浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1625-1639.DOI: 10.3969/j.issn.1004-1524.2021.09.07
熊雪(), 赵丽娜, 杨森林, SAMIAH Arif, 张屹东*(
)
收稿日期:
2020-11-10
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
张屹东
作者简介:
* 张屹东,E-mail: Zhyd@sjtu.edu.cn基金资助:
XIONG Xue(), ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong*(
)
Received:
2020-11-10
Online:
2021-09-25
Published:
2021-10-09
Contact:
ZHANG Yidong
摘要:
为探究甜瓜CIPK(CBL-interacting protein kinase)基因家族成员的生物学功能,以拟南芥中26个CIPKs的氨基酸序列为参照,用BLASTP方法鉴定了18个甜瓜CIPK家族成员,并对其理化性质、染色体分布、系统进化、基因结构、蛋白保守基序、顺式元件,以及基因的表达模式进行了分析。结果显示,CIPK基因家族成员的基因长度为1 499~8 499 bp,它们不均匀地分布在甜瓜的9条染色体上;根据进化关系可将其分为5个亚家族,分别包含了26、10、25、26和8个成员,并且其中有4个CmCIPK基因对发生了片段复制。基因结构分析表明,10个基因为内含子缺失型,8个基因为内含子富集型。蛋白保守基序分析发现,CmCIPK家族保守性较好,所有成员均含有CIPK家族的典型特征:N端激酶域中的激活环和C端调节域中的NAF/FISL结构域。在基因上游的2 000 bp序列中存在多个与植物激素和逆境相关的顺式元件,显示可能有多种转录调控。转录组分析发现,CmCIPKs的组织表达量整体表现为叶>根>雄花>雌花>果。选择CmCIPK1-like和CmCIPK12-like基因验证其组织表达模式,显示分别在叶和雄花中的表达量最高。对其进行不同逆境处理,结果表明,这2个CmCIPK基因受NaCl和脱落酸(ABA)诱导表达;在干旱处理中,这2个基因经历短时间的上调或下调后恢复至最初表达水平。以上结果说明,CmCIPK1-like和CmCIPK12-like基因可能在ABA和非生物胁迫中发挥着重要作用,可为以后CmCIPK的功能研究提供参考。
中图分类号:
熊雪, 赵丽娜, 杨森林, SAMIAH Arif, 张屹东. 甜瓜CmCIPK家族全基因组鉴定和逆境条件下的表达分析[J]. 浙江农业学报, 2021, 33(9): 1625-1639.
XIONG Xue, ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1625-1639.
基因Gene | 上游引物序列Forward primer(5'→ 3') | 下游引物序列Reverse primer(5'→ 3') |
---|---|---|
CmActin | ACATCTGCTGGAAGGTGCTT | CCCTGGTATTGCAGACAGGA |
CmCIPK1-like | TCCATGCATGAAGTGCCATCT | ACAACATCCTCCATCCGCTT |
CmCIPK12-like | GAGATCTCAATCCTCCGCCG | CGCGATGATAAACACCACGC |
表1 实时荧光定量PCR的引物
Table 1 Primers for real-time PCR
基因Gene | 上游引物序列Forward primer(5'→ 3') | 下游引物序列Reverse primer(5'→ 3') |
---|---|---|
CmActin | ACATCTGCTGGAAGGTGCTT | CCCTGGTATTGCAGACAGGA |
CmCIPK1-like | TCCATGCATGAAGTGCCATCT | ACAACATCCTCCATCCGCTT |
CmCIPK12-like | GAGATCTCAATCCTCCGCCG | CGCGATGATAAACACCACGC |
基因名称 Gene name | 基因号 Gene ID | 基因长度 Gene length/bp | 编码蛋白氨基酸数量 Number of amino acids encoding protein/aa | 分子量 Relative molecular weight/ku | 等电点 PI | 亲水性平均值 Grand average of hydropathicity | 不稳定系数 Instability index |
---|---|---|---|---|---|---|---|
CmCIPK1 | MELO3C006758.2 | 3 023 | 442 | 49.4 | 5.60 | -0.373 | 40.19 |
CmCIPK1-like | MELO3C021231.2 | 7 022 | 459 | 52.8 | 7.26 | -0.235 | 42.96 |
CmCIPK2 | MELO3C026055.2 | 3 380 | 468 | 53.1 | 8.73 | -0.371 | 28.26 |
CmCIPK3 | MELO3C014700.2 | 8 247 | 444 | 50.5 | 6.91 | -0.399 | 34.34 |
CmCIPK5-like | MELO3C016967.2 | 1 793 | 443 | 50.2 | 8.60 | -0.297 | 39.42 |
CmCIPK6-like | MELO3C010234.2 | 1 948 | 430 | 48.5 | 9.07 | -0.381 | 37.43 |
CmCIPK7-like | MELO3C014269.2 | 1 672 | 430 | 47.8 | 9.05 | -0.249 | 40.48 |
CmCIPK8 | MELO3C011108.2 | 6 254 | 446 | 50.7 | 7.58 | -0.280 | 41.25 |
CmCIPK9 | MELO3C005987.2 | 4 322 | 441 | 50.1 | 8.51 | -0.449 | 33.75 |
CmCIPK10-like | MELO3C026873.2 | 2 410 | 471 | 53.3 | 9.12 | -0.451 | 38.89 |
CmCIPK11 | MELO3C027266.2 | 1 652 | 425 | 48.2 | 8.48 | -0.361 | 42.96 |
CmCIPK12-like | MELO3C007208.2 | 2 109 | 467 | 53.0 | 8.26 | -0.334 | 41.95 |
CmCIPK14 | MELO3C026058.2 | 1 499 | 433 | 49.1 | 6.08 | -0.242 | 40.35 |
CmCIPK20 | MELO3C002661.2 | 2 402 | 463 | 52.4 | 9.25 | -0.422 | 33.62 |
CmCIPK23 | MELO3C007110.2 | 5 130 | 455 | 51.2 | 8.74 | -0.316 | 33.88 |
CmCIPK23-like | MELO3C002766.2 | 8 499 | 465 | 52.2 | 9.04 | -0.444 | 35.14 |
CmCIPK24 | MELO3C010334.2 | 6 644 | 437 | 49.7 | 7.64 | -0.297 | 47.75 |
CmCIPK25-like | MELO3C026741.2 | 1 750 | 445 | 50.2 | 8.81 | -0.227 | 34.58 |
表2 甜瓜CmCIPK基因家族基本信息
Table 2 Basic information of CmCIPK gene family
基因名称 Gene name | 基因号 Gene ID | 基因长度 Gene length/bp | 编码蛋白氨基酸数量 Number of amino acids encoding protein/aa | 分子量 Relative molecular weight/ku | 等电点 PI | 亲水性平均值 Grand average of hydropathicity | 不稳定系数 Instability index |
---|---|---|---|---|---|---|---|
CmCIPK1 | MELO3C006758.2 | 3 023 | 442 | 49.4 | 5.60 | -0.373 | 40.19 |
CmCIPK1-like | MELO3C021231.2 | 7 022 | 459 | 52.8 | 7.26 | -0.235 | 42.96 |
CmCIPK2 | MELO3C026055.2 | 3 380 | 468 | 53.1 | 8.73 | -0.371 | 28.26 |
CmCIPK3 | MELO3C014700.2 | 8 247 | 444 | 50.5 | 6.91 | -0.399 | 34.34 |
CmCIPK5-like | MELO3C016967.2 | 1 793 | 443 | 50.2 | 8.60 | -0.297 | 39.42 |
CmCIPK6-like | MELO3C010234.2 | 1 948 | 430 | 48.5 | 9.07 | -0.381 | 37.43 |
CmCIPK7-like | MELO3C014269.2 | 1 672 | 430 | 47.8 | 9.05 | -0.249 | 40.48 |
CmCIPK8 | MELO3C011108.2 | 6 254 | 446 | 50.7 | 7.58 | -0.280 | 41.25 |
CmCIPK9 | MELO3C005987.2 | 4 322 | 441 | 50.1 | 8.51 | -0.449 | 33.75 |
CmCIPK10-like | MELO3C026873.2 | 2 410 | 471 | 53.3 | 9.12 | -0.451 | 38.89 |
CmCIPK11 | MELO3C027266.2 | 1 652 | 425 | 48.2 | 8.48 | -0.361 | 42.96 |
CmCIPK12-like | MELO3C007208.2 | 2 109 | 467 | 53.0 | 8.26 | -0.334 | 41.95 |
CmCIPK14 | MELO3C026058.2 | 1 499 | 433 | 49.1 | 6.08 | -0.242 | 40.35 |
CmCIPK20 | MELO3C002661.2 | 2 402 | 463 | 52.4 | 9.25 | -0.422 | 33.62 |
CmCIPK23 | MELO3C007110.2 | 5 130 | 455 | 51.2 | 8.74 | -0.316 | 33.88 |
CmCIPK23-like | MELO3C002766.2 | 8 499 | 465 | 52.2 | 9.04 | -0.444 | 35.14 |
CmCIPK24 | MELO3C010334.2 | 6 644 | 437 | 49.7 | 7.64 | -0.297 | 47.75 |
CmCIPK25-like | MELO3C026741.2 | 1 750 | 445 | 50.2 | 8.81 | -0.227 | 34.58 |
图1 CmCIPK基因在甜瓜染色体上的定位与共线性分析 A,CmCIPK家族成员在染色体上的分布。染色体大小由其相对长度表示;图中未显示不带有CmCIPK基因的染色体(第1、9和10号染色体)。B,CmCIPK基因的共线性分析。黑线表示CmCIPK家族中发生片段复制的基因对,灰线表示甜瓜基因组中所有发生片段复制的基因对。
Fig.1 Location of CmCIPK on the chromosomes of melon and collinearity analysis A, Specific distribution of members of the CmCIPKs on each chromosome. The size of the chromosome was represented by its relative length. The chromosomes without the CmCIPK(1st, 9th and 10th) were not shown in the figure. B, Collinearity analysis of CmCIPK. The black line represented the gene pair in the CmCIPK family where fragment replication occurred, and the gray line represented all the gene pairs in the melon genome where fragment replication occurred.
图2 甜瓜、拟南芥、水稻和黄瓜中CIPK蛋白的系统发育分析 使用MEGA 7.0软件将18个甜瓜CmCIPK蛋白(菱形)、26个拟南芥AtCIPK蛋白(圆形)、33个水稻OsCIPK蛋白(三角形),以及18个黄瓜CsCIPK蛋白(正方形)构建邻接树。5组分别标记为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ。
Fig.2 Phylogenetic analysis of CIPK proteins in melon, Arabidopsis, rice and cucumber 18 CmCIPK proteins (diamond), 26 AtCIPK proteins (circle), 33 OsCIPK proteins( triangle) and 18 CsCIPK proteins (square) were used to construct the neighbor tree by MEGA 7.0. The five groups were marked as Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ.
图3 甜瓜CmCIPK基因外显子-内含子结构分析 使用TBtool软件绘制基因结构,并根据系统发育树进行排列。黄色框代表外显子,绿色框代表UTR,线代表内含子。
Fig.3 Exon-intron structure of CmCIPKs Use TBtools software to draw gene structure, and arrange according to phylogenetic tree. The yellow boxes represented exons, the green boxes represented UTRs, and the lines represented introns.
图4 甜瓜CmCIPK蛋白基序分析 A,使用MEME程序鉴定保守基序,并根据系统发育树进行排列。每个基序均由一个彩色框表示,并在右侧给出其名称。B,编码已知功能域的基序序列注释。每个堆栈的总高度表示该位置的序列保守性,而每个堆栈中字母的高度代表基序中氨基酸的保守程度。
Fig.4 Motif analysis of CmCIPK proteins A, Use MEME to identify conserved motifs and arrange them according to the phylogenetic tree. Each motif was represented by a colored box, and its name was given on the right. B, Annotation of motif sequence encoding known functional domain. The total height of each stack indicated the sequence conservation at that position, and the height of the letters in each stack represented the degree of conservation of amino acids in the motif.
图5 甜瓜CmCIPK基因家族顺式作用元件分析 ABRE,脱落酸(ABA)响应元件;TGA-element,生长素响应元件;TC-rich repeats,防卫和逆境应答元件;LTR,冷胁迫应答元件;TCA-element,水杨酸应答元件;W-box,防卫应答元件;MBS,干旱胁迫应答元件;CGTCA-motif,茉莉酸甲酯(MeJA)响应元件。
Fig.5 Promoter cis-elements analysis of CmCIPK gene family ABRE, ABA-responsive element; TGA-element, auxin-responsive element; TC-rich repeats, defense and stress response element; LTR, low-temperature-responsive element; TCA-element, salicylic acid response element; W-box, defense and stress response element; MBS, drought stress response element; CGTCA-motif, Methyl jasmonate-responsive element.
图6 甜瓜CmCIPK基因在甜瓜不同组织中的转录丰度 使用Graphpad 8.2.1作热图,标度表示log2FPKM值的相对大小,绿色表示转录丰度较低,红色表示转录丰度较高。
Fig.6 Transcription abundance of CmCIPK in different tissues of melon Use Graphpad 8.2.1 to draw the heat map, the scale represented the relative size of the log2FPKM value, green represented low transcription abundance, and red represented high transcription abundance.
图7 CmCIPK1-like和CmCIPK12-like基因在甜瓜不同组织中的相对表达量 不同字母表示差异显著(P<0.05)。下同。
Fig.7 Expression level of CmCIPK1-like and CmCIPK12-like in different tissues of melon Different letters indicated significant differences (P<0.05). The same as below.
图8 100 μmol·L-1 ABA处理下CmCIPK1-like和CmCIPK12-like在甜瓜叶中的相对表达量
Fig.8 Relative expression level of CmCIPK1-like and CmCIPK12-like in leaves of melon under 100 μmol·L-1 ABA treatment
图9 NaCl处理5 d CmCIPK1-like和CmCIPK12-like在甜瓜根、茎、叶中的相对表达量
Fig.9 Relative expression level of CmCIPK1-like and CmCIPK12-like in roots, stems and leaves of melon under NaCl treatment for 5 days
图10 200 mmol·L-1 NaCl处理下CmCIPK1-like和CmCIPK12-like在甜瓜根、茎、叶中的相对表达量
Fig.10 Relative expression level of CmCIPK1-like and CmCIPK12-like in roots, stems and leaves of melon under 200 mmol·L-1 NaCl treatment
图11 15% PEG处理下CmCIPK1-like和CmCIPK12-like在甜瓜根、茎、叶中的相对表达量
Fig.11 Relative expression level of CmCIPK1-like and CmCIPK12-like in roots, stems and leaves of melon under 15% PEG treatment
[1] |
WEINL S, KUDLA J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives[J]. New Phytologist, 2009, 184(3):517-528.
DOI URL |
[2] |
GUO Y, HALFTER U, ISHITANI M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. The Plant Cell, 2001, 13(6):1383-1400.
DOI URL |
[3] |
ZHANG H W, FENG H, ZHANG J W, et al. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum[J]. Journal of Experimental Botany, 2020, 71(14):4345-4358.
DOI URL |
[4] |
MAO J J, MANIK S, SHI S J, et al. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana[J]. Genes, 2016, 7(9):62.
DOI URL |
[5] | OHTA M, GUO Y, HALFTER U, et al. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20):11771-11776. |
[6] |
YAN Y, LIU W, WEI Y, et al. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynjournal and regulate drought resistance in cassava[J]. Plant Biotechnology Journal, 2020, 18(7):1504-1506.
DOI URL |
[7] | 刘君璞, 马跃. 我国西瓜甜瓜种业的现状与发展对策[J]. 中国西瓜甜瓜, 2000, 13(3):2-6 |
LIU J P, MA Y. The current situation and development strategies of watermelon and melon seed industry in China[J]. China Watermelion and Muskmelon, 2000, 13(3):2-6.(in Chinese) | |
[8] | 赵鸿, 李凤民, 熊友才, 等. 土壤干旱对作物生长过程和产量影响的研究进展[J]. 干旱气象, 2008, 26(3):67-71. |
ZHAO H, LI F M, XIONG Y C, et al. Advance about impact of soil drying on growth and yield of crops[J]. Arid Meteorology, 2008, 26(3):67-71.(in Chinese with English abstract) | |
[9] |
EDELSTEIN M, PLAUT Z, BEN-HUR M. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants[J]. Journal of Experimental Botany, 2011, 62(1):177-184.
DOI URL |
[10] |
KANWAR P, SANYAL S K, TOKAS I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice[J]. Cell Calcium, 2014, 56(2):81-95.
DOI URL |
[11] | 巴雪丽, 刘婷婷, 钟俐. 白粉病胁迫下甜瓜叶片Hsp70差异表达分析[J]. 生物技术, 2014, 24(5):51-54. |
BA X L, LIU T T, ZHONG L. Expression analysis of Hsp70 gene from the leaves of the muskmelon under the powdery mildew stress[J]. Biotechnology, 2014, 24(5):51-54.(in Chinese with English abstract) | |
[12] |
HU D G, MA Q J, SUN C H, et al. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato[J]. Physiologia Plantarum, 2016, 156(2):201-214.
DOI URL |
[13] |
THODAY-KENNEDY E L, JACOBS A K, ROY S J. The role of the CBL: CIPK calcium signalling network in regulating ion transport in response to abiotic stress[J]. Plant Growth Regulation, 2015, 76(1):3-12.
DOI URL |
[14] | GIONG H K, MOON S, JUNG K H. A systematic view of the rice calcineurin B-like protein interacting protein kinase family[J]. Genes & Genomics, 2015, 37(1):55-68. |
[15] | 卓维, 陈倩, 鲁黎明, 等. 烟草NtCIPK2基因的克隆及表达分析[J]. 浙江农业学报, 2017, 29(10):1597-1604. |
ZHUO W, CHEN Q, LU L M, et al. Cloning and expression analysis of NtCIPK2 gene in Nicotiana tabacum[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10):1597-1604.(in Chinese with English abstract) | |
[16] |
CHEN X F, GU Z M, XIN D D, et al. Identification and characterization of putative CIPK genes in maize[J]. Journal of Genetics and Genomics, 2011, 38(2):77-87.
DOI URL |
[17] | 栾非时, 吕慧玲, 朱子成, 等. 西瓜CIPK家族基因的鉴定与特征分析[J]. 北方园艺, 2018(8):1-7. |
LUAN F S, LYU H L, ZHU Z C, et al. Identification and characterization of CIPK family genes in watermelon[J]. Northern Horticulture, 2018(8):1-7.(in Chinese with English abstract) | |
[18] | 王傲雪, 刘思源. 番茄CIPK基因家族鉴定及生物信息学分析[J]. 东北农业大学学报, 2018, 49(2):31-38. |
WANG A X, LIU S Y. Identification and bioinformatics analysis on CIPK gene family in tomato[J]. Journal of Northeast Agricultural University, 2018, 49(2):31-38.(in Chinese with English abstract) | |
[19] | 高清松, 杨泽峰, 徐辰武. 水稻基因组进化的研究进展[J]. 扬州大学学报(农业与生命科学版), 2009, 30(2):34-44. |
GAO Q S, YANG Z F, XU C W. Advances in evolutionary researches for rice genome[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2009, 30(2):34-44.(in Chinese with English abstract) | |
[20] |
KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology, 2004, 134(1):43-58.
DOI URL |
[21] | HU W, XIA Z Q, YAN Y, et al. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes[J]. Frontiers in Plant Science, 2015, 6:914. |
[22] |
ROY S W, PENNY D. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana[J]. Molecular Biology and Evolution, 2006, 24(1):171-181.
DOI URL |
[23] |
YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends in Plant Science, 2005, 10(2):88-94.
DOI URL |
[24] |
FUJITA Y, FUJITA M, SATOH R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. The Plant Cell, 2005, 17(12):3470-3488.
DOI URL |
[25] |
YANG X, YANG Y N, XUE L J, et al. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes[J]. Plant Physiology, 2011, 156(3):1397-1409.
DOI URL |
[26] |
XIONG L M, ZHU J K. Abiotic stress signal transduction in plants: molecular and genetic perspectives[J]. Physiologia Plantarum, 2001, 112(2):152-166.
DOI URL |
[27] |
QIN F, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant and Cell Physiology, 2011, 52(9):1569-1582.
DOI URL |
[28] |
D'ANGELO C, WEINL S, BATISTIC O, et al. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis[J]. The Plant Journal, 2006, 48(6):857-872.
DOI URL |
[29] | LI R F, ZHANG J W, WU G Y, et al. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance[J]. Plant, Cell & Environment, 2012, 35(9):1582-1600. |
[30] |
HE L R, YANG X Y, WANG L C, et al. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications, 2013, 435(2):209-215.
DOI URL |
[1] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[2] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[3] | 钟静, 谭芬, 张洪权, 熊校勤, 黄丽霞. 玉米XYLPs基因家族表达模式及其蛋白结构分析[J]. 浙江农业学报, 2020, 32(10): 1741-1747. |
[4] | 汪炳良, 海睿, 金炳胜, 江建红, 施星仁, 林玉泉, 叶红霞. 嫁接方法对甜瓜嫁接工效及嫁接苗生长和果实品质的影响[J]. 浙江农业学报, 2020, 32(10): 1809-1815. |
[5] | 张可鑫, 戴冬洋, 王浩男, 蔚明月, 盛云燕. 甜瓜种子相关性状遗传规律与QTL分析[J]. 浙江农业学报, 2018, 30(9): 1496-1503. |
[6] | 延涵, 杨瑞秀, 盖晓彤, 李刚, 赵治国, 高增贵. 甜瓜枯萎病菌ELISA检测方法的初步建立[J]. 浙江农业学报, 2018, 30(12): 2081-2086. |
[7] | 张青, 苗立祥, 张豫超, 杨肖芳, 蒋桂华. 草莓FabHLH3基因克隆表达分析与过量和干涉表达载体的构建[J]. 浙江农业学报, 2017, 29(2): 220-227. |
[8] | 沈佳, 寿伟松, 张跃建. 甜瓜果实主要品质性状的配合力及遗传力分析[J]. 浙江农业学报, 2017, 29(2): 244-250. |
[9] | 冯琛, 王玲, 汤浩茹*, 肖婕. 草莓MYB类转录因子FaMYB5基因的克隆与表达分析[J]. 浙江农业学报, 2016, 28(8): 1351-. |
[10] | 高青海,王亚坤,郭远远.. 薄皮甜瓜种质资源苗期耐低温弱光鉴定及形态指标选择[J]. 浙江农业学报, 2016, 28(8): 1360-. |
[11] | 祁娟霞, 韦峰,董艳,张亚红*. 不同补光时间对日光温室甜瓜生长发育的影响[J]. 浙江农业学报, 2016, 28(6): 979-. |
[12] | 瓮巧云, 赵彦敏, 张贺, 宋晋辉, 马海莲, 袁进成, 刘颖慧. 玉米ZmREM基因的克隆与逆境胁迫后表达分析[J]. 浙江农业学报, 2016, 28(11): 1822-1827. |
[13] | 吴铖铖;李丽;张慧娟;李大勇;宋凤鸣* . 甜瓜黑点根腐病及其研究进展[J]. , 2012, 24(2): 0-354. |
[14] | 苗立祥;张豫超;杨肖芳;蒋桂华;张明方;张跃建;*. 厚皮甜瓜植株衰老进程相关生理指标变化初探[J]. , 2011, 23(5): 0-919. |
[15] | 苗立祥;陆鸿英;张豫超;蒋桂华;杨肖芳;张跃建;*. 蔓枯病对厚皮甜瓜植株早衰的影响[J]. , 2011, 23(3): 0-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||