浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1583-1590.DOI: 10.3969/j.issn.1004-1524.20231020
诸燕1(
), 丁兰2, 陈忆乾1, 黄秀静1, 姜伟伟1, 陈东红1,*(
)
收稿日期:2023-08-28
出版日期:2024-07-25
发布日期:2024-08-05
作者简介:诸燕(1983—),女,浙江绍兴人,硕士,农艺师,研究方向为药用植物遗传育种。E-mail: zhuyan198305@163.com
通讯作者:
*陈东红,E-mail: chendh212@163.com
基金资助:
ZHU Yan1(
), DING Lan2, CHEN Yiqian1, HUANG Xiujing1, JIANG Weiwei1, CHEN Donghong1,*(
)
Received:2023-08-28
Online:2024-07-25
Published:2024-08-05
摘要:
CLE多肽是一类小分子分泌蛋白,参与植物的生长发育和细胞间通讯,在维持干细胞的增殖与分化中发挥关键调控作用。为研究兰科药用植物铁皮石斛(Dendrobium officinale Kimura et Migo)中CLE基因家族成员的功能,从铁皮石斛叶、根、茎、花苞、果实的组织中提取RNA,反转录成cDNA,通过半定量PCR检测CLE家族基因成员在各组织中的表达情况。结果表明:在铁皮石斛基因组中鉴定出17个CLE成员,它们均拥有保守的12氨基酸CLE基序。半定量RT-PCR结果表明,CLE基因家族成员在根、茎、叶、花、果实中展示不同的组织表达谱,尤其是CLE19635在花苞和果实中特异性表达,CLE22175在果实中特异性表达。用体外合成的CLE多肽处理拟南芥,结果显示,CLE合成肽参与拟南芥根的发育,其中,CLE05351对根生长有促进作用,CLE18468对根影响不明显,其他CLE多肽均对根的生长有抑制作用。mPS-PI染色并未发现根尖分生组织结构模式受到CLE合成肽的影响。此外,CLE02038过表达的拟南芥T2代纯合系具有短根表型,与CLE合成肽处理结果一致。研究结果为进一步挖掘CLE家族在铁皮石斛附生根中的作用及其信号调控网络奠定了基础,并为铁皮石斛理想根系的育种提供了潜在靶基因。
中图分类号:
诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590.
ZHU Yan, DING Lan, CHEN Yiqian, HUANG Xiujing, JIANG Weiwei, CHEN Donghong. Identification and functional analysis of CLE gene family in Dendrobium officinale Kimura et Migo[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1583-1590.
| 基因名称 Gene name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') | 基因ID Gene ID | 产物长度 Product length/bp |
|---|---|---|---|---|
| CLE109525 | CTCTTACAGTACCTGATCATACAC | TTATGCCTGTCCAGGCAA | LOC110109525 | 525 |
| CLE01792 | ATGTCTCTCCAATTGCTCTTG | TTAATGGTGGAGTGGGTTGG | PKU85961 | 372 |
| CLE02038 | GACTTCATGAGGAAGAATAGAA | TCAGTTATGAAGAGGATTAGGTC | PKU86207 | 228 |
| CLE04631 | ATGGCTAAACTAAAAGAGATAGG | TCATCTGTTATGCAGAGGATTAG | PKU65016 | 267 |
| CLE05351 | ATGGCTTCTGCTGAAGTCTC | CTACCTATTGGAGTCTGGGTT | PKU82346 | 267 |
| CLE11641 | ATGGCATTCTCTTCAAGAGC | TCAATGGTGTTGAGGGTCTG | PKU78021 | 231 |
| CLE5097 | ATGGCAAGAGAAGTAGTGAGG | TCAATTGTGTAGCGGGTTTG | PKU64567 | 171 |
| CLE15729 | ATGGTTGGGCAAAGAGAGATG | TCAGTTGTGCAAAGGATTAGG | PKU75207 | 264 |
| CLE18468 | ATGGACACTGAGCTGATCAG | TCACCTATTTGAATCAGGATTC | PKU83835 | 336 |
| CLE19635 | ATGCTGCCCACTCTGCCG | CTAGTGATGGAGGGGATTCG | PKU59933 | 177 |
| CLE20689 | ATGCAAGGAATTAGAAGGACT | TCAGTTGTGAAGTGGATTGG | PKU74917 | 249 |
| CLE22175 | ATGGGGAGAATCAATATTCT | TTAATGGTGTTCAGGATCTG | PKU68119 | 210 |
| CLE22943 | ATGGTTGGGCTAAGAGAGA | CTATCTGTTGTGCAAAGGATT | PKU86730 | 267 |
| CLE29071 | ATGCTTCCCACTCTGCCG | CTAGTGATGGAGGGGATTCGC | PKU62687 | 177 |
| CLE79016 | ATGGCGTTCACATACTCAAGAG | TCAATGGTGTTGGGGGTCTG | PKU79016 | 231 |
| CLE82107 | ATGCCAACTTCAACGAGGC | TTACCGGTTGTGAAGGCGG | PKU82107 | 234 |
| CLE66413 | ATGGGGCTGCGTAAAAGAG | TCACAGCTCTTTTACGCAGC | PKU66413 | 237 |
| DcACTIN1 | GATTTGCTGGTGACGATGC | AGGATACCTCTTTTGGACTGG | LOC110111141 | 136 |
表1 铁皮石斛CLE基因家族半定量RT-PCR引物
Table 1 Semi-quantitative RT-PCR primers for CLE gene family in Dendrobium officinale
| 基因名称 Gene name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') | 基因ID Gene ID | 产物长度 Product length/bp |
|---|---|---|---|---|
| CLE109525 | CTCTTACAGTACCTGATCATACAC | TTATGCCTGTCCAGGCAA | LOC110109525 | 525 |
| CLE01792 | ATGTCTCTCCAATTGCTCTTG | TTAATGGTGGAGTGGGTTGG | PKU85961 | 372 |
| CLE02038 | GACTTCATGAGGAAGAATAGAA | TCAGTTATGAAGAGGATTAGGTC | PKU86207 | 228 |
| CLE04631 | ATGGCTAAACTAAAAGAGATAGG | TCATCTGTTATGCAGAGGATTAG | PKU65016 | 267 |
| CLE05351 | ATGGCTTCTGCTGAAGTCTC | CTACCTATTGGAGTCTGGGTT | PKU82346 | 267 |
| CLE11641 | ATGGCATTCTCTTCAAGAGC | TCAATGGTGTTGAGGGTCTG | PKU78021 | 231 |
| CLE5097 | ATGGCAAGAGAAGTAGTGAGG | TCAATTGTGTAGCGGGTTTG | PKU64567 | 171 |
| CLE15729 | ATGGTTGGGCAAAGAGAGATG | TCAGTTGTGCAAAGGATTAGG | PKU75207 | 264 |
| CLE18468 | ATGGACACTGAGCTGATCAG | TCACCTATTTGAATCAGGATTC | PKU83835 | 336 |
| CLE19635 | ATGCTGCCCACTCTGCCG | CTAGTGATGGAGGGGATTCG | PKU59933 | 177 |
| CLE20689 | ATGCAAGGAATTAGAAGGACT | TCAGTTGTGAAGTGGATTGG | PKU74917 | 249 |
| CLE22175 | ATGGGGAGAATCAATATTCT | TTAATGGTGTTCAGGATCTG | PKU68119 | 210 |
| CLE22943 | ATGGTTGGGCTAAGAGAGA | CTATCTGTTGTGCAAAGGATT | PKU86730 | 267 |
| CLE29071 | ATGCTTCCCACTCTGCCG | CTAGTGATGGAGGGGATTCGC | PKU62687 | 177 |
| CLE79016 | ATGGCGTTCACATACTCAAGAG | TCAATGGTGTTGGGGGTCTG | PKU79016 | 231 |
| CLE82107 | ATGCCAACTTCAACGAGGC | TTACCGGTTGTGAAGGCGG | PKU82107 | 234 |
| CLE66413 | ATGGGGCTGCGTAAAAGAG | TCACAGCTCTTTTACGCAGC | PKU66413 | 237 |
| DcACTIN1 | GATTTGCTGGTGACGATGC | AGGATACCTCTTTTGGACTGG | LOC110111141 | 136 |
| 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence |
|---|---|---|---|---|---|
| CLE66413 (PKU66413) | RKVPNASDPLHN | CLE05351 (PKU82346) | HEVPNGPNPDSN | CLE82107 (PKU82107) | RPVPSCPDRLHN |
| CLE109525 (LOC110109525) | RKVPKGPDPIHN | CLE18468 (PKU83835) | HEVPSGPNPDSN | CLE19635 | RLVPSGANPLHH |
| (PKU59933/PKU62687) | |||||
| CLE79016 (PKU79016) | RLSPGGSDPQHH | CLE04631 (PKU65016) | RNVYTGPNPLHN | CLE20689 (PKU74917) | RLVPSGPNPLHN |
| CLE22175 (PKU68119) | RLSPGGPDPEHH | CLE15729 | RTVYTGPNPLHN | CLE01792 (PKU85961) | RFVPCGPNPLHH |
| (PKU75207/PKU86730) | |||||
| CLE11641 (PKU78021) | RLSPGGPDPQHH | CLE02038 (PKU86207) | RIIYAGPNPLHN | CLE5097 (PKU64567) | RFVPQGPNPLHN |
表2 铁皮石斛CLE多肽保守基序
Table 2 Conserved motif sequences of CLE peptides in Dendrobium officinale
| 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence |
|---|---|---|---|---|---|
| CLE66413 (PKU66413) | RKVPNASDPLHN | CLE05351 (PKU82346) | HEVPNGPNPDSN | CLE82107 (PKU82107) | RPVPSCPDRLHN |
| CLE109525 (LOC110109525) | RKVPKGPDPIHN | CLE18468 (PKU83835) | HEVPSGPNPDSN | CLE19635 | RLVPSGANPLHH |
| (PKU59933/PKU62687) | |||||
| CLE79016 (PKU79016) | RLSPGGSDPQHH | CLE04631 (PKU65016) | RNVYTGPNPLHN | CLE20689 (PKU74917) | RLVPSGPNPLHN |
| CLE22175 (PKU68119) | RLSPGGPDPEHH | CLE15729 | RTVYTGPNPLHN | CLE01792 (PKU85961) | RFVPCGPNPLHH |
| (PKU75207/PKU86730) | |||||
| CLE11641 (PKU78021) | RLSPGGPDPQHH | CLE02038 (PKU86207) | RIIYAGPNPLHN | CLE5097 (PKU64567) | RFVPQGPNPLHN |
图1 铁皮石斛CLE蛋白序列的系统进化分析 A,铁皮石斛CLE蛋白的系统进化关系和保守的12氨基酸CLE基序;B,保守基序的Logo图示。
Fig.1 Evolutionary analysis of CLE protein sequences in Dendrobium officinale A, Evolutionary analysis and conserved 12 aa motifs of CLE proteins in D. officinale; B, Logo representation for motif sequence.
图2 CLE基因家族成员在铁皮石斛中的组织表达特异性 L,叶;R,根;S,茎;F,花;C,果实。
Fig.2 Tissue-specific expression of CLE gene family members in Dendrobium officinale L, Leaf; R, Root; S, Stem; F, Flower; C, Fruit.
图3 铁皮石斛CLE合成肽对拟南芥根生长的影响 A,CLE合成肽处理拟南芥第7天;B,不同CLE合成肽处理的拟南芥根长;C,拟南芥根尖分生组织结构模式。Col,野生型拟南芥。
Fig.3 Influence of CLE peptides on the growth of Arabidopsis thaliana roots A, The seventh day after CLE peptides treatment; B, Root length of A. thaliana treated with different CLE peptides ; C, Cell pattern of A. thaliana RAM. Col was wild type A. thaliana.
图4 CLE02038过表达拟南芥的表型 A,CLE02038过表达拟南芥成株表型;B,CLE02038过表达拟南芥7 d根的表型;C, CLE02038过表达拟南芥株系的根长。Col为野生型拟南芥;L1~L4为4个CLE02038过表达拟南芥株系。
Fig.4 Phenotype of CLE02038 overexpressing Arabidopsis thaliana A, Phenotype of CLE02038 overexpressing A. thaliana; B, Phenotype of 7-day-old CLE02038 overexpressing A. thaliana; C, Root length of CLE02038 overexpressing A. thaliana lines. Col was wild type A. thaliana; L1-L4 were four CLE02038 overexpressing A. thaliana lines.
| [1] | 斯金平, 王琦, 刘仲健, 等. 铁皮石斛产业化关键科学与技术的突破[J]. 中国中药杂志, 2017, 42(12): 2223-2227. |
| SI J P, WANG Q, LIU Z J, et al. Breakthrough in key science and technologies in Dendrobium catenatum industry[J]. China Journal of Chinese Materia Medica, 2017, 42(12): 2223-2227.(in Chinese with English abstract) | |
| [2] | 斯金平, 张媛, 罗毅波, 等. 石斛与铁皮石斛关系的本草考证[J]. 中国中药杂志, 2017, 42(10): 2001-2005. |
| SI J P, ZHANG Y, LUO Y B, et al. Herbal textual research on relationship between Chinese medicine“Shihu” (Dendrobium spp.) and “Tiepi Shihu” (D. catenatum)[J]. China Journal of Chinese Materia Medica, 2017, 42(10): 2001-2005.(in Chinese with English abstract) | |
| [3] | STAHL Y, SIMON R. Peptides and receptors controlling root development[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2012, 367(1595): 1453-1460. |
| [4] | KINOSHITA A, NAKAMURA Y, SASAKI E, et al. Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa[J]. Plant & Cell Physiology, 2007, 48(12): 1821-1825. |
| [5] | HOBE M, MÜLLER R, GRÜNEWALD M, et al. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis[J]. Development Genes and Evolution, 2003, 213(8): 371-381. |
| [6] | STAHL Y, WINK R H, INGRAM G C, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Current Biology, 2009, 19(11): 909-914. |
| [7] | RICHARDS S, WINK R H, SIMON R. Mathematical modelling of WOX5-and CLE40-mediated columella stem cell homeostasis in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(17): 5375-5384. |
| [8] | CASAMITJANA-MARTı’NEZ E, HOFHUIS H F, XU J, et al. Root-specific CLE19 overexpression and the Sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance[J]. Current Biology, 2003, 13(16): 1435-1441. |
| [9] | FIERS M, HAUSE G, BOUTILIER K, et al. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem[J]. Gene, 2004, 327(1): 37-49. |
| [10] | CHU H W, LIANG W Q, LI J, et al. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice[J]. Journal of Experimental Botany, 2013, 64(17): 5359-5369. |
| [11] | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. |
| [12] | ROGERS S O, BENDICH A J. Extraction of DNA from plant tissues[M]// Plant Molecular Biology Manual. Dordrecht: Springer Netherlands, 1989: 73-83. |
| [13] | TRUERNIT E, BAUBY H, DUBREUCQ B, et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis[J]. The Plant Cell, 2008, 20(6): 1494-1503. |
| [14] | ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646. |
| [15] | MÜLLER R, BLECKMANN A, SIMON R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1[J]. The Plant Cell, 2008, 20(4): 934-946. |
| [16] | DEPUYDT S, RODRIGUEZ-VILLALON A, SANTUARI L, et al. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7074-7079. |
| [17] | SHIMIZU N, ISHIDA T, YAMADA M, et al. BAM 1 and receptor-like protein kinase 2 constitute a signaling pathway and modulate cle peptide-triggered growth inhibition in Arabidopsis root[J]. The New Phytologist, 2015, 208(4): 1104-1113. |
| [18] | HAZAK O, BRANDT B, CATTANEO P, et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature[J]. EMBO Reports, 2017,18: 1367-1381. |
| [19] | HIRAKAWA Y, KONDO Y, FUKUDA H. Establishment and maintenance of vascular cell communities through local signaling[J]. Current Opinion in Plant Biology, 2011, 14(1):17-23. |
| [20] | OELKERS K, GOFFARD N, WEILLER G F, et al. Bioinformatic analysis of the CLE signaling peptide family[J]. BMC Plant Biology, 2008, 8: 1. |
| [21] | KANG J K, WANG X N, ISHIDA T, et al. A group of CLE peptides regulates de novo shoot regeneration in Arabidopsis thaliana[J]. The New Phytologist, 2022, 235(6): 2300-2312. |
| [22] | ZHANG Y, TAN S Y, GAO Y H, et al. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis[J]. The New Phytologist, 2022, 235(2): 550-562. |
| [23] | ZHANG Z L, LIU C, LI K, et al. CLE14 functions as a “brake signal” to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis[J]. Molecular Plant, 2022, 15(1): 179-188. |
| [24] | TAKAHASHI F, SUZUKI T, OSAKABE Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238. |
| [25] | 石岩, 张天恩, 朱百慧, 等. 苹果多肽编码基因MhCLE8调控花青苷积累的功能研究[J]. 园艺学报, 2023, 50(12): 2541-2550. |
| SHI Y, ZHANG T E, ZHU B H, et al. Function study of peptide coding gene MhCLE8 in regulating anthocyanin accumulation in apple(Malus×domestica)[J]. Acta Horticulturae Sinica, 2023, 50(12): 2541-2550.(in Chinese with English abstract) | |
| [26] | 程梦雨, 李小强, 王鹏, 等. 蔷薇科果树CLE多肽家族的鉴定及梨PbrCLE31调控花粉管生长功能分析[J]. 南京农业大学学报, 2021, 44(5): 850-861. |
| CHENG M Y, LI X Q, WANG P, et al. Identification of CLE peptide family in Rosaceae fruit trees and regulation of pollen tube growth by PbrCLE31 in pear[J]. Journal of Nanjing Agricultural University, 2021, 44(5): 850-861.(in Chinese with English abstract) | |
| [27] | MIYAWAKI K, TABATA R, SAWA S. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism[J]. Current Opinion in Plant Biology, 2013, 16(5): 598-606. |
| [1] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
| [2] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [3] | 孙凤婷, 王旭, 韩新雨, 许振岚, 吴声敢, 黄浩, 汤涛, 盛清, 王强, 沈国强, 赵学平. 复硝酚钠对铁皮石斛中黄酮含量和抗氧化活性的影响[J]. 浙江农业学报, 2025, 37(4): 934-942. |
| [4] | 乔慧茹, 房祥军, 吴伟杰, 刘瑞玲, 陈杭君, 邓尚贵, 沙浩, 郜海燕. 蓝莓与铁皮石斛叶复合乳酸菌发酵饮料工艺优化与品质分析[J]. 浙江农业学报, 2025, 37(3): 654-666. |
| [5] | 黄浩, 汤涛, 许振岚, 赵学平. 吡唑醚菌酯对铁皮石斛中多糖和黄酮的影响研究[J]. 浙江农业学报, 2025, 37(1): 115-125. |
| [6] | 张妮, 陶文扬, 罗梦帆, 周万怡, 郑晓杰, 李彦坡, 金火喜, 杨颖. 酶解辅助提取对铁皮石斛多糖结构和菌群调节功能的影响[J]. 浙江农业学报, 2024, 36(9): 2099-2109. |
| [7] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
| [8] | 王晓梅, 骆玉琴, 赵学平, 陆兰菲, 方楠, 王祥云, 蒋金花, 何红梅, 张昌朋, 王强. 氟吡菌酰胺在铁皮石斛中的残留与膳食风险[J]. 浙江农业学报, 2024, 36(7): 1666-1676. |
| [9] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [10] | 李镜锐, 陶文扬, 杨颖, 周万怡, 陆胜民, 王阳光. 三种浙产铁皮石斛多糖的结构及免疫功效探究[J]. 浙江农业学报, 2023, 35(8): 1888-1895. |
| [11] | 陆兰菲, 赵学平, 马正, 方楠, 骆玉琴, 王晓梅, 叶会, 雷圆, 王强, 张昌朋. 固相萃取-高效液相色谱-质谱联用法测定铁皮石斛中2,4-表芸苔素内酯残留[J]. 浙江农业学报, 2023, 35(8): 1896-1903. |
| [12] | 孙凤婷, 许振岚, 朱作艺, 张春荣, 汤涛, 赵学平, 盛清, 王强. 铁皮石斛的黄酮类成分测定及其生物可及性研究[J]. 浙江农业学报, 2023, 35(11): 2710-2719. |
| [13] | 徐莉, 王其, 丁婷, 江腾. 玉米GRMZM2G455909基因的克隆及其抗病功能初步分析[J]. 浙江农业学报, 2022, 34(9): 1976-984. |
| [14] | 冯金林, 席晓宇, 赵世凤. 拟南芥N末端乙酰转移酶Naa50参与调控根细胞有丝分裂[J]. 浙江农业学报, 2022, 34(12): 2603-2609. |
| [15] | 李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||