浙江农业学报 ›› 2025, Vol. 37 ›› Issue (7): 1501-1511.DOI: 10.3969/j.issn.1004-1524.20240410
收稿日期:
2024-05-08
出版日期:
2025-07-25
发布日期:
2025-08-20
作者简介:
施添青(1998—),女,贵州兴仁人,硕士研究生,研究方向为农林废弃物资源化。E-mail:s3557544891@163.com
通讯作者:
*郑华宝,E-mail:zhenghuabao@zafu.edu.cn
基金资助:
SHI Tianqing(), ZHAO Zhuoqun, XIE Xiaojie, ZHENG Huabao(
)
Received:
2024-05-08
Online:
2025-07-25
Published:
2025-08-20
摘要: 该研究从餐厨垃圾的废弃烹饪油(WCO)中筛选获得一株产生物表面活性剂的油脂降解菌——铜绿假单胞菌(Pseudomonas aeruginosa)STQ-2菌株。对该菌株产生物表面活性剂的发酵条件进行优化,并利用傅里叶变换红外光谱、核磁共振氢谱和液相色谱-电喷雾电离-质谱对其产物的结构进行分析。结果显示,该菌的最佳反应条件是30 ℃、pH值7、WCO质量浓度25 g·L-1、以氯化铵作为氮源。当以WCO为唯一碳源,在上述条件下培养7 d后,菌株STQ-2的生物表面活性剂的产量达到600 mg·L-1,WCO降解率达到21.1%。这表明,铜绿假单胞菌STQ-2既能降解WCO,又能以WCO作为唯一碳源生产生物表面活性剂。经鉴定,该菌所产生物表面活性剂的主要成分是鼠李糖脂,在pH值6~12、NaCl质量浓度20~140 g·L-1、4~121 ℃的条件下,该生物表面活性剂具有化学稳定性。
中图分类号:
施添青, 赵卓群, 谢晓杰, 郑华宝. 一株产生物表面活性剂油脂降解菌的分离及其特性研究[J]. 浙江农业学报, 2025, 37(7): 1501-1511.
SHI Tianqing, ZHAO Zhuoqun, XIE Xiaojie, ZHENG Huabao. Isolation and characterization of a biosurfactant production and oil-degrading bacteria strain[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1501-1511.
图1 STQ-2的菌落形态(A),及在透射电镜(200 nm)(B)、扫描电镜(3.0 kV,×9 000)(C)下的形态和在CTAB蓝平板上的显色结果(D)
Fig.1 Colony morphology (A), observatino result under transmission electron microscopy (200 nm) (B), scanning electron microscopy (3.0 kV,×9 000) (C), and color rendering results on CTAB solid plate (D) of STQ-2 strain
图4 生物表面活性剂粗品的表征 A,傅里叶变换红外光谱(FTIR);B,核磁共振氢谱(1H NMR);C~E,液相色谱-电喷雾电离-质谱(LC-ESI-MS)。RT,保留时间。
Fig.4 Structural characterization of crude biosurfactant A, Fourier Transform infrared spectroscopy (FTIR); B,1H nuclear magnetic resonance spectra (1H NMR);C-E, Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS).RT,Retention time.
图5 表面张力和D600值随培养时间的变化(A),及生物表面活性剂在不同温度、pH值和盐浓度下的稳定性(B~D) E24,乳化活性。
Fig.5 Variation of surface tension and D600 during cultivation (A), and stability of biosurfactants at different temperature, pH value and salt concentrations (B-D) E24, Emulsifying properties.
[1] | MARCHETTI R, VASMARA C, BERTIN L, et al. Conversion of waste cooking oil into biogas: perspectives and limits[J]. Applied Microbiology and Biotechnology, 2020, 104(7): 2833-2856. |
[2] | WANG L, CSALLANY A S, KERR B J, et al. Kinetics of forming aldehydes in frying oils and their distribution in French fries revealed by LC-MS-based chemometrics[J]. Journal of Agricultural and Food Chemistry, 2016, 64(19): 3881-3889. |
[3] | CHUAH L F, KLEMEŠ J J, YUSUP S, et al. Kinetic studies on waste cooking oil into biodiesel via hydrodynamic cavitation[J]. Journal of Cleaner Production, 2017, 146: 47-56. |
[4] | GUPTA A R, RATHOD V K. Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: optimization and kinetics[J]. Waste Management, 2018, 79: 169-178. |
[5] | ZHOU S W, WEI Y G, ZHANG S Y, et al. Reduction of copper smelting slag using waste cooking oil[J]. Journal of Cleaner Production, 2019, 236: 117668. |
[6] | LI X L, LV X C, WANG W Q, et al. Crack resistance of waste cooking oil modified cement stabilized macadam[J]. Journal of Cleaner Production, 2020, 243: 118525. |
[7] | JAIN S, CHANDRAPPA A K. Influence of blended waste cooking oils on the sustainable asphalt rejuvenation considering secondary aging[J/OL]. International Journal of Pavement Research and Technology, 2024(2024-01-09) [2024-05-08]. https://doi.org/10.1007/s42947-023-00408-6. |
[8] | SHARMA S, PANDEY L M. Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil[J]. Bioresource Technology, 2020, 307: 123261. |
[9] | SAFARI P, HOSSEINI M, LASHKARBOLOOKI M, et al. Evaluation of surface activity of rhamnolipid biosurfactants produced from rice bran oil through dynamic surface tension[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(10): 2139-2153. |
[10] | PERFUMO A, BANAT I M, MARCHANT R. Going green and cold: biosurfactants from low-temperature environments to biotechnology applications[J]. Trends in Biotechnology, 2018, 36(3): 277-289. |
[11] | PORNSUNTHORNTAWEE O, WONGPANIT P, CHAVADEJ S, et al. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil[J]. Bioresource Technology, 2008, 99(6): 1589-1595. |
[12] | PATHANIA A S, JANA A K. Improvement in production of rhamnolipids using fried oil with hydrophilic co-substrate by indigenous Pseudomonas aeruginosa NJ2 and characterizations[J]. Applied Biochemistry and Biotechnology, 2020, 191(3): 1223-1246. |
[13] | CHENG T, LIANG J B, HE J, et al. A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation[J]. AMB Express, 2017, 7(1): 120. |
[14] | CHAFALE A, DAS S, KAPLEY A. Valorization of oily sludge waste using biosurfactant-producing bacteria[J]. World Journal of Microbiology & Biotechnology, 2023, 39(11): 316. |
[15] | SHARMA S, VERMA R, PANDEY L M. Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731[J]. Biocatalysis and Agricultural Biotechnology, 2019, 21: 101322. |
[16] | LONG X W, HE N, HE Y K, et al. Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier[J]. Bioresource Technology, 2017, 241: 200-206. |
[17] | KE X, HUA X, SUN J C, et al. Synergetic degradation of waste oil by constructed bacterial consortium for rapid in situ reduction of kitchen waste[J]. Journal of Bioscience and Bioengineering, 2021, 131(4): 412-419. |
[18] | NOPARAT P, MANEERAT S, SAIMMAI A. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil[J]. Applied Biochemistry and Biotechnology, 2014, 172(8): 3949-3963. |
[19] | YANG H, KIM G, CHO K S. Bioaugmentation of diesel-contaminated soil with Pseudomonas sp. DTF1[J]. International Journal of Environmental Science and Technology, 2023, 20(11): 12499-12510. |
[20] | RIKALOVIC M G, ABDEL-MAWGOUD A M, DÉZIEL E, et al. Comparative analysis of rhamnolipids from novel environmental isolates of Pseudomonas aeruginosa[J]. Journal of Surfactants and Detergents, 2013, 16(5): 673-682. |
[21] | SHI J, CHEN Y C, LIU X F, et al. Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa M4[J]. Journal of Cleaner Production, 2021, 278: 123879. |
[22] | 母显杰. 产表面活性剂油脂降解菌的筛选及性能研究[D]. 呼和浩特: 内蒙古大学, 2021. |
MU X J. Screening and performance study of surfactant-producing oil-degrading bacteria[D]. Hohhot: Inner Mongolia University, 2021. (in Chinese with English abstract) | |
[23] | ZARGAR A N, MISHRA S, KUMAR M, et al. Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100[J]. PLoS One, 2022, 17(4): e0264202. |
[24] | 雷富强. 废弃钻井泥浆降解菌的筛选与处理效果研究[D]. 西安: 西安石油大学, 2021. |
LEI F Q. Study on screening and treatment effect of waste drilling mud degradation bacteria[D]. Xi’an: Xi’an Shiyou University, 2021. (in Chinese with English abstract) | |
[25] | 罗皓丽, 李海红, 马倩. 产表面活性剂石油降解菌的筛选鉴定及修复效能[J]. 环境工程, 2024, 42(3): 199-206. |
LUO H L, LI H H, MA Q. Screening and identification of surfactant-producing petroleum-degrading bacteria and their remediation efficacy[J]. Environmental Engineering, 2024, 42(3): 199-206. (in Chinese with English abstract) | |
[26] | VARJANI S, UPASANI V N. Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa[J]. Bioresource Technology, 2019, 288: 121577. |
[27] | SHUAI Y Y, ZHOU H H, MU Q L, et al. Characterization of a biosurfactant-producing Leclercia sp. B45 with new transcriptional patterns of alkB gene[J]. Annals of Microbiology, 2019, 69(2): 139-150. |
[28] | GARGOURI B, CONTRERAS M D, AMMAR S, et al. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications[J]. Environmental Science and Pollution Research International, 2017, 24(4): 3769-3779. |
[29] | XU M, FU X G, GAO Y, et al. Characterization of a biosurfactant-producing bacteria isolated from marine environment: surface activity, chemical characterization and biodegradation[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104277. |
[30] | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. |
[31] | LEE D W, LEE H, KWON B O, et al. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment[J]. Environmental Pollution, 2018, 241: 254-264. |
[32] | DATTA P, TIWARI P, PANDEY L M. Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery[J]. Bioresource Technology, 2018, 270: 439-448. |
[33] | 胡甜, 汪方奎, 张少然, 等. 常见细菌培养物光密度与浓度的关系研究[J]. 华中农业大学学报, 2018, 37(6): 40-44. |
HU T, WANG F K, ZHANG S R, et al. Relationship between absorbance and bacterial density[J]. Journal of Huazhong Agricultural University, 2018, 37(6): 40-44. (in Chinese with English abstract) | |
[34] | 李亚君, 张宁, 张鹏飞, 等. 一株兼具原油降解和产生物表面活性剂功能菌株的分离及其特性[J/OL]. 中国环境科学, 2024: 1-10 [2024-05-07]. https://doi.org/10.19674/j.cnki.issn1000-6923.20240412.016. |
LI Y J, ZHANG N, ZHENG P F, et al. Isolation and characterization of a functional strain combining crude oil degradation and biosurfactant production[J/OL]. China Environmental Science. 2024: 1-10[2024-05-07]. https://doi.org/10.19674/j.cnki.issn1000-6923.20240412.016. (in Chinese with English abstract) | |
[35] | 郑兰健, 臧颖, 林潼, 等. 高产生物表面活性剂鼠李糖脂的制备及性能研究[J]. 日用化学工业, 2022, 52(9): 937-944. |
ZHENG L J, ZANG Y, LIN T, et al. The production of high yield biosurfactant rhamnolipid and performance research[J]. China Surfactant Detergent & Cosmetics, 2022, 52(9): 937-944. (in Chinese with English abstract) | |
[36] | VARJANI S J, UPASANI V N. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant[J]. Bioresource Technology, 2016, 221: 510-516. |
[37] | VARJANI S J, RANA D P, JAIN A K, et al. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India[J]. International Biodeterioration & Biodegradation, 2015, 103: 116-124. |
[38] | SHARMA S, VERMA R, DHULL S, et al. Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor[J]. Bioprocess and Biosystems Engineering, 2022, 45(2): 309-319. |
[39] | HAQUE E, BIN RIYAZ M A, SHANKAR S, et al. Compositional characterization of biosurfactant produced from Pseudomonas aeruginosa ENO14-MH271625 and its application in crude oil bioremediation[J]. International Journal of Pharmaceutical Investigation, 2021, 11(2): 204-207. |
[40] | REHMAN R, ALI M I, ALI N, et al. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp[J]. Journal of Hazardous Materials, 2021, 418: 126276. |
[41] | 王亚军, 蔡文娟, 耿冲冲, 等. 一株油脂降解菌的筛选及其降解条件优化[J]. 生态环境学报, 2020, 29(5): 1031-1038. |
WANG Y J, CAI W J, GENG C C, et al. Screening of a oil-degrading strain and optimization of its degradation conditions[J]. Ecology and Environmental Sciences, 2020, 29(5): 1031-1038. (in Chinese with English abstract) | |
[42] | 孟卓妮. 油脂降解菌的筛选及生物法降解油脂的初步研究[D]. 贵阳: 贵州大学, 2019. |
MENG Z N. Screening of oil-degradation strains and preliminary study on biodegradation of oil wastewater[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
[43] | JIMOH A A, LIN J. Biosurfactant: a new frontier for greener technology and environmental sustainability[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109607. |
[44] | LU Z Y, GUO X J, LI H, et al. High-throughput screening for a moderately halophilic phenol-degrading strain and its salt tolerance response[J]. International Journal of Molecular Sciences, 2015, 16(6): 11834-11848. |
[45] | RADZUAN M N, BANAT I M, WINTERBURN J. Production and characterization of rhamnolipid using palm oil agricultural refinery waste[J]. Bioresource Technology, 2017, 225: 99-105. |
[46] | MOYA RAMÍREZ I, ALTMAJER VAZ D, BANAT I M, et al. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production[J]. Bioresource Technology, 2016, 205: 1-6. |
[47] | GHORBANI M, HOSSEINI M, NAJAFPOUR G, et al. Synthesis and characterization of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa PTCC 1340 for emulsification of oil sludge in oil storage tank[J]. Arabian Journal for Science and Engineering, 2022, 47(1): 219-226. |
[48] | DABAGHI S, ATAEI S A, TAHERI A. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies[J]. BMC Biotechnology, 2023, 23(1): 2. |
[49] | CHEN C Y, SUN N, LI D S, et al. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa[J]. Environmental Science and Pollution Research International, 2018, 25(15): 14934-14943. |
[50] | SHARMA S, DATTA P, KUMAR B, et al. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815[J]. Biodegradation, 2019, 30(4): 301-312. |
[51] | PHULPOTO I A, WANG Y F, QAZI M A, et al. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake[J]. Bioresource Technology, 2021, 323: 124601. |
[52] | AHMED S A K S, RUDDEN M, ELIAS S M, et al. Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhlRI quorum sensing[J]. Scientific Reports, 2021, 11(1): 5729. |
[53] | KAMYABI A, NOURI H, MOGHIMI H. Synergistic effect of Sarocladium sp. and Cryptococcus sp. co-culture on crude oil biodegradation and biosurfactant production[J]. Applied Biochemistry and Biotechnology, 2017, 182(1): 324-334. |
[54] | ZHOU H H, HUANG X M, LIANG Y P, et al. Enhanced bioremediation of hydraulic fracturing flowback and produced water using an indigenous biosurfactant-producing bacteria Acinetobacter sp. Y2[J]. Chemical Engineering Journal, 2020, 397: 125348. |
[55] | SUN S L, WANG Y X, ZANG T T, et al. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons[J]. Bioresource Technology, 2019, 281: 421-428. |
[1] | 高文静, 肖丽娇, 王顺民, 韩秋霞. 降解柴油嗜盐菌的筛选、鉴定及其降解特性[J]. 浙江农业学报, 2020, 32(7): 1241-1252. |
[2] | 李国丽, 曾小英, 翟立翔, 冷艳, 刘梦圆, 李师翁, 陈拓. 一株石油降解菌Lysinibacillus fusiformis 23-1的筛选鉴定及原油降解特性[J]. 浙江农业学报, 2018, 30(7): 1229-1236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||