. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death[J]. Plant Physiology, 2006, 140(1):249-262.
DOI URL |
| [42] |
DEWEZ D, DAUTREMEPUITS C, JEANDET P, et al. Effects of methanol on photosynthetic processes and growth of Lemna gibba[J]. Photochemistry and Photobiology, 2003, 78(4):420-424.
DOI URL |
| [1] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [2] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. |
| [3] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [4] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [5] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [6] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [7] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
| [8] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [9] | 谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547. |
| [10] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
| [11] | 谈静如, 胡齐赞, 岳智臣, 陶鹏, 雷娟利, 李必元, 赵彦婷, 臧运祥. 基于叶绿素荧光参数的苗用型大白菜耐热性综合评价体系[J]. 浙江农业学报, 2025, 37(2): 288-299. |
| [12] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
| [13] | 徐伟东, 陆强, 姚张良, 王晖, 王瑞森, 郎淑平. 水稻田夏熟杂草多样性特征对不同轮作模式的响应[J]. 浙江农业学报, 2025, 37(10): 2138-2149. |
| [14] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
| [15] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||