浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1389-1399.DOI: 10.3969/j.issn.1004-1524.20230772
焦丙炎1(), 史增录1,2,*(
), 张学军1,2, 张海涛1, 于永良3, 王堆金3
收稿日期:
2023-06-17
出版日期:
2024-06-25
发布日期:
2024-07-02
作者简介:
焦丙炎(1998—),男,河南驻马店人,硕士研究生,研究方向为农业机械化与装备工程。E-mail:1803739951@qq.com
通讯作者:
*史增录,E-mail:shizlfd@qq.com
基金资助:
JIAO Bingyan1(), SHI Zenglu1,2,*(
), ZHANG Xuejun1,2, ZHANG Haitao1, YU Yongliang3, WANG Duijin3
Received:
2023-06-17
Online:
2024-06-25
Published:
2024-07-02
摘要:
针对新疆地区棉田在播种过程中,因穴播器取种、排种不畅产生的棉种漏播问题,设计了一种准确监测穴播器取种状态的监测系统。系统选用STM32单片机作为主控制器,激光对射型传感器和霍尔传感器作为监测元件,获取穴播器的取种信息,计算出播种总数和空穴率并传输到人机交互显示屏上,同时通过GPRS通信模块将播种数据实时上传到远程服务器。搭建棉花取种信息监测试验台,并通过田间试验验证系统的稳定性和精度。台架试验结果表明,在穴播器转速为30~45 r·min-1时,合格穴数的监测精度不低于98.09%,空穴数的监测精度不低于95.69%,监测系统的精度完全满足工作需求。田间试验结果表明,在拖拉机行驶速度为2.5~3.8 km·h-1时,合格穴数的监测精度最低为95.06%,相比台架试验下降了3.03百分点;空穴数的监测精度最低为91.89%,相比台架试验下降了3.80百分点。将系统监测和人工监测的样本数据进行F检验,系统监测与人工实测的合格穴数和空穴数的F值<F0.975(7.15),P0.05值>0.05,表明系统监测的数据与人工监测的数据无显著性差异。该监测系统在田间作业过程中有较高的稳定性和精度,能够满足棉花精量播种的取种状态监测要求,对棉花的增产增收具有重要意义。
中图分类号:
焦丙炎, 史增录, 张学军, 张海涛, 于永良, 王堆金. 棉花播种监测系统设计与试验[J]. 浙江农业学报, 2024, 36(6): 1389-1399.
JIAO Bingyan, SHI Zenglu, ZHANG Xuejun, ZHANG Haitao, YU Yongliang, WANG Duijin. Design and experimentation of cotton sowing monitoring system[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1389-1399.
图1 齿盘式穴播器结构 1,种管;2,定盘端盖;3,压盘;4,取种齿盘;5,隔种圈;6,隔种套总成;7,转动盘。
Fig.1 Structure of toothed disk type hole sower 1,Seed tube;2,Fixed disc end cover;3,Pressure plate;4,Seed picking disc;5,Seed storage ring;6,Intermediate gear assembly;7,Moving plate.
图2 齿盘式穴播器工作区域示意图 Ⅰ,充种区;Ⅱ,携种区;Ⅱ-1,携种区下部;Ⅱ-2,携种区上部;Ⅲ,一次投种区;Ⅳ,二次投种区;1,隔种圈;2,取种齿盘;3,棉种。
Fig.2 Schematic diagram of the working area of the toothed disk type hole sower Ⅰ,Seed filling region;Ⅱ,Seed carrying region;Ⅱ-1,Downstream area of the seed carrying region;Ⅱ-2,Upstream area of the seed carrying region;Ⅲ,First seed throwing area;Ⅳ,Second seed throwing area;1, Seed storage ring;2, Seed picking disc;3, Cotton seed.
图6 激光监测原理示意图 1,接收模块;2,隔种圈;3,透镜;4,取种齿盘;5,棉种;6,激光光束;7,激光头;8,发射模块;9,调制管。
Fig.6 Schematic diagram of laser monitoring principle 1,Receiver tube;2,Spacer ring;3,Lens;4,Seed picking disc;5,Cotton seed;6,Laser beam;7,Laser head;8,Transmitting circuit board;9,Modulation tube.
图7 激光对射型传感器安装位置图 1,隔种圈外侧挡板;2,发射模块;3,接收模块;4,隔种圈内侧挡板。
Fig.7 Laser-to-sensor installation diagram 1,Seed storage ring outer bezel;2,Launch module;3,Receive module;4,Seed storage ring inner bezel.
步骤Step | AT指令AT instruction | 功能Function |
---|---|---|
第一步Step 1 | AT+CSMINS | 对网络信号及 SIM卡的检测 Detection of network signals and SIM cards |
第二步 Step 2 | AT+CGCLASS | 将 GPRS移动站设置为 B类 Set GPRS mobile station to Class B |
第三步 Step 3 | AT+CGATT | 附加 GPRS服务 Additional GPRS services |
第四步 Step 4 | AT+CLTS | 取得本地时钟标记 Obtain local clock markers |
第五步 Step 5 | AT+CLPORT | 设置本地 TCP 连接端口“2000” Set local TCP connection port “2000” |
第六步 Step 6 | AT+CIPSTART | 创建TCP连接 Create TCP connection |
第七步 Step 7 | AT+CIPSEND | 发送数据Send data |
第八步 Step 8 | AT+CIPACK | 查询已连接数据发送情况 Query the status of connected data transmission |
第九步 Step 9 | AT+CIPCLOSE | 关掉TCP连接 Turn off TCP connection |
第十步 Step 10 | AT+CIPSHUT | 关掉当前场景 Turn off the current scene |
表1 AT指令实现通信流程
Table 1 AT instruction for communication flow
步骤Step | AT指令AT instruction | 功能Function |
---|---|---|
第一步Step 1 | AT+CSMINS | 对网络信号及 SIM卡的检测 Detection of network signals and SIM cards |
第二步 Step 2 | AT+CGCLASS | 将 GPRS移动站设置为 B类 Set GPRS mobile station to Class B |
第三步 Step 3 | AT+CGATT | 附加 GPRS服务 Additional GPRS services |
第四步 Step 4 | AT+CLTS | 取得本地时钟标记 Obtain local clock markers |
第五步 Step 5 | AT+CLPORT | 设置本地 TCP 连接端口“2000” Set local TCP connection port “2000” |
第六步 Step 6 | AT+CIPSTART | 创建TCP连接 Create TCP connection |
第七步 Step 7 | AT+CIPSEND | 发送数据Send data |
第八步 Step 8 | AT+CIPACK | 查询已连接数据发送情况 Query the status of connected data transmission |
第九步 Step 9 | AT+CIPCLOSE | 关掉TCP连接 Turn off TCP connection |
第十步 Step 10 | AT+CIPSHUT | 关掉当前场景 Turn off the current scene |
图13 穴播器监测试验台 1,齿盘式穴播器;2,试验台;3,监测系统;4,蓄电池;5,种箱;6,种床;7,接种盒;8,调速装置。
Fig.13 Burrower monitoring test bench 1,Toothed disk type hole sower;2,Test bench;3,Monitoring system;4,Battery;5,Seed box;6,Seedbed;7,Inoculation kit;8,Speed control device.
穴播器转速 Speed of the hole sower/(r·min-1) | 实际合格穴数 Actual number of qualified holes count | 监测合格穴数 Monitoring number of qualified holes count | 相对误差 Relative error/% | 合格穴数监测精度 Monitoring accuracy of qualified holes count/% |
---|---|---|---|---|
30 | 210 | 212 | 0.94 | 99.06 |
35 | 207 | 210 | 1.43 | 98.57 |
40 | 207 | 211 | 1.90 | 98.10 |
45 | 205 | 209 | 1.91 | 98.09 |
表2 合格穴数监测精度试验数据
Table 2 Qualified cavity number monitoring accuracy test data
穴播器转速 Speed of the hole sower/(r·min-1) | 实际合格穴数 Actual number of qualified holes count | 监测合格穴数 Monitoring number of qualified holes count | 相对误差 Relative error/% | 合格穴数监测精度 Monitoring accuracy of qualified holes count/% |
---|---|---|---|---|
30 | 210 | 212 | 0.94 | 99.06 |
35 | 207 | 210 | 1.43 | 98.57 |
40 | 207 | 211 | 1.90 | 98.10 |
45 | 205 | 209 | 1.91 | 98.09 |
穴播器转速 Speed of the hole sower/(r·min-1) | 实际空穴数 Actual number of empty holes count | 监测空穴数 Monitoring number of empty holes count | 相对误差 Relative error/% | 空穴数监测精度 Monitoring accuracy of empty holes count/% |
---|---|---|---|---|
30 | 90 | 88 | 2.22 | 97.78 |
35 | 93 | 90 | 3.23 | 96.77 |
40 | 93 | 89 | 4.30 | 95.70 |
45 | 95 | 91 | 4.31 | 95.69 |
表3 空穴数监测精度试验数据
Table 3 Cavity number monitoring accuracy test data
穴播器转速 Speed of the hole sower/(r·min-1) | 实际空穴数 Actual number of empty holes count | 监测空穴数 Monitoring number of empty holes count | 相对误差 Relative error/% | 空穴数监测精度 Monitoring accuracy of empty holes count/% |
---|---|---|---|---|
30 | 90 | 88 | 2.22 | 97.78 |
35 | 93 | 90 | 3.23 | 96.77 |
40 | 93 | 89 | 4.30 | 95.70 |
45 | 95 | 91 | 4.31 | 95.69 |
行进速度 Travel speed/ (km·h-1) | 传感器 编号 Sensor No. | 理论合格穴数 Theoretical qualified holes count | 实际合格穴数 Actual qualified holes count | 实际空穴数 Actual empty holes count | 监测合格穴数 Monitored qualified holes count | 监测空穴数 Monitored empty holes count | 合格穴数监测精度 Accuracy of qualified holes count monitoring/% | 空穴数监测精度 Accuracy of empty holes count monitoring/% |
---|---|---|---|---|---|---|---|---|
2.5 | 1 | 1 050 | 1 032 | 18 | 1 005 | 17 | 97.38 | 94.44 |
2 | 1 050 | 1 029 | 21 | 1 003 | 20 | 97.47 | 95.24 | |
3 | 1 050 | 1 028 | 22 | 998 | 21 | 97.08 | 95.45 | |
4 | 1 050 | 1 031 | 19 | 1 002 | 18 | 97.19 | 94.74 | |
5 | 1 050 | 1 027 | 23 | 995 | 22 | 96.88 | 95.65 | |
6 | 1 050 | 1 030 | 20 | 999 | 20 | 96.99 | 100 | |
3.0 | 1 | 1 050 | 1 029 | 21 | 996 | 20 | 96.79 | 95.24 |
2 | 1 050 | 1 025 | 25 | 985 | 23 | 96.10 | 92.00 | |
3 | 1 050 | 1 027 | 23 | 994 | 22 | 96.71 | 95.65 | |
4 | 1 050 | 1 025 | 25 | 988 | 24 | 96.39 | 96.00 | |
5 | 1 050 | 1 024 | 26 | 990 | 25 | 96.68 | 96.15 | |
6 | 1 050 | 1 022 | 28 | 989 | 26 | 96.99 | 92.86 | |
3.5 | 1 | 1 050 | 1 020 | 30 | 980 | 28 | 96.08 | 93.33 |
2 | 1 050 | 1 018 | 32 | 976 | 31 | 95.87 | 96.88 | |
3 | 1 050 | 1 019 | 31 | 979 | 29 | 96.07 | 93.55 | |
4 | 1 050 | 1 021 | 29 | 977 | 27 | 95.69 | 93.10 | |
5 | 1 050 | 1 018 | 32 | 974 | 31 | 95.68 | 96.88 | |
6 | 1 050 | 1 019 | 31 | 977 | 29 | 95.88 | 93.55 | |
3.8 | 1 | 1 050 | 1 014 | 36 | 972 | 35 | 95.86 | 97.22 |
2 | 1 050 | 1 013 | 37 | 965 | 34 | 95.26 | 91.89 | |
3 | 1 050 | 1 017 | 33 | 968 | 31 | 95.12 | 93.94 | |
4 | 1 050 | 1 012 | 38 | 962 | 36 | 95.06 | 94.74 | |
5 | 1 050 | 1 014 | 36 | 967 | 34 | 95.36 | 94.44 | |
6 | 1 050 | 1 013 | 37 | 966 | 35 | 95.36 | 94.59 |
表4 田间试验数据
Table 4 Field test data
行进速度 Travel speed/ (km·h-1) | 传感器 编号 Sensor No. | 理论合格穴数 Theoretical qualified holes count | 实际合格穴数 Actual qualified holes count | 实际空穴数 Actual empty holes count | 监测合格穴数 Monitored qualified holes count | 监测空穴数 Monitored empty holes count | 合格穴数监测精度 Accuracy of qualified holes count monitoring/% | 空穴数监测精度 Accuracy of empty holes count monitoring/% |
---|---|---|---|---|---|---|---|---|
2.5 | 1 | 1 050 | 1 032 | 18 | 1 005 | 17 | 97.38 | 94.44 |
2 | 1 050 | 1 029 | 21 | 1 003 | 20 | 97.47 | 95.24 | |
3 | 1 050 | 1 028 | 22 | 998 | 21 | 97.08 | 95.45 | |
4 | 1 050 | 1 031 | 19 | 1 002 | 18 | 97.19 | 94.74 | |
5 | 1 050 | 1 027 | 23 | 995 | 22 | 96.88 | 95.65 | |
6 | 1 050 | 1 030 | 20 | 999 | 20 | 96.99 | 100 | |
3.0 | 1 | 1 050 | 1 029 | 21 | 996 | 20 | 96.79 | 95.24 |
2 | 1 050 | 1 025 | 25 | 985 | 23 | 96.10 | 92.00 | |
3 | 1 050 | 1 027 | 23 | 994 | 22 | 96.71 | 95.65 | |
4 | 1 050 | 1 025 | 25 | 988 | 24 | 96.39 | 96.00 | |
5 | 1 050 | 1 024 | 26 | 990 | 25 | 96.68 | 96.15 | |
6 | 1 050 | 1 022 | 28 | 989 | 26 | 96.99 | 92.86 | |
3.5 | 1 | 1 050 | 1 020 | 30 | 980 | 28 | 96.08 | 93.33 |
2 | 1 050 | 1 018 | 32 | 976 | 31 | 95.87 | 96.88 | |
3 | 1 050 | 1 019 | 31 | 979 | 29 | 96.07 | 93.55 | |
4 | 1 050 | 1 021 | 29 | 977 | 27 | 95.69 | 93.10 | |
5 | 1 050 | 1 018 | 32 | 974 | 31 | 95.68 | 96.88 | |
6 | 1 050 | 1 019 | 31 | 977 | 29 | 95.88 | 93.55 | |
3.8 | 1 | 1 050 | 1 014 | 36 | 972 | 35 | 95.86 | 97.22 |
2 | 1 050 | 1 013 | 37 | 965 | 34 | 95.26 | 91.89 | |
3 | 1 050 | 1 017 | 33 | 968 | 31 | 95.12 | 93.94 | |
4 | 1 050 | 1 012 | 38 | 962 | 36 | 95.06 | 94.74 | |
5 | 1 050 | 1 014 | 36 | 967 | 34 | 95.36 | 94.44 | |
6 | 1 050 | 1 013 | 37 | 966 | 35 | 95.36 | 94.59 |
监测因素 Monitoring factors | 行进速度 Travel speed/ (km·h-1) | 系统监测System monitoring | 人工实测Manual measurement | df | F值 | P0.05值 | ||||
---|---|---|---|---|---|---|---|---|---|---|
平均值 Average | 方差 Variance | 标准差 Standard deviation | 平均值 Average | 方差 Variance | 标准差 Standard deviation | |||||
合格穴数 | 2.5 | 1 000.33 | 13.47 | 3.67 | 1 029.5 | 3.50 | 1.87 | 5 | 3.85 | 0.15 |
Qualified | 3.0 | 990.33 | 16.27 | 4.03 | 1 025.33 | 5.87 | 2.42 | 5 | 2.77 | 0.11 |
holes count | 3.5 | 977.17 | 4.57 | 2.14 | 1 019.17 | 1.37 | 3.34 | 5 | 3.34 | 0.08 |
3.8 | 966.67 | 11.07 | 3.33 | 1 013.83 | 2.97 | 1.72 | 5 | 3.73 | 0.06 | |
空穴数 | 2.5 | 19.67 | 3.47 | 1.86 | 20.50 | 3.50 | 1.87 | 5 | 0.99 | 0.46 |
Empty holes | 3.0 | 23.33 | 4.67 | 2.16 | 24.67 | 5.87 | 2.42 | 5 | 0.80 | 0.34 |
count | 3.5 | 29.17 | 2.57 | 1.60 | 30.83 | 1.37 | 1.17 | 5 | 1.88 | 0.07 |
3.8 | 34.17 | 2.97 | 1.72 | 36.17 | 2.97 | 1.72 | 5 | 1.00 | 0.07 |
表5 合格穴数、空穴数F检验
Table 5 F-test for number of qualified holes and number of empty holes
监测因素 Monitoring factors | 行进速度 Travel speed/ (km·h-1) | 系统监测System monitoring | 人工实测Manual measurement | df | F值 | P0.05值 | ||||
---|---|---|---|---|---|---|---|---|---|---|
平均值 Average | 方差 Variance | 标准差 Standard deviation | 平均值 Average | 方差 Variance | 标准差 Standard deviation | |||||
合格穴数 | 2.5 | 1 000.33 | 13.47 | 3.67 | 1 029.5 | 3.50 | 1.87 | 5 | 3.85 | 0.15 |
Qualified | 3.0 | 990.33 | 16.27 | 4.03 | 1 025.33 | 5.87 | 2.42 | 5 | 2.77 | 0.11 |
holes count | 3.5 | 977.17 | 4.57 | 2.14 | 1 019.17 | 1.37 | 3.34 | 5 | 3.34 | 0.08 |
3.8 | 966.67 | 11.07 | 3.33 | 1 013.83 | 2.97 | 1.72 | 5 | 3.73 | 0.06 | |
空穴数 | 2.5 | 19.67 | 3.47 | 1.86 | 20.50 | 3.50 | 1.87 | 5 | 0.99 | 0.46 |
Empty holes | 3.0 | 23.33 | 4.67 | 2.16 | 24.67 | 5.87 | 2.42 | 5 | 0.80 | 0.34 |
count | 3.5 | 29.17 | 2.57 | 1.60 | 30.83 | 1.37 | 1.17 | 5 | 1.88 | 0.07 |
3.8 | 34.17 | 2.97 | 1.72 | 36.17 | 2.97 | 1.72 | 5 | 1.00 | 0.07 |
[1] | 陈常兵. 我国内地棉区棉花生产现状与发展对策[J]. 中国农技推广, 2022, 38(10): 10-13. |
CHEN C B. Present situation and development countermeasures of cotton production in China’s inland cotton areas[J]. China Agricultural Technology Extension, 2022, 38(10): 10-13. (in Chinese) | |
[2] | 解春季, 杨丽, 张东兴, 等. 基于激光传感器的播种参数监测方法[J]. 农业工程学报, 2021, 37(3): 140-146. |
XIE C J, YANG L, ZHANG D X, et al. Seeding parameter monitoring method based on laser sensors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 140-146. (in Chinese with English abstract) | |
[3] | 杨硕, 王秀, 高原源, 等. 玉米精密播种粒距在线监测与漏播预警系统研究[J]. 农业机械学报, 2021, 52(3): 17-24, 35. |
YANG S, WANG X, GAO Y Y, et al. Design of on-line seed spacing monitoring and miss seeding warning system for maize precision planting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 17-24, 35. (in Chinese with English abstract) | |
[4] | 陈建国. 小麦精量播种与精准控制智能决策系统研究与设计[D]. 上海: 上海交通大学, 2019. |
CHEN J G. Research and design of wheat precision seeding and precision control and intelligent designed system[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese with English abstract) | |
[5] | 葛世强. 大籽粒作物精量播种漏播自动补偿系统设计[D]. 杨凌: 西北农林科技大学, 2015. |
GE S Q. Design of automatic reseeding systom for large grain crops[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract) | |
[6] | 丁幼春, 杨军强, 朱凯, 等. 油菜精量排种器种子流传感装置设计与试验[J]. 农业工程学报, 2017, 33(9): 29-36. |
DING Y C, YANG J Q, ZHU K, et al. Design and experiment on seed flow sensing device for rapeseed precision metering device[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 29-36. (in Chinese with English abstract) | |
[7] | 孙国峻, 张金然, 徐勇, 等. 基于PVDF双压电薄膜的油菜播种监测系统的设计与试验[J]. 湖南农业大学学报(自然科学版), 2022, 48(5): 601-607. |
SUN G J, ZHANG J R, XU Y, et al. Design and experiment of rapeseed sowing monitoring system based on PVDF bi-piexoelectric film[J]. Journal of Hunan Agricultural University(Natural Sciences), 2022, 48(5): 601-607. (in Chinese with English abstract) | |
[8] | 王贤锋. 光电传感器在农业机械中的应用[J]. 农业技术与装备, 2007(8): 14, 16. |
WANG X F. Application of photoelectric sensor in agricultural machinery[J]. Agricultural Technology & Equipment, 2007(8): 14, 16. (in Chinese) | |
[9] | 张琴, 王保爱, 孙步功, 等. 气吸式覆膜精量油菜播种机排种性能试验与优化设计[J]. 干旱地区农业研究, 2019, 37(1): 275-282. |
ZHANG Q, WANG B A, SUN B G, et al. The performance test and optimization design of the air absorption film mulching precision rapeseed seeder[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 275-282. (in Chinese with English abstract) | |
[10] | 费强, 赵武云, 戴飞, 等. 基于LabVIEW的玉米果穗立式烘干仓监测系统的设计[J]. 干旱地区农业研究, 2014, 32(3): 268-272. |
FEI Q, ZHAO W Y, DAI F, et al. Design of monitoring system for the vertical drying bin of corn fruit ears based on LabVIEW[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 268-272. (in Chinese with English abstract) | |
[11] | ST. STM32F103C8[EB/OL]. (2022-05-13) [2023-05-01]. https://www.st.com/en/microcontrollers-microprocessors/stm32f103c8.html#overview. |
[12] | 康毅豪. 基于激光传感器的回转窑椭圆度测量系统[D]. 武汉: 武汉工程大学, 2022. |
KANG Y H. Ovality measurement system of rotary kiln based on laser sensor[D]. Wuhan: Wuhan Institute of Technology, 2022. (in Chinese with English abstract) | |
[13] | 史国滨. 基于GPRS的农机作业监控技术研究[D]. 大庆: 黑龙江八一农垦大学, 2011. |
SHI G B. Study on agriculture machinery operation monitoring technology based on GPRS[D]. Daqing: Heilongjiang Bayi Agricultural University, 2011. (in Chinese with English abstract) |
[1] | 牛博, 李丽娜, 庞广昌, 鲁丁强. 植物根尖分生组织传感器的构建及其对尿素传感动力学研究[J]. 浙江农业学报, 2020, 32(8): 1466-1474. |
[2] | 胡坚, 胡峰俊, 张红, 朱颖. 基于改进布谷鸟搜索算法对水质监测无线传感器部署的优化[J]. 浙江农业学报, 2020, 32(5): 897-903. |
[3] | 曹少娜, 李建设, 高艳明, 吴素萍, 刘梦锦, 李娟. 水分传感器埋设位置对温室基质栽培番茄生长特性的影响[J]. 浙江农业学报, 2017, 29(6): 933-942. |
[4] | 李士军1,温竹1,宫鹤1,王艳梅2. 无线传感器网络在农业中的应用进展 [J]. 浙江农业学报, 2014, 26(6): 1715-. |
[5] | 刘刚;郭课. 基于WIA-PA的农田环境监测系统设计[J]. , 2013, 25(4): 0-861. |
[6] | 孙玉文;沈明霞*;陆明洲;林相泽;熊迎军;刘龙申. 无线传感器网络在农业中的应用研究现状与展望[J]. , 2011, 23(3): 0-644. |
[7] | 何 菊;陆明洲. 农田信息采集系统中传感器网络簇首认证方案研究[J]. , 2010, 22(1): 0-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||