浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2070-2078.DOI: 10.3969/j.issn.1004-1524.20230739
白健(), 罗来聪, 李爱新, 赖晓琴, 申展, 刘亮英, 郭圣茂, 张令(
)
收稿日期:
2023-06-08
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
张令,E-mail: lingzhang09@126.com通讯作者:
张令,E-mail: 基金资助:
BAI Jian(), LUO Laicong, LI Aixin, LAI Xiaoqin, SHEN Zhan, LIU Liangying, GUO Shengmao, ZHANG Ling(
)
Received:
2023-06-08
Online:
2024-09-25
Published:
2024-09-30
摘要:
喜旱莲子草(Alternanthera philoxeroides)的入侵能力极强,可入侵水域和陆地两种生境。采用微宇宙试验方法,在不同生境(水生、陆生)下设置不同氮、磷添加水平模拟养分输入,观测系统内含碳温室气体——甲烷(CH4)、二氧化碳(CO2)排放,以及生物固碳量的变化,探究不同生境下喜旱莲子草碳排放对氮、磷输入的响应。结果表明,相较于CH4,该试验条件下的碳排放以CO2排放为主。在水生生境下,生态系统总体表现为碳汇,且氮、磷添加促进了生态系统的碳吸收;而在陆生生境下,生态系统总体表现为碳排放,且氮、磷添加会促进生态系统的碳排放。因此,评估喜旱莲子草的碳排放时需考虑其入侵生境,以及入侵环境的养分输入状况。
中图分类号:
白健, 罗来聪, 李爱新, 赖晓琴, 申展, 刘亮英, 郭圣茂, 张令. 不同生境入侵植物喜旱莲子草碳排放对氮磷输入的响应[J]. 浙江农业学报, 2024, 36(9): 2070-2078.
BAI Jian, LUO Laicong, LI Aixin, LAI Xiaoqin, SHEN Zhan, LIU Liangying, GUO Shengmao, ZHANG Ling. Response of carbon emissions from invasive plant alligator weed (Alternanthera philoxeroides) to nitrogen and phosphorus input in different habitats[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2070-2078.
图1 不同处理对CO2累积排放量和CO2排放速率的影响 柱上无相同字母的表示差异显著(P<0.05)。
Fig.1 Effect of treatments on CO2cumulative emission and CO2emission rate Bars marked without the same letters indicate significant difference at P<0.05.
[1] |
闫雅楠, 叶小齐, 吴明, 等. 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性[J]. 植物生态学报, 2019, 43(6): 543-556.
DOI |
YAN Y N, YE X Q, WU M, et al. Diversity and potassium-solubilizing activity of rhizosphere potassium-solubilizing bacteria of invasive Solidago canadensis[J]. Chinese Journal of Plant Ecology, 2019, 43(6): 543-556. (in Chinese with English abstract) | |
[2] |
陈宝明, 韦慧杰, 陈伟彬, 等. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081.
DOI |
CHEN B M, WEI H J, CHEN W B, et al. Effects of plant invasion on soil nitrogen transformation processes and its associated microbial[J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1071-1081. (in Chinese with English abstract) | |
[3] |
许浩, 胡朝臣, 许士麒, 等. 外来植物入侵对土壤氮有效性的影响[J]. 植物生态学报, 2018, 42(11): 1120-1130.
DOI |
XU H, HU C C, XU S Q, et al. Effects of exotic plant invasion on soil nitrogen availability[J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1120-1130. (in Chinese with English abstract)
DOI |
|
[4] | 史刚荣, 马成仓. 外来植物成功入侵的生物学特征[J]. 应用生态学报, 2006, 17(4): 4727-4732. |
SHI G R, MA C C. Biological characteristics of alien plants successful invasion[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 4727-4732. (in Chinese with English abstract) | |
[5] | EHRENFELD J G. Effects of exotic plant invasions on soil nutrient cycling processes[J]. Ecosystems, 2003, 6: 503-523. |
[6] | ALLISON S D, VITOUSEK P M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i[J]. Oecologia, 2004, 141: 612-619. |
[7] | 方海富, 冯为迅, 罗来聪, 等. 氮沉降背景下土壤微生物对入侵植物乌桕叶绿素荧光特征的影响[J]. 生态学报, 2021, 41(23): 9377-9387. |
FANG H F, FENG W X, LUO L C, et al. Effects of soil microorganisms on chlorophyll fluorescence characteristics of invasive Triadica sebifera with nitrogen deposition[J]. Acta Ecologica Sinica, 2021, 41(23): 9377-9387. (in Chinese with English abstract) | |
[8] | EHRENFELD J G. Ecosystem consequences of biological invasions[J]. Annual Review of Ecology, Evolution, and Systematics, 2010, 41: 59-80. |
[9] | MATTHEWS H D, GILLETT N P, STOTT P A, et al. The proportionality of global warming to cumulative carbon emissions[J]. Nature, 2009, 459(7248): 829-832. |
[10] | EISENHAUER N, CESARZ S, KOLLER R, et al. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity[J]. Global Change Biology, 2012, 18(2): 435-447. |
[11] |
FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
DOI PMID |
[12] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135-1142.
DOI PMID |
[13] |
LE MOAL M, GASCUEL-ODOUX C, MÉNESGUEN A, et al. Eutrophication: a new wine in an old bottle?[J]. Science of the Total Environment, 2019, 651: 1-11.
DOI |
[14] | HIGGINS S N, PATERSON M J, HECKY R E, et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: evidence from a 46-year whole-lake experiment[J]. Ecosystems, 2018, 21(6): 1088-1100. |
[15] |
SCHINDLER D W, HECKY R E. Eutrophication: more nitrogen data needed[J]. Science, 2009, 324(5928): 721-722.
DOI PMID |
[16] | PENN C J, BRYANT R B. Phosphorus solubility in response to acidification of dairy manure amended soils[J]. Soil Science Society of America Journal, 2008, 72(1): 238-243. |
[17] | ZHANG S T, LIU X J, ZHOU L H, et al. Alleviating soil acidification could increase disease suppression of bacterial wilt by recruiting potentially beneficial rhizobacteria[J]. Microbiology Spectrum, 2022, 10(2): e0233321. |
[18] | 娄远来, 邓渊钰, 沈纪冬, 等. 我国空心莲子草的研究现状[J]. 江苏农业科学, 2002, 30(4): 46-48. |
LOU Y L, DENG Y Y, SHEN J D, et al. Research status of Alternanthera philoxeroides in China[J]. Jiangsu Agricultural Sciences, 2002, 30(4): 46-48. (in Chinese) | |
[19] | TANVEER A, ALI H H, MANALIL S, et al. Eco-biology and management of alligator weed [Alternanthera philoxeroides) (Mart.) Griseb.]: a review[J]. Wetlands, 2018, 38(6): 1067-1079. |
[20] | SCHOOLER S, COOK T, BOURNE A, et al. Selective herbicides reduce alligator weed (Alternanthera philoxeroides) biomass by enhancing competition[J]. Weed Science, 2008, 56(2): 259-264. |
[21] | XIE L J, ZENG R S, BI H H, et al. Allelochemical mediated invasion of exotic plants in China[J]. Allelopathy Journal, 2010, 25(1): 31-50. |
[22] | 张俊喜, 李慈厚, 娄远来, 等. 空心莲子草对移栽水稻的为害损失及经济阈值研究[J]. 上海农业学报, 2004, 20(1): 95-98. |
ZHANG J X, LI C H, LOU Y L, et al. Studies on the transplanting rice yield loss caused by weed Alternanthera philoxeroides and its economic threshold[J]. Acta Agriculturae Shanghai, 2004, 20(1): 95-98. (in Chinese with English abstract) | |
[23] | ANDRES A, CONCENÇO G, THEISEN G, et al. Selectivity and weed control efficacy of pre-and post-emergence applications of clomazone in Southern Brazil[J]. Crop Protection, 2013, 53: 103-108. |
[24] | 高志亮, 过燕琴, 邹建文. 外来植物水花生和苏门白酒草入侵对土壤碳氮过程的影响[J]. 农业环境科学学报, 2011, 30(4): 797-805. |
GAO Z L, GUO Y Q, ZOU J W. Effect of invasive plants (Conyza sumatrenss and Alternanthera philoxeroides) on soil carbon and nitrogen processes[J]. Journal of Agro-Environment Science, 2011, 30(4): 797-805. (in Chinese with English abstract) | |
[25] | DENG B L, FANG H F, JIANG N F, et al. Biochar is comparable to dicyandiamide in the mitigation of nitrous oxide emissions from Camellia oleifera Abel. fields[J]. Forests, 2019, 10(12): 1076. |
[26] | MARTINSEN K T. Carbon cycling in freshwater ecosystems: from pond to stream network[D]. Copenhagen: University of Copenhagen, 2021. |
[27] | DODDS W S, STUTZMAN L F, SOLLAMI B J. Carbon dioxide solubility in water[J]. Industrial & Engineering Chemistry Chemical & Engineering Data Series, 1956, 1(1): 92-95. |
[28] |
TORSVIK V, ØVREÅS L. Microbial diversity and function in soil: from genes to ecosystems[J]. Current Opinion in Microbiology, 2002, 5(3): 240-245.
DOI PMID |
[29] |
SINGH B K, BARDGETT R D, SMITH P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology, 2010, 8(11): 779-790.
DOI PMID |
[30] |
BEHRENFELD M J, RANDERSON J T, MCCLAIN C R, et al. Biospheric primary production during an ENSO transition[J]. Science, 2001, 291(5513): 2594-2597.
PMID |
[31] | SCHINDLER D W, VALLENTYNE J R. The algal bowl: overfertilization of the world’s freshwaters and estuaries[M]. Edmonton, Alta.: University of Alberta Press, 2008. |
[32] | JARRELL K F. Extreme oxygen sensitivity in methanogenic archaebacteria[J]. BioScience, 1985, 35(5): 298-302. |
[33] |
CAI Y F, ZHENG Y, BODELIER P L E, et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7: 11728.
DOI PMID |
[34] | SAMUELSON L J, JOHNSEN K, STOKES T, et al. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands[J]. Forest Ecology and Management, 2004, 200(1/2/3): 335-345. |
[35] | KELLER J K, BRIDGHAM S D, CHAPIN C T, et al. Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota Fen[J]. Soil Biology and Biochemistry, 2005, 37(6): 1197-1204. |
[36] | BRUMME R, BEESE F. Effects of liming and nitrogen fertilization on emissions of CO2and N2O from a temperate forest[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D12): 12851-12858. |
[37] | DENG Q, ZHOU G, LIU J, et al. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China[J]. Biogeosciences, 2010, 7(1): 315-328. |
[38] | JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. |
[39] |
MAAROUFI N I, NORDIN A, HASSELQUIST N J, et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils[J]. Global Change Biology, 2015, 21(8): 3169-3180.
DOI PMID |
[40] | YANG J S, LIU J S, YU J B, et al. Effects of water table and nitrogen addition on CO2 emission from wetland soil[J]. Chinese Geographical Science, 2005, 15(3): 262-268. |
[41] | 么秀颖, 闫丹丹, 戚丽萍, 等. 中国湿地生态系统碳库对环境变化的响应分析[J]. 环境科学学报, 2022, 42(1): 111-120. |
YAO X Y, YAN D D, QI L P, et al. Responses of wetland ecosystem carbon pools to multiple environmental change drivers in China[J]. Acta Scientiae Circumstantiae, 2022, 42(1): 111-120. (in Chinese with English abstract) | |
[42] |
DU Y H, GUO P, LIU J Q, et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests[J]. Global Change Biology, 2014, 20(10): 3222-3228.
DOI PMID |
[43] | FLEISCHER K, REBEL K T, VAN DER MOLEN M K, et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests[J]. Global Biogeochemical Cycles, 2013, 27(1): 187-199. |
[44] | VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13(2): 87-115. |
[45] | DAVIDSON E A, REIS DE CARVALHO C J, VIEIRA I C G, et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest[J]. Ecological Applications, 2004, 14(sp4): 150-163. |
[46] | YANG X, THORNTON P E, RICCIUTO D M, et al. The role of phosphorus dynamics in tropical forests-a modeling study using CLM-CNP[J]. Biogeosciences, 2014, 11(6): 1667-1681. |
[47] | SMITH V H, JOYE S B, HOWARTH R W. Eutrophication of freshwater and marine ecosystems[J]. Limnology and Oceanography, 2006, 51(1part2): 351-355. |
[48] |
WHITEHEAD D, BOELMAN N T, TURNBULL M H, et al. Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand[J]. Oecologia, 2005, 144(2): 233-244.
PMID |
[49] | CRUZ A F, HAMEL C, HANSON K, et al. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem[J]. Plant and Soil, 2009, 315(1): 173-184. |
[50] | CLEVELAND C C, TOWNSEND A R, SCHMIDT S K. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies[J]. Ecosystems, 2002, 5(7): 680-691. |
[51] | LI J, LI Z A, WANG F M, et al. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China[J]. Biology and Fertility of Soils, 2015, 51(2): 207-215. |
[52] | POWERS J S, BECKLUND K K, GEI M G, et al. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales[J]. Frontiers in Earth Science, 2015, 3: 34. |
[53] | REED S C, CLEVELAND C C, TOWNSEND A R. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests[J]. Biotropica, 2007, 39(5): 585-592. |
[54] | STILES W A V, ROWE E C, DENNIS P. Nitrogen and phosphorus enrichment effects on CO2 and methane fluxes from an upland ecosystem[J]. Science of the Total Environment, 2018, 618: 1199-1209. |
[55] | CHEN H, DONG S F, LIU L, et al. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest[J]. PLoS One, 2013, 8(12): e84101. |
[56] | 马迎群, 曹伟, 赵艳民, 等. 典型平原河网区水体富营养化特征、成因分析及控制对策研究[J]. 环境科学学报, 2022, 42(2): 174-183. |
MA Y Q, CAO W, ZHAO Y M, et al. Eutrophication characteristics, cause analysis and control strategies in a typical plain river network region[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 174-183. (in Chinese with English abstract) | |
[57] |
ANDERSON N J, BENNION H, LOTTER A F. Lake eutrophication and its implications for organic carbon sequestration in Europe[J]. Global Change Biology, 2014, 20(9): 2741-2751.
DOI PMID |
[58] | HUANG C C, ZHANG L L, LI Y M, et al. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms[J]. Science of the Total Environment, 2018, 616/617: 296-304. |
[59] | MOSS B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components[C]//GULATI RD, LAMMENS EHRR, MEIJER ML, et al. Biomanipulation tool for water management. Dordrecht: Springer, 1990: 367-377. |
[60] | BAO Q, LIU Z H, ZHAO M, et al. Role of carbon and nutrient exports from different land uses in the aquatic carbon sequestration and eutrophication process[J]. The Science of the Total Environment, 2022, 813: 151917. |
[61] |
ZHU W, WAN L, ZHAO L F. Effect of nutrient level on phytoplankton community structure in different water bodies[J]. Journal of Environmental Sciences, 2010, 22(1): 32-39.
PMID |
[62] |
陈丽, 田新民, 任正炜, 等. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289.
DOI |
CHEN L, TIAN X M, REN Z W, et al. Effects of nutrient addition on plant diversity and above-ground biomass in alpine grasslands of Tianshan Mountains, China[J]. Chinese Journal of Plant Ecology, 2022, 46(3): 280-289. (in Chinese with English abstract)
DOI |
|
[63] | 郑佳华, 张峰, 赵天启, 等. 氮、磷、钾施配对大针茅割草地地上生物量的影响[J]. 中国草地学报, 2020, 42(5): 64-71. |
ZHENG J H, ZHANG F, ZHAO T Q, et al. Effects of nitrogen, phosphorus and potassium combinations on aboveground biomass of Stipa grandis clipping pasture[J]. Chinese Journal of Grassland, 2020, 42(5): 64-71. (in Chinese with English abstract) | |
[64] |
SUNDARESHWAR P V, MORRIS J T, KOEPFLER E K, et al. Phosphorus limitation of coastal ecosystem processes[J]. Science, 2003, 299(5606): 563-565.
PMID |
[65] | VAN DE RIET B P, BARENDREGT A, BROUNS K, et al. Nutrient limitation in species-rich Calthion grasslands in relation to opportunities for restoration in a peat meadow landscape[J]. Applied Vegetation Science, 2010, 13(3): 315-325. |
[1] | 魏新彦, 刘颖, 张俊飚. 气候智慧型农业项目能否抑制农业碳排放——来自安徽气候智慧型主要粮食作物生产项目的经验证据[J]. 浙江农业学报, 2023, 35(3): 676-687. |
[2] | 吴昊玥, 黄瀚蛟, 何艳秋, 陈文宽. 净碳排放约束下的中国耕地利用效率评价及空间关联研究[J]. 浙江农业学报, 2019, 31(9): 1563-1574. |
[3] | 杨红, 曹舰艇, 徐唱唱, 郭丰磊. 藏东南色季拉山不同森林类型土壤CO2排放[J]. 浙江农业学报, 2017, 29(10): 1733-1741. |
[4] | 刘小文1,2,3,何福林1,2,齐成媚1,2,全沁果1,敖艳1,李园3,骆鹰1,2,颜冬冬3,曹坳程3,*. 外来植物豚草入侵对土壤碳氮转化的影响[J]. 浙江农业学报, 2016, 28(2): 297-. |
[5] | 樊高源,杨俊孝*,胡娟. 新疆农业生产碳排放变化特征及其净碳排放压力研究[J]. 浙江农业学报, 2016, 28(2): 352-. |
[6] | 洪业应1,2. 农业碳排放与经济增长关系的实证研究
——基于环境库兹涅茨曲线的检验 [J]. 浙江农业学报, 2015, 27(9): 1664-. |
[7] | 颜璐1,李鹏2. 低碳约束下农户技术效率及影响因素研究
——以新疆生产建设兵团第五师为例 [J]. 浙江农业学报, 2015, 27(9): 1670-. |
[8] | 刘战伟. 碳排放约束下河南省农业全要素生产率增长与分解[J]. 浙江农业学报, 2014, 26(4): 1031-. |
[9] | 柯福艳;黄伟;毛小报. 我国低碳农业发展技术路径及支撑体系研究[J]. , 2012, 24(4): 0-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||