浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2368-2378.DOI: 10.3969/j.issn.1004-1524.20231417
王浩杨1(), 荆天天1, 唐忠1,*(
), 王国强2, 陈树人1
收稿日期:
2023-12-18
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
王浩杨(1999—),男,江苏盐城人,硕士研究生,研究方向为智能农机装备理论与技术。E-mail:577325015@qq.com
通讯作者:
*唐忠,E-mail: tangzhong2012@126.com
基金资助:
WANG Haoyang1(), JING Tiantian1, TANG Zhong1,*(
), WANG Guoqiang2, CHEN Shuren1
Received:
2023-12-18
Online:
2024-10-25
Published:
2024-10-30
摘要:
针对南方地区田间废弃秸秆收获中机械化程度低、人工劳动强度大的问题,文章设计了可以完成秸秆捡拾、喂入输送、压缩成捆一体化作业的自走式捡拾打捆机,能够有效推动秸秆资源的综合化利用。通过对整机关键运动部件进行结构参数计算与设计,利用仿真获取压缩装置不同单元点位置的运动规律。采用ANSYS完成了主机架的约束模态仿真,得出了固有频率与机体多源激振的关系,最后进行了整机田间收获试验,对其作业性能进行综合评估。结果表明,成捆率与规则成捆率分别为98.94%与97.47%,成型草捆的平均尺寸为65 cm×50 cm×36 cm,平均草捆质量为16.02 kg,密度为137.42 kg·m-3,草捆抗摔率为96.25%,总损失率为2.95%,纯工作小时生产率为0.832 5 t·h-1。该研究可以为田间废弃秸秆捡拾输送、打捆成形一体机的研制与后续优化提供参考。
中图分类号:
王浩杨, 荆天天, 唐忠, 王国强, 陈树人. 田间废弃秸秆捡拾打捆机设计与试验[J]. 浙江农业学报, 2024, 36(10): 2368-2378.
WANG Haoyang, JING Tiantian, TANG Zhong, WANG Guoqiang, CHEN Shuren. Structural design and experiment of picking and baling machine for wasted straw in field[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2368-2378.
图1 自走式秸秆捡拾打捆机结构示意图 1,弹齿捡拾器;2,螺旋绞龙;3,操纵台;4,拨草滚筒;5,柴油发动机;6,输送拨叉;7,压缩装置;8,打结器;9,草料箱。
Fig.1 Structural diagram of the self-propelled baler 1, Toothed pickup; 2, Augers; 3, Operation platform; 4, Roller; 5, Diesel engine; 6, Transport fork; 7, Compression device; 8, Knotter; 9, Straw box.
项目 Item | 参数 Parameter |
---|---|
结构型式 Structural style | 履带自走式 Crawler self- propelled type |
发动机额定功率Rated power of engine/kW | 48 |
发动机额定转速 Rated engine speed/(r·min-1) | 2 400 |
整机外形尺寸(长×宽×高) Overall dimensions of the machine (length× width×height)/(mm×mm×mm) | 4 700×2 700×2 570 |
整机质量Whole machine weight/kg | 3 500 |
捡拾割台宽度 Width of the pick-up and cutting table/mm | 1 900 |
捡拾器型式 Pick up type | 滑道滚筒式 Slide roller type |
履带规格(宽度×节距×节数) Track specifications (width×pitch×number of sections)/(mm×mm) | 450×90×51 |
履带轨距Track gauge/mm | 1 150 |
理论作业速度 Theoretical working speed/(km·h-1) | 0~5.34 |
作业小时生产率 Hourly productivity of working/(hm2·h-1) | 0.3~0.7 |
压缩室截面尺寸 Compression chamber cross-sectional dimensions/(mm×mm) | 360×500 |
草捆长度Straw length/mm | 400~1 100 |
表1 整机主要技术参数
Table 1 Main technical parameters of whole machine
项目 Item | 参数 Parameter |
---|---|
结构型式 Structural style | 履带自走式 Crawler self- propelled type |
发动机额定功率Rated power of engine/kW | 48 |
发动机额定转速 Rated engine speed/(r·min-1) | 2 400 |
整机外形尺寸(长×宽×高) Overall dimensions of the machine (length× width×height)/(mm×mm×mm) | 4 700×2 700×2 570 |
整机质量Whole machine weight/kg | 3 500 |
捡拾割台宽度 Width of the pick-up and cutting table/mm | 1 900 |
捡拾器型式 Pick up type | 滑道滚筒式 Slide roller type |
履带规格(宽度×节距×节数) Track specifications (width×pitch×number of sections)/(mm×mm) | 450×90×51 |
履带轨距Track gauge/mm | 1 150 |
理论作业速度 Theoretical working speed/(km·h-1) | 0~5.34 |
作业小时生产率 Hourly productivity of working/(hm2·h-1) | 0.3~0.7 |
压缩室截面尺寸 Compression chamber cross-sectional dimensions/(mm×mm) | 360×500 |
草捆长度Straw length/mm | 400~1 100 |
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 26.615 | 5.989 5 | 驾驶室支撑梁弯曲The cab support beam is bent |
2 | 32.434 | 5.737 1 | 驾驶室位置向下弯曲The driver’s cab is bent downwards |
3 | 34.795 | 6.531 7 | 左前侧框架向下弯曲Left front frame bends downwards |
4 | 39.020 | 6.421 2 | 草料箱位置支撑梁弯曲 The support beam for the position of the hay box is bent |
5 | 51.834 | 10.619 0 | 驾驶室支撑梁扭转Driver’s cab support beam torsion |
6 | 52.930 | 9.395 1 | 驾驶室框架弯扭组合Combination of bending and twisting of cab frame |
表2 底盘机架前6阶模态频率和振型
Table 2 The first six modal frequencies and modal shapes of the chassis frame
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 26.615 | 5.989 5 | 驾驶室支撑梁弯曲The cab support beam is bent |
2 | 32.434 | 5.737 1 | 驾驶室位置向下弯曲The driver’s cab is bent downwards |
3 | 34.795 | 6.531 7 | 左前侧框架向下弯曲Left front frame bends downwards |
4 | 39.020 | 6.421 2 | 草料箱位置支撑梁弯曲 The support beam for the position of the hay box is bent |
5 | 51.834 | 10.619 0 | 驾驶室支撑梁扭转Driver’s cab support beam torsion |
6 | 52.930 | 9.395 1 | 驾驶室框架弯扭组合Combination of bending and twisting of cab frame |
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 11.213 | 7.152 1 | 机架后端出草支撑板弯曲The grass support plate at the back of the rack is bent |
2 | 17.934 | 1.870 8 | 机架中间位置弯扭组合Combination of bending and twisting in the middle position of the rack |
3 | 25.073 | 2.993 1 | 机架顶部后端弯曲The top and rear ends of the rack are bent |
4 | 36.787 | 9.270 6 | 后端出草支撑板弯扭组合Back end grass support plate bending and twisting combination |
5 | 52.231 | 8.038 1 | 机架中间侧板向内弯曲The middle side panel of the rack bends inward |
6 | 60.466 | 3.755 5 | 机架前端两侧板弯扭组合 |
Combination of bending and twisting of the two side plates at the front end of the rack |
表3 打捆机架前6阶模态频率和振型
Table 3 The first six modal frequencies and modal shapes of the baling frame
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 11.213 | 7.152 1 | 机架后端出草支撑板弯曲The grass support plate at the back of the rack is bent |
2 | 17.934 | 1.870 8 | 机架中间位置弯扭组合Combination of bending and twisting in the middle position of the rack |
3 | 25.073 | 2.993 1 | 机架顶部后端弯曲The top and rear ends of the rack are bent |
4 | 36.787 | 9.270 6 | 后端出草支撑板弯扭组合Back end grass support plate bending and twisting combination |
5 | 52.231 | 8.038 1 | 机架中间侧板向内弯曲The middle side panel of the rack bends inward |
6 | 60.466 | 3.755 5 | 机架前端两侧板弯扭组合 |
Combination of bending and twisting of the two side plates at the front end of the rack |
激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz | 激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz |
---|---|---|---|---|---|
发动机Engine | 2 400 | 40 | 变速箱输入轴Transmission input shaft | 391.7 | 6.53 |
中间轴Intermediate shaft | 1 354 | 22.57 | 活塞轴Piston shaft | 96.5 | 1.61 |
前拨草滚筒Front grass roller | 341.8 | 5.70 | 后拨草滚筒Rear grass roller | 569.8 | 9.50 |
螺旋绞龙Auger screw | 226 | 3.77 | 弹齿捡拾器Elastic tooth picker | 141 | 2.35 |
表4 捡拾打捆机主要激振源参数
Table 4 Main excitation source parameters
激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz | 激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz |
---|---|---|---|---|---|
发动机Engine | 2 400 | 40 | 变速箱输入轴Transmission input shaft | 391.7 | 6.53 |
中间轴Intermediate shaft | 1 354 | 22.57 | 活塞轴Piston shaft | 96.5 | 1.61 |
前拨草滚筒Front grass roller | 341.8 | 5.70 | 后拨草滚筒Rear grass roller | 569.8 | 9.50 |
螺旋绞龙Auger screw | 226 | 3.77 | 弹齿捡拾器Elastic tooth picker | 141 | 2.35 |
图9 田间收获试验场景 a、b、c分别为秸秆捡拾喂入过程、秸秆压缩成捆过程及整机的田间收获过程。
Fig.9 Scenarios of field harvesting experiments a, b and c show the feeding process of straw pickup, the process of straw compression baling, the field harvesting process of the entire machine respectively.
图10 田间收获的草捆测量 a、b、c分别为被测方草捆的长、宽、高尺寸。
Fig.10 Measurement of harvested bales in the field a, b and c show the length, width and height of the tested square bale respectively.
试验指标 Experimental index | 试验序号Experimental number | 平均值 Average value | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
试验时间Experimental time | 上午Morning | 下午Afternoon | 上午Morning | 下午Afternoon | — |
气温Temperature/℃ | 18 | 23 | 17 | 24 | — |
秸秆含水率Moisture content of straw/% | 38 | 35 | 37 | 34 | 36 |
行驶速度Driving speed/(km·h-1) | 3.6 | 3.8 | 4.1 | 4.3 | 3.95 |
总捆数/捆Total number of bundles | 196 | 154 | 108 | 121 | — |
草捆质量Straw bundle quality/kg | 15.62 | 16.24 | 16.63 | 15.59 | 16.02 |
草捆密度Straw bundle density/( kg·m-3) | 133.53 | 138.12 | 142.71 | 135.31 | 137.42 |
成捆率Bundling rate/% | 98.97 | 99.35 | 99.07 | 98.35 | 98.94 |
规则成捆率Rule bundling rate/% | 98.47 | 97.40 | 98.15 | 95.87 | 97.47 |
草捆抗摔率Straw bundle drop resistance rate/% | 90 | 100 | 95 | 100 | 96.25 |
总损失率Total loss rate/% | 3.5 | 3.1 | 2.4 | 2.8 | 2.95 |
纯工作小时生产率Pure hourly productivity/(t·h-1) | 0.87 | 0.83 | 0.89 | 0.74 | 0.832 5 |
表5 捡拾打捆机田间性能试验结果
Table 5 Field performance test results of straw compression baler
试验指标 Experimental index | 试验序号Experimental number | 平均值 Average value | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
试验时间Experimental time | 上午Morning | 下午Afternoon | 上午Morning | 下午Afternoon | — |
气温Temperature/℃ | 18 | 23 | 17 | 24 | — |
秸秆含水率Moisture content of straw/% | 38 | 35 | 37 | 34 | 36 |
行驶速度Driving speed/(km·h-1) | 3.6 | 3.8 | 4.1 | 4.3 | 3.95 |
总捆数/捆Total number of bundles | 196 | 154 | 108 | 121 | — |
草捆质量Straw bundle quality/kg | 15.62 | 16.24 | 16.63 | 15.59 | 16.02 |
草捆密度Straw bundle density/( kg·m-3) | 133.53 | 138.12 | 142.71 | 135.31 | 137.42 |
成捆率Bundling rate/% | 98.97 | 99.35 | 99.07 | 98.35 | 98.94 |
规则成捆率Rule bundling rate/% | 98.47 | 97.40 | 98.15 | 95.87 | 97.47 |
草捆抗摔率Straw bundle drop resistance rate/% | 90 | 100 | 95 | 100 | 96.25 |
总损失率Total loss rate/% | 3.5 | 3.1 | 2.4 | 2.8 | 2.95 |
纯工作小时生产率Pure hourly productivity/(t·h-1) | 0.87 | 0.83 | 0.89 | 0.74 | 0.832 5 |
[1] | ISLAM M U, GUO Z C, JIANG F H, et al. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis[J]. Field Crops Research, 2022, 279: 108447. |
[2] | PEREA-MORENO M A, SAMERÓN-MANZANO E, PEREA-MORENO A J. Biomass as renewable energy: worldwide research trends[J]. Sustainability, 2019, 11(3): 863. |
[3] | 廖培旺, 禚冬玲, 付春香, 等. 自走式棉秆联合收获打捆机改进设计与试验[J]. 中国农机化学报, 2021, 42(7): 19-25. |
LIAO P W, ZHUO D L, FU C X, et al. Improve design and test of self-propelled cotton stalk combine harvest baler[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 19-25. (in Chinese with English abstract) | |
[4] | 李耀明, 成铖, 徐立章. 4L-4.0型稻麦联合收获打捆复式作业机设计与试验[J]. 农业工程学报, 2016, 32(23): 29-35. |
LI Y M, CHENG C, XU L Z. Design and experiment of baler for 4L-4.0 combine harvester of rice and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 29-35. (in Chinese with English abstract) | |
[5] | 张仕林, 戴飞, 赵武云, 等. 青稞联合收获机配套秸秆打捆装置设计与试验[J]. 浙江农业学报, 2020, 32(7): 1289-1301. |
ZHANG S L, DAI F, ZHAO W Y, et al. Design and test of matching straw baling device for highland barley combine harvester[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1289-1301. (in Chinese with English abstract) | |
[6] | FLICK D E, NIGON C M, SHINNERS K J, et al. Control system for a continuous compaction large square baler[J]. Computers and Electronics in Agriculture, 2019, 165: 104969. |
[7] | ZHAO Z, HUANG H D, YIN J J, et al. Dynamic analysis and reliability design of round baler feeding device for rice straw harvest[J]. Biosystems Engineering, 2018, 174: 10-19. |
[8] | 尹建军, 李双, 李耀明. D型打结器及其辅助机构运动仿真与时序分析[J]. 农业机械学报, 2011, 42(6): 103-107. |
YIN J J, LI S, LI Y M. Kinematic simulation and time series analysis of D-knotter and its ancillary mechanisms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 103-107. (in Chinese with English abstract) | |
[9] | WANG Q Q, BAI Z W, LI Z Q, et al. Straw/spring teeth interaction analysis of baler picker in smart agriculture via an ADAMS-DEM coupled simulation method[J]. Machines, 2021, 9(11): 296. |
[10] | LI B Q, WU G F, LIU Y P, et al. Design and experiment of associated baler for combine harvester[J]. Agricultural mechanization in Asia, Africa and Latin America, 2019, 50(3):69-78. |
[11] | GUO H, GAO G M, ZHOU W, et al. Design of load and bale density monitoring and control system for a wheeled self-propelled square baler[J]. Journal of the ASABE, 2022, 65(3): 599-608. |
[12] | HONG S, LEE K, KANG D, et al. Analysis of static lateral stability using mathematical simulations for 3-axis tractor-baler system[J]. Journal of biocystems Engineering, 2017, 42(2): 86-97. |
[13] | FU J, CHEN C, ZHAO R Q, et al. Frame vibration states identification for corn harvester based on joint improved empirical mode decomposition-support vector machine method[J]. Frontiers in Plant Science, 2023, 14: 1065209. |
[14] | CHEN K K, YUAN Y W, ZHAO B, et al. Identification and comparative analysis of vibration modal parameters of rice planter frame[J]. AIP Advances, 2023, 13(4): 045002. |
[15] | 丁翰韬, 陈树人, 周巍伟, 等. 喂入量扰动下联合收获机振动特性机理研究[J]. 农业机械学报, 2022, 53(S2): 20-27. |
DING H T, CHEN S R, ZHOU W W, et al. Study on vibration characteristics and mechanism of combine harvester under feed disturbance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S2): 20-27, 51. (in Chinese with English abstract) | |
[16] | WANG X Z, CAO Y H, FANG W Q, et al. Vibration test and analysis of crawler pepper harvester under multiple working conditions[J]. Sustainability, 2023, 15(10): 8112. |
[17] | 潘世强, 操子夫, 赵婉宁. 基于虚拟样机的打捆机链传动系统仿真分析[J]. 中国农机化学报, 2016, 37(5): 41-44, 53. |
PAN S Q, CAO Z F, ZHAO W N. Simulation analysis of chain drive system based on virtual prototype[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(5): 41-44, 53. (in Chinese with English abstract) | |
[18] | 陶雷, 王永健, 刘光远, 等. 秸秆打捆机机架轻量化设计[J]. 中国农机化学报, 2017, 38(8): 26-33. |
TAO L, WANG Y J, LIU G Y, et al. Lightweight frame design of straw baler[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 26-33. (in Chinese with English abstract) | |
[19] | 朱磊华, 李耀明, 唐忠, 等. 联合收获打捆复式作业机振动测试与分析[J]. 农机化研究, 2018, 40(3): 146-151. |
ZHU L H, LI Y M, TANG Z, et al. Vibration test and analysis of the all-in-one machine of combine harvester and baler[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 146-151. (in Chinese with English abstract) | |
[20] | DAI F, ZHANG S L, ZHAO W Y, et al. Parameter optimization and experiment of highland barley combine harvester with baler[J]. Agricultural Research in the Arid Areas, 2021, 39(6): 248-256. |
[1] | 张仕林, 戴飞, 赵武云, 田斌, 陈邦善. 青稞联合收获机配套秸秆打捆装置设计与试验[J]. 浙江农业学报, 2020, 32(7): 1289-1301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||