浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1640-1649.DOI: 10.3969/j.issn.1004-1524.2021.09.08
马杰1,2(), 屈雯2, 陈春艳1, 王磊2, 马俊1, 刘针杉2, 马维1, 周平1, 何远宽1, 孙勃2,*(
)
收稿日期:
2020-11-05
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
孙勃
作者简介:
* 孙勃,E-mail: bsun@sicau.edu.cn基金资助:
MA Jie1,2(), QU Wen2, CHEN Chunyan1, WANG Lei2, MA Jun1, LIU Zhenshan2, MA Wei1, ZHOU Ping1, HE Yuankuan1, SUN Bo2,*(
)
Received:
2020-11-05
Online:
2021-09-25
Published:
2021-10-09
Contact:
SUN Bo
摘要:
为了探究叶用芥菜奶奶青菜资源的多样性水平,基于转录组数据研究了奶奶青菜简单重复序列标记(EST-SSR)特征,筛选了适合奶奶青菜的EST-SSR引物,并分析了奶奶青菜的遗传多样性。转录组测序分析共获得46 386条非冗余基因(unigene),其中13 544条unigene序列中含有18 720个简单重复序列(simple sequence repeats, SSR)位点,SSR的发生频率为29.20%,平均每2.73 kb出现1个SSR,分布频率为40.36%。优势重复序列为单核苷酸,占总SSR数量的49.39%,其次为三核苷酸和二核苷酸,分别占总SSR数量的25.44%和24.13%。AT、AGCT和AAG/CTT分别是单核苷酸、二核苷酸以及三核苷酸的优势重复基元。以30份奶奶青菜和5份其他芸薹属蔬菜为材料,从37对引物中筛选出17对多态性引物,扩增得到135条多态性条带,多态性比例达88.2%。遗传多样性分析结果显示,平均等位基因数(Na)为5.705 9,平均有效等位基因数(Ne)为2.397 8,平均多样性指数(I)为1.036 1,平均观察杂合度(Ho)为0.312 1,平均期望杂合度(He)为0.530 0,平均Nei’s期望杂合度为0.521 9,表明筛选出的17对SSR引物具有较好的遗传多样性。通过非加权组平均法(unweighted pair-group method with arithmetic means, UPGMA)聚类分析,在相似系数为0.677处可将30份叶用芥菜奶奶青菜材料分为3类。试验结果可为叶用芥菜奶奶青菜的种质资源鉴定、亲缘关系分析和分子标记辅助育种等研究提供引物支持和技术参考。
中图分类号:
马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649.
MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649.
编号 No. | 名称 Name | 产地 Producing area | 编号 No. | 名称 Name | 产地 Producing area |
---|---|---|---|---|---|
1 | DG-1 | 贵州省毕节市 Bijie City, Guizhou Province | 19 | BD-2 | 贵州省毕节市 Bijie City, Guizhou Province |
2 | DG-2 | 贵州省毕节市 Bijie City, Guizhou Province | 20 | CCB-1 | 贵州省毕节市 Bijie City, Guizhou Province |
3 | DG-3 | 贵州省毕节市 Bijie City, Guizhou Province | 21 | CCB-2 | 贵州省毕节市 Bijie City, Guizhou Province |
4 | DG-4 | 贵州省毕节市 Bijie City, Guizhou Province | 22 | CCB-3 | 贵州省毕节市 Bijie City, Guizhou Province |
5 | DG-5 | 贵州省毕节市 Bijie City, Guizhou Province | 23 | CCB-4 | 贵州省毕节市 Bijie City, Guizhou Province |
6 | XJ-1 | 贵州省毕节市 Bijie City, Guizhou Province | 24 | CCB-5 | 贵州省毕节市 Bijie City, Guizhou Province |
7 | XJ-2 | 贵州省毕节市 Bijie City, Guizhou Province | 25 | CCB-6 | 贵州省毕节市 Bijie City, Guizhou Province |
8 | XJ-3 | 贵州省毕节市 Bijie City, Guizhou Province | 26 | ZC-1 | 贵州省毕节市 Bijie City, Guizhou Province |
9 | XJ-4 | 贵州省毕节市 Bijie City, Guizhou Province | 27 | ZC-2 | 贵州省毕节市 Bijie City, Guizhou Province |
10 | XJ-5 | 贵州省毕节市 Bijie City, Guizhou Province | 28 | JS-1 | 贵州省毕节市 Bijie City, Guizhou Province |
11 | DXQ-1 | 贵州省毕节市 Bijie City, Guizhou Province | 29 | YB-1 | 四川省宜宾市 Bijie City, Sichuan Province |
12 | DXQ-2 | 贵州省毕节市 Bijie City, Guizhou Province | 30 | YB-2 | 四川省宜宾市 Bijie City, Sichuan Province |
13 | DXQ-3 | 贵州省毕节市 Bijie City, Guizhou Province | 31 | 香港竹芥菜(叶用芥菜) Hong Kong Bamboo Mustard (leaf mustard) | 澳大利亚 Australia |
14 | DXQ-4 | 贵州省毕节市 Bijie City, Guizhou Province | 32 | 改良榨菜(茎用芥菜) Gailiang Tuber Mustard (stem mustard) | 四川省绵阳市 Mianyang City, Sichuan Province |
15 | GYQ-1 | 贵州省毕节市 Bijie City, Guizhou Province | 33 | 日本光头芥菜(根用芥菜) Japanese Guangtou Mustard (root mustard) | 甘肃省 Gansu Province |
16 | GYQ-2 | 贵州省毕节市 Bijie City, Guizhou Province | 34 | 早熟五号(大白菜) Zaoshu 5 (Chinese cabbage) | 河南省 Henan Province |
17 | GYQ-3 | 贵州省毕节市 Bijie City, Guizhou Province | 35 | 绿球三号(甘蓝) Green ball 3 (cabbage) | 日本 Japan |
18 | BD-1 | 贵州省毕节市 Bijie City, Guizhou Province |
表1 供试材料的基本信息
Table 1 Basic information of the tested materials
编号 No. | 名称 Name | 产地 Producing area | 编号 No. | 名称 Name | 产地 Producing area |
---|---|---|---|---|---|
1 | DG-1 | 贵州省毕节市 Bijie City, Guizhou Province | 19 | BD-2 | 贵州省毕节市 Bijie City, Guizhou Province |
2 | DG-2 | 贵州省毕节市 Bijie City, Guizhou Province | 20 | CCB-1 | 贵州省毕节市 Bijie City, Guizhou Province |
3 | DG-3 | 贵州省毕节市 Bijie City, Guizhou Province | 21 | CCB-2 | 贵州省毕节市 Bijie City, Guizhou Province |
4 | DG-4 | 贵州省毕节市 Bijie City, Guizhou Province | 22 | CCB-3 | 贵州省毕节市 Bijie City, Guizhou Province |
5 | DG-5 | 贵州省毕节市 Bijie City, Guizhou Province | 23 | CCB-4 | 贵州省毕节市 Bijie City, Guizhou Province |
6 | XJ-1 | 贵州省毕节市 Bijie City, Guizhou Province | 24 | CCB-5 | 贵州省毕节市 Bijie City, Guizhou Province |
7 | XJ-2 | 贵州省毕节市 Bijie City, Guizhou Province | 25 | CCB-6 | 贵州省毕节市 Bijie City, Guizhou Province |
8 | XJ-3 | 贵州省毕节市 Bijie City, Guizhou Province | 26 | ZC-1 | 贵州省毕节市 Bijie City, Guizhou Province |
9 | XJ-4 | 贵州省毕节市 Bijie City, Guizhou Province | 27 | ZC-2 | 贵州省毕节市 Bijie City, Guizhou Province |
10 | XJ-5 | 贵州省毕节市 Bijie City, Guizhou Province | 28 | JS-1 | 贵州省毕节市 Bijie City, Guizhou Province |
11 | DXQ-1 | 贵州省毕节市 Bijie City, Guizhou Province | 29 | YB-1 | 四川省宜宾市 Bijie City, Sichuan Province |
12 | DXQ-2 | 贵州省毕节市 Bijie City, Guizhou Province | 30 | YB-2 | 四川省宜宾市 Bijie City, Sichuan Province |
13 | DXQ-3 | 贵州省毕节市 Bijie City, Guizhou Province | 31 | 香港竹芥菜(叶用芥菜) Hong Kong Bamboo Mustard (leaf mustard) | 澳大利亚 Australia |
14 | DXQ-4 | 贵州省毕节市 Bijie City, Guizhou Province | 32 | 改良榨菜(茎用芥菜) Gailiang Tuber Mustard (stem mustard) | 四川省绵阳市 Mianyang City, Sichuan Province |
15 | GYQ-1 | 贵州省毕节市 Bijie City, Guizhou Province | 33 | 日本光头芥菜(根用芥菜) Japanese Guangtou Mustard (root mustard) | 甘肃省 Gansu Province |
16 | GYQ-2 | 贵州省毕节市 Bijie City, Guizhou Province | 34 | 早熟五号(大白菜) Zaoshu 5 (Chinese cabbage) | 河南省 Henan Province |
17 | GYQ-3 | 贵州省毕节市 Bijie City, Guizhou Province | 35 | 绿球三号(甘蓝) Green ball 3 (cabbage) | 日本 Japan |
18 | BD-1 | 贵州省毕节市 Bijie City, Guizhou Province |
重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11~20 | >20 | |||
单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 3 677 | 5 263 | 306 | 9 246 | 49.39 |
二核苷酸Dinucleotide | 0 | 1 625 | 975 | 651 | 398 | 249 | 554 | 66 | 4 518 | 24.13 |
三核苷酸Trinucleotide | 2 898 | 1 117 | 391 | 159 | 97 | 62 | 36 | 2 | 4 762 | 25.44 |
四核苷酸Tetranucleotide | 66 | 21 | 9 | 3 | 1 | 0 | 1 | 0 | 101 | 0.54 |
五核苷酸Pentanucleotide | 27 | 9 | 5 | 2 | 0 | 1 | 1 | 0 | 45 | 0.24 |
六核苷酸Hexanucleotide | 38 | 2 | 5 | 1 | 2 | 0 | 0 | 0 | 48 | 0.26 |
合计Total | 3 029 | 2 774 | 1 385 | 816 | 498 | 3 989 | 5 855 | 374 | 18 720 | 100.00 |
合计占比Total proportion/% | 16.18 | 14.82 | 7.40 | 4.36 | 2.66 | 21.31 | 31.28 | 2.00 | 100.00 |
表2 叶用芥菜奶奶青菜SSR的类型、数量与分布比例
Table 2 Number and ratio of SSR in the leaf mustard Nainaiqingcai
重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11~20 | >20 | |||
单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 3 677 | 5 263 | 306 | 9 246 | 49.39 |
二核苷酸Dinucleotide | 0 | 1 625 | 975 | 651 | 398 | 249 | 554 | 66 | 4 518 | 24.13 |
三核苷酸Trinucleotide | 2 898 | 1 117 | 391 | 159 | 97 | 62 | 36 | 2 | 4 762 | 25.44 |
四核苷酸Tetranucleotide | 66 | 21 | 9 | 3 | 1 | 0 | 1 | 0 | 101 | 0.54 |
五核苷酸Pentanucleotide | 27 | 9 | 5 | 2 | 0 | 1 | 1 | 0 | 45 | 0.24 |
六核苷酸Hexanucleotide | 38 | 2 | 5 | 1 | 2 | 0 | 0 | 0 | 48 | 0.26 |
合计Total | 3 029 | 2 774 | 1 385 | 816 | 498 | 3 989 | 5 855 | 374 | 18 720 | 100.00 |
合计占比Total proportion/% | 16.18 | 14.82 | 7.40 | 4.36 | 2.66 | 21.31 | 31.28 | 2.00 | 100.00 |
重复基元 Repeat motif | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11~20 | >20 | |||
A/T | 0 | 0 | 0 | 0 | 0 | 3 650 | 5 218 | 304 | 9 172 | 49.00 |
C/G | 0 | 0 | 0 | 0 | 0 | 27 | 45 | 2 | 74 | 0.40 |
AC/GT | 0 | 178 | 100 | 62 | 28 | 13 | 21 | 0 | 402 | 2.15 |
AG/CT | 0 | 1 206 | 762 | 507 | 309 | 202 | 428 | 58 | 3 472 | 18.55 |
AT/AT | 0 | 241 | 109 | 82 | 61 | 34 | 105 | 8 | 640 | 3.42 |
CG/CG | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0.02 |
AAC/GTT | 267 | 114 | 27 | 17 | 6 | 3 | 2 | 0 | 436 | 2.33 |
AAG/CTT | 973 | 375 | 153 | 65 | 37 | 34 | 19 | 2 | 1 658 | 8.86 |
AAT/ATT | 65 | 26 | 12 | 7 | 4 | 0 | 3 | 0 | 117 | 0.63 |
ACC/GGT | 251 | 115 | 31 | 5 | 5 | 1 | 1 | 0 | 409 | 2.18 |
ACG/CGT | 69 | 17 | 3 | 0 | 0 | 0 | 0 | 0 | 89 | 0.48 |
ACT/AGT | 52 | 16 | 5 | 2 | 2 | 1 | 1 | 0 | 79 | 0.42 |
AGC/CTG | 186 | 56 | 25 | 3 | 4 | 1 | 0 | 0 | 275 | 1.47 |
AGG/CCT | 510 | 182 | 65 | 22 | 13 | 9 | 0 | 0 | 801 | 4.28 |
ATC/ATG | 434 | 186 | 65 | 37 | 26 | 13 | 10 | 0 | 771 | 4.12 |
CCG/CGG | 91 | 30 | 5 | 1 | 0 | 0 | 0 | 0 | 127 | 0.68 |
合计Total | 2 898 | 2742 | 1 366 | 810 | 495 | 3 988 | 5 853 | 374 | 18 526 | 98.96 |
合计频率Total frequency/% | 15.48 | 14.65 | 7.30 | 4.33 | 2.64 | 21.30 | 31.27 | 2.00 | 98.96 |
表3 叶用芥菜奶奶青菜SSR中单碱基、二碱基和三碱基重复基元的类型、数量与比例
Table 3 Mononucleotid, dinucleotide and trinucleotide SSR repeat motifs, number and their ratio of the leaf mustard Nainaiqingcai
重复基元 Repeat motif | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11~20 | >20 | |||
A/T | 0 | 0 | 0 | 0 | 0 | 3 650 | 5 218 | 304 | 9 172 | 49.00 |
C/G | 0 | 0 | 0 | 0 | 0 | 27 | 45 | 2 | 74 | 0.40 |
AC/GT | 0 | 178 | 100 | 62 | 28 | 13 | 21 | 0 | 402 | 2.15 |
AG/CT | 0 | 1 206 | 762 | 507 | 309 | 202 | 428 | 58 | 3 472 | 18.55 |
AT/AT | 0 | 241 | 109 | 82 | 61 | 34 | 105 | 8 | 640 | 3.42 |
CG/CG | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0.02 |
AAC/GTT | 267 | 114 | 27 | 17 | 6 | 3 | 2 | 0 | 436 | 2.33 |
AAG/CTT | 973 | 375 | 153 | 65 | 37 | 34 | 19 | 2 | 1 658 | 8.86 |
AAT/ATT | 65 | 26 | 12 | 7 | 4 | 0 | 3 | 0 | 117 | 0.63 |
ACC/GGT | 251 | 115 | 31 | 5 | 5 | 1 | 1 | 0 | 409 | 2.18 |
ACG/CGT | 69 | 17 | 3 | 0 | 0 | 0 | 0 | 0 | 89 | 0.48 |
ACT/AGT | 52 | 16 | 5 | 2 | 2 | 1 | 1 | 0 | 79 | 0.42 |
AGC/CTG | 186 | 56 | 25 | 3 | 4 | 1 | 0 | 0 | 275 | 1.47 |
AGG/CCT | 510 | 182 | 65 | 22 | 13 | 9 | 0 | 0 | 801 | 4.28 |
ATC/ATG | 434 | 186 | 65 | 37 | 26 | 13 | 10 | 0 | 771 | 4.12 |
CCG/CGG | 91 | 30 | 5 | 1 | 0 | 0 | 0 | 0 | 127 | 0.68 |
合计Total | 2 898 | 2742 | 1 366 | 810 | 495 | 3 988 | 5 853 | 374 | 18 526 | 98.96 |
合计频率Total frequency/% | 15.48 | 14.65 | 7.30 | 4.33 | 2.64 | 21.30 | 31.27 | 2.00 | 98.96 |
图1 部分引物在35份供试材料中的复筛电泳结果 序号1~35同表1。
Fig.1 Secondary screening electrophoresis of 35 tested materials with partial primers The numbers 1-35 were the same as in Table 1.
序号 No. | 引物 编号 Primer No. | 引物序列 Primer sequence(5'→3') | 重复单元 Repeat motif | 退火温度 Temperature/ ℃ | 预期产物大小 Expected product size/bp | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphi bands | 多态性比例 Percentage of polymorphism/ % |
---|---|---|---|---|---|---|---|---|
1 | M2-1 | TCTCATTGTGCGTGTGAGCA | (TA)21 | 56.14 | 211 | 12 | 9 | 75.00 |
ACGGCAATGGCAGATCAAGA | ||||||||
2 | M2-5 | ACTTGATCTACTGCACCTGCT | (AG)22 | 55.06 | 197 | 7 | 6 | 85.70 |
ACAAGGCAGTTTCTAGACGGA | ||||||||
3 | M2-8 | GACAACGTCGTCGGAGAGTT | (AG)23 | 55.96 | 177 | 15 | 13 | 86.70 |
AACCGCCTCTTTGCCCTAAA | ||||||||
4 | M2-9 | CCGTCTCTTAGCTGCTAGCC | (AG)21 | 56.11 | 246 | 11 | 10 | 90.90 |
AACTCGGTCCCAAGACTTGC | ||||||||
5 | M2-11 | ATACAGTGTGTGTGGCAGCA | (TA)20 | 56.11 | 223 | 6 | 5 | 83.30 |
CGTGCTAAGTCTTGGGGCTT | ||||||||
6 | M2-13 | ATTGCTCTCATCACGACACA | (CT)22 | 54.61 | 276 | 6 | 6 | 100.00 |
TTGTTGGCTAACGCAACAGC | ||||||||
7 | M2-15 | GGTGCACCAGCCTGTACTTA | (AT)28 | 55.75 | 258 | 10 | 10 | 100.00 |
TCGGGAAGCTCGATGTTCTG | ||||||||
8 | M2-16 | CCAAACTCACATCCACATTTCA | (AG)22 | 54.56 | 232 | 12 | 7 | 58.30 |
9 | M2-17 | TCAGGTGGTGAGAGAGATCGT | (TC)32 | 56.02 | 256 | 11 | 9 | 81.80 |
ACAAGATCCAGACAAGTCAATAGCT | ||||||||
10 | M2-18 | AGAAGGCTTTTCTATTGGCCA | (TC)21 | 54.75 | 272 | 15 | 14 | 93.30 |
CAGAGGCAGAGTTGAAGGCA | ||||||||
11 | M2-20 | TCTCGTTTTCACCTGAGGAAA | (CT)20 | 54.64 | 218 | 6 | 6 | 100.00 |
GCCACTCCCTAAAGTCGCAT | ||||||||
12 | M2-21 | GGTTGGTCTCAGCTGCTGAA | (AG)21 | 55.45 | 234 | 13 | 13 | 100.00 |
ACTCCATCTCTGTGGCTGTT | ||||||||
13 | M3-1 | TGATGGTACTGCTTCGAGGG | (TTC)17 | 55.36 | 152 | 4 | 4 | 100.00 |
CCCCTTCTCGCGAGATCTTT | ||||||||
14 | M3-2 | GCGGTTTGGAATCTCAAGGC | (TCT)14 | 55.90 | 277 | 9 | 9 | 100.00 |
CAACAGCAAAACAGGAGGGC | ||||||||
15 | M5-2 | AACACCCAGGCCTATGTGTG | (GTTTT)7 | 56.00 | 244 | 3 | 3 | 100.00 |
AAGCCTCCACCATGCTTCTC | ||||||||
16 | M5-4 | TCATCCTCCTCTGGCTCGAA | (GAATC)7 | 56.03 | 164 | 6 | 6 | 100.00 |
AGAAGAAGAAGCTTCCGCCC | ||||||||
17 | M6-1 | CAATGGCAGCGCATTCCTTC | (CCAAGG)9 | 55.76 | 278 | 7 | 5 | 71.40 |
TCTGCGTCTCTCTTTCTCTCTC |
表4 叶用芥菜奶奶青菜SSR核心引物序列与扩增信息
Table 4 Core primers sequences and amplification information of the leaf mustard Nainaiqingcai
序号 No. | 引物 编号 Primer No. | 引物序列 Primer sequence(5'→3') | 重复单元 Repeat motif | 退火温度 Temperature/ ℃ | 预期产物大小 Expected product size/bp | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphi bands | 多态性比例 Percentage of polymorphism/ % |
---|---|---|---|---|---|---|---|---|
1 | M2-1 | TCTCATTGTGCGTGTGAGCA | (TA)21 | 56.14 | 211 | 12 | 9 | 75.00 |
ACGGCAATGGCAGATCAAGA | ||||||||
2 | M2-5 | ACTTGATCTACTGCACCTGCT | (AG)22 | 55.06 | 197 | 7 | 6 | 85.70 |
ACAAGGCAGTTTCTAGACGGA | ||||||||
3 | M2-8 | GACAACGTCGTCGGAGAGTT | (AG)23 | 55.96 | 177 | 15 | 13 | 86.70 |
AACCGCCTCTTTGCCCTAAA | ||||||||
4 | M2-9 | CCGTCTCTTAGCTGCTAGCC | (AG)21 | 56.11 | 246 | 11 | 10 | 90.90 |
AACTCGGTCCCAAGACTTGC | ||||||||
5 | M2-11 | ATACAGTGTGTGTGGCAGCA | (TA)20 | 56.11 | 223 | 6 | 5 | 83.30 |
CGTGCTAAGTCTTGGGGCTT | ||||||||
6 | M2-13 | ATTGCTCTCATCACGACACA | (CT)22 | 54.61 | 276 | 6 | 6 | 100.00 |
TTGTTGGCTAACGCAACAGC | ||||||||
7 | M2-15 | GGTGCACCAGCCTGTACTTA | (AT)28 | 55.75 | 258 | 10 | 10 | 100.00 |
TCGGGAAGCTCGATGTTCTG | ||||||||
8 | M2-16 | CCAAACTCACATCCACATTTCA | (AG)22 | 54.56 | 232 | 12 | 7 | 58.30 |
9 | M2-17 | TCAGGTGGTGAGAGAGATCGT | (TC)32 | 56.02 | 256 | 11 | 9 | 81.80 |
ACAAGATCCAGACAAGTCAATAGCT | ||||||||
10 | M2-18 | AGAAGGCTTTTCTATTGGCCA | (TC)21 | 54.75 | 272 | 15 | 14 | 93.30 |
CAGAGGCAGAGTTGAAGGCA | ||||||||
11 | M2-20 | TCTCGTTTTCACCTGAGGAAA | (CT)20 | 54.64 | 218 | 6 | 6 | 100.00 |
GCCACTCCCTAAAGTCGCAT | ||||||||
12 | M2-21 | GGTTGGTCTCAGCTGCTGAA | (AG)21 | 55.45 | 234 | 13 | 13 | 100.00 |
ACTCCATCTCTGTGGCTGTT | ||||||||
13 | M3-1 | TGATGGTACTGCTTCGAGGG | (TTC)17 | 55.36 | 152 | 4 | 4 | 100.00 |
CCCCTTCTCGCGAGATCTTT | ||||||||
14 | M3-2 | GCGGTTTGGAATCTCAAGGC | (TCT)14 | 55.90 | 277 | 9 | 9 | 100.00 |
CAACAGCAAAACAGGAGGGC | ||||||||
15 | M5-2 | AACACCCAGGCCTATGTGTG | (GTTTT)7 | 56.00 | 244 | 3 | 3 | 100.00 |
AAGCCTCCACCATGCTTCTC | ||||||||
16 | M5-4 | TCATCCTCCTCTGGCTCGAA | (GAATC)7 | 56.03 | 164 | 6 | 6 | 100.00 |
AGAAGAAGAAGCTTCCGCCC | ||||||||
17 | M6-1 | CAATGGCAGCGCATTCCTTC | (CCAAGG)9 | 55.76 | 278 | 7 | 5 | 71.40 |
TCTGCGTCTCTCTTTCTCTCTC |
引物编号 Primer No. | 观测等位 基因数 Na | 有效等位 基因数 Ne | 多样性 指数 I | 观察 杂合度 Ho | 期望 杂合度 He | Nei’s期望 杂合度 Nei | 多态性 信息含量 PIC |
---|---|---|---|---|---|---|---|
M2-1 | 7 | 1.929 1 | 0.974 1 | 0.171 4 | 0.488 6 | 0.481 6 | 0.436 1 |
M2-5 | 5 | 1.755 0 | 0.910 4 | 0.151 5 | 0.436 8 | 0.430 2 | 0.409 5 |
M2-8 | 4 | 1.891 9 | 0.890 0 | 0.085 7 | 0.478 3 | 0.471 4 | 0.432 9 |
M2-9 | 8 | 2.203 2 | 1.091 8 | 0.371 4 | 0.554 0 | 0.546 1 | 0.488 0 |
M2-11 | 9 | 3.058 2 | 1.408 0 | 0.931 0 | 0.684 8 | 0.673 0 | 0.617 7 |
M2-13 | 4 | 1.467 9 | 0.634 2 | 0.314 3 | 0.323 4 | 0.318 8 | 0.294 6 |
M2-15 | 5 | 2.245 8 | 0.936 9 | 0.769 2 | 0.565 6 | 0.554 7 | 0.455 3 |
M2-16 | 4 | 1.373 3 | 0.585 2 | 0 | 0.276 0 | 0.271 8 | 0.259 8 |
M2-17 | 7 | 1.809 5 | 0.972 8 | 0.057 1 | 0.453 8 | 0.447 3 | 0.423 9 |
M2-18 | 5 | 2.442 7 | 1.044 4 | 0.085 7 | 0.599 2 | 0.590 6 | 0.505 2 |
M2-20 | 6 | 4.257 8 | 1.594 3 | 0.176 5 | 0.776 6 | 0.765 1 | 0.733 3 |
M2-21 | 8 | 2.991 8 | 1.369 5 | 0.969 7 | 0.676 0 | 0.665 7 | 0.608 9 |
M3-1 | 4 | 2.342 5 | 1.030 1 | 0.176 5 | 0.581 7 | 0.573 1 | 0.514 8 |
M3-2 | 6 | 4.905 4 | 1.674 5 | 0.636 4 | 0.808 4 | 0.796 1 | 0.765 7 |
M5-2 | 3 | 1.102 7 | 0.224 5 | 0.032 3 | 0.094 7 | 0.093 1 | 0.090 8 |
M5-4 | 6 | 2.660 2 | 1.176 7 | 0.200 0 | 0.633 1 | 0.624 1 | 0.552 1 |
M6-1 | 6 | 2.326 0 | 1.096 9 | 0.176 5 | 0.578 6 | 0.570 1 | 0.511 1 |
平均值Mean | 5.705 9 | 2.397 8 | 1.036 1 | 0.312 1 | 0.530 0 | 0.521 9 | 0.476 4 |
标准差Standard deviation | 1.686 9 | 0.984 4 | 0.360 0 | 0.315 2 | 0.180 5 | 0.177 7 | 0.160 2 |
表5 十七对SSR核心引物的遗传参数
Table 5 Genetic parameters of 17 pairs of core primers for SSR
引物编号 Primer No. | 观测等位 基因数 Na | 有效等位 基因数 Ne | 多样性 指数 I | 观察 杂合度 Ho | 期望 杂合度 He | Nei’s期望 杂合度 Nei | 多态性 信息含量 PIC |
---|---|---|---|---|---|---|---|
M2-1 | 7 | 1.929 1 | 0.974 1 | 0.171 4 | 0.488 6 | 0.481 6 | 0.436 1 |
M2-5 | 5 | 1.755 0 | 0.910 4 | 0.151 5 | 0.436 8 | 0.430 2 | 0.409 5 |
M2-8 | 4 | 1.891 9 | 0.890 0 | 0.085 7 | 0.478 3 | 0.471 4 | 0.432 9 |
M2-9 | 8 | 2.203 2 | 1.091 8 | 0.371 4 | 0.554 0 | 0.546 1 | 0.488 0 |
M2-11 | 9 | 3.058 2 | 1.408 0 | 0.931 0 | 0.684 8 | 0.673 0 | 0.617 7 |
M2-13 | 4 | 1.467 9 | 0.634 2 | 0.314 3 | 0.323 4 | 0.318 8 | 0.294 6 |
M2-15 | 5 | 2.245 8 | 0.936 9 | 0.769 2 | 0.565 6 | 0.554 7 | 0.455 3 |
M2-16 | 4 | 1.373 3 | 0.585 2 | 0 | 0.276 0 | 0.271 8 | 0.259 8 |
M2-17 | 7 | 1.809 5 | 0.972 8 | 0.057 1 | 0.453 8 | 0.447 3 | 0.423 9 |
M2-18 | 5 | 2.442 7 | 1.044 4 | 0.085 7 | 0.599 2 | 0.590 6 | 0.505 2 |
M2-20 | 6 | 4.257 8 | 1.594 3 | 0.176 5 | 0.776 6 | 0.765 1 | 0.733 3 |
M2-21 | 8 | 2.991 8 | 1.369 5 | 0.969 7 | 0.676 0 | 0.665 7 | 0.608 9 |
M3-1 | 4 | 2.342 5 | 1.030 1 | 0.176 5 | 0.581 7 | 0.573 1 | 0.514 8 |
M3-2 | 6 | 4.905 4 | 1.674 5 | 0.636 4 | 0.808 4 | 0.796 1 | 0.765 7 |
M5-2 | 3 | 1.102 7 | 0.224 5 | 0.032 3 | 0.094 7 | 0.093 1 | 0.090 8 |
M5-4 | 6 | 2.660 2 | 1.176 7 | 0.200 0 | 0.633 1 | 0.624 1 | 0.552 1 |
M6-1 | 6 | 2.326 0 | 1.096 9 | 0.176 5 | 0.578 6 | 0.570 1 | 0.511 1 |
平均值Mean | 5.705 9 | 2.397 8 | 1.036 1 | 0.312 1 | 0.530 0 | 0.521 9 | 0.476 4 |
标准差Standard deviation | 1.686 9 | 0.984 4 | 0.360 0 | 0.315 2 | 0.180 5 | 0.177 7 | 0.160 2 |
[1] | LIN P X, ZHANG F, MA J, et al. Analysis of glucosinolates in ‘Nainaiqingcai’ mustard under the alpine cold climate[J]. IOP Conference Series: Earth and Environmental Science, 2019, 358(2):022089. |
[2] | MA J, QU W, WU R, et al. Analysis of main nutrients among different edible parts of ‘Nainaiqingcai’ mustard under the alpine cold climate[J]. IOP Conference Serie: Earth and Environmental Science, 2019, 300:052043. |
[3] | 程晓凤, 黄福江, 刘明典, 等. 454测序技术开发微卫星标记的研究进展[J]. 生物技术通报, 2011(8):82-90. |
CHENG X F, HUANG F J, LIU M D, et al. Development of microsatellite markers using 454 pyrosequencing[J]. Biotechnology Bulletin, 2011(8):82-90.(in Chinese with English abstract) | |
[4] |
GARCIA-LOR A, CURK F, SNOUSSI-TRIFA H, et al. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true Citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species[J]. Annals of Botany, 2013, 111(1):1-19.
DOI URL |
[5] | 程小毛, 黄晓霞. SSR标记开发及其在植物中的应用[J]. 中国农学通报, 2011, 27(5):304-307. |
CHENG X M, HUANG X X. Development and application of SSR markers in plants[J]. Chinese Agricultural Science Bulletin, 2011, 27(5):304-307.(in Chinese with English abstract) | |
[6] |
POWELL W, MACHRAY G C, PROVAN J. Polymorphism revealed by simple sequence repeats[J]. Trends in Plant Science, 1996, 1(7):215-222.
DOI URL |
[7] |
SCOTT K D, EGGLER P, SEATON G, et al. Analysis of SSRs derived from grape ESTs[J]. Theoretical and Applied Genetics, 2000, 100(5):723-726.
DOI URL |
[8] | 张加强, 骆霞虹, 陈常理, 等. 叶用芥菜种质表型性状的遗传多样性分析[J]. 植物遗传资源学报, 2015, 16(3):535-540. |
ZHANG J Q, LUO X H, CHEN C L, et al. Diversity analysis of leaf mustard germplasms based on phenotypic traits[J]. Journal of Plant Genetic Resources, 2015, 16(3):535-540.(in Chinese with English abstract) | |
[9] | 宋慧, 任锡亮, 张香琴. 芥菜种质资源分子聚类分析[J]. 浙江农业科学, 2019, 60(2):226-228. |
SONG H, REN X L, ZHANG X Q. Molecular cluster analysis of Brassica juncea germplasm resources[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(2):226-228.(in Chinese) | |
[10] | 颜新林, 管中荣, 温雯, 等. 基于SSR标记的芥菜品种鉴定技术体系建立及应用[J]. 植物遗传资源学报, 2021, 22(3):758-770. |
YAN X L, GUAN Z R, WEN W, et al. Establishment and application of mustard variety identification system based on SSR markers (Brassica juncea L.)[J]. Journal of Plant Genetic Resources, 2021, 22(3):758-770. (in Chinese with English abstract) | |
[11] |
SUN B, ZHANG F, XUE S L, et al. Molecular cloning and expression analysis of the ζ-carotene desaturase gene in Chinese kale (Brassica oleracea var. alboglabra bailey)[J]. Horticultural Plant Journal, 2018, 4(3):94-102.
DOI URL |
[12] | 陈琛, 庄木, 李康宁, 等. 甘蓝EST-SSR标记的开发与应用[J]. 园艺学报, 2010, 37(2):221-228. |
CHEN C, ZHUANG M, LI K N, et al. Development and utility of EST-SSR marker in cabbage[J]. Acta Horticulturae Sinica, 2010, 37(2):221-228.(in Chinese with English abstract) | |
[13] | 林珲, 李永平, 薛珠政, 等. 花椰菜转录组SSR位点分析及其分子标记开发[J]. 西北农林科技大学学报(自然科学版), 2019, 47(3):85-93. |
LIN H, LI Y P, XUE Z Z, et al. Analysis of SSR loci in transcriptome and development of molecular markers in Brassica oleracea L. var. botrytis L[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(3):85-93.(in Chinese with English abstract) | |
[14] | 杨丹青, 何晓丽, 杜志杰, 等. 基于不结球白菜转录组EST-SSR标记开发及多态性分析[J]. 农业生物技术学报, 2020, 28(1):13-21. |
YANG D Q, HE X L, DU Z J, et al. Development and polymorphism analysis of EST-SSR markers based on transcriptome of non-heading Chinese cabbage (Brassica rapa ssp. chinensis)[J]. Journal of Agricultural Biotechnology, 2020, 28(1):13-21.(in Chinese with English abstract) | |
[15] | 李荣华, 王直亮, 陈静芳, 等. 菜薹转录组中SSR信息与可用性分析[J]. 园艺学报, 2016, 43(9):1816-1824. |
LI R H, WANG Z L, CHEN J F, et al. Analysis of SSR information in transcriptome and their usability in flowering Chinese cabbage[J]. Acta Horticulturae Sinica, 2016, 43(9):1816-1824.(in Chinese with English abstract) | |
[16] |
ZHAI L L, XU L, WANG Y, et al. Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.)[J]. Molecular Breeding, 2014, 33(3):611-624.
DOI URL |
[17] |
LIANG X Q, CHEN X P, HONG Y B, et al. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species[J]. BMC Plant Biology, 2009, 9(1):35.
DOI URL |
[18] |
VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants: features and applications[J]. Trends in Biotechnology, 2005, 23(1):48-55.
DOI URL |
[19] | DING Q, LI J J, WANG F D, et al. Characterization and development of EST-SSRs by deep transcriptome sequencing in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. International Journal of Genomics, 2015(9):1-11. |
[20] |
WU J, CAI C F, CHENG F Y, et al. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences[J]. Molecular Breeding, 2014, 34(4):1853-1866.
DOI URL |
[21] |
TEMNYKH S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Research, 2001, 11(8):1441-1452.
DOI URL |
[22] |
SINGH H, DESHMUKH R K, SINGH A, et al. Highly variable SSR markers suitable for rice genotyping using agarose gels[J]. Molecular Breeding, 2010, 25(2):359-364.
DOI URL |
[23] | 张庆田, 李晓艳, 杨义明, 等. 蓝靛果忍冬转录组SSR信息分析及其分子标记开发[J]. 园艺学报, 2016, 43(3):557-563. |
ZHANG Q T, LI X Y, YANG Y M, et al. Analysis on SSR information in transcriptome and development of molecular markers in Lonicera caerulea[J]. Acta Horticulturae Sinica, 2016, 43(3):557-563.(in Chinese with English abstract) | |
[24] | 张海焕. 基于转录组序列的芸薹属SSR标记的开发[D]. 南昌: 江西农业大学, 2013. |
ZHANG H H. Development of SSR markers based on transcriptome sequences in Brassica species[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese with English abstract) | |
[25] | 张志仙, 何道根, 朱长志, 等. 青花菜种质资源遗传多样性的SSR分析[J]. 浙江农业学报, 2017, 29(2):228-235. |
ZHANG Z X, HE D G, ZHU C Z, et al. Genetic diversity analysis of Brassica oleracea L. var. italica with SSR markers[J]. Acta Agriculturae Zhejiangensis, 2017, 29(2):228-235.(in Chinese with English abstract) | |
[26] | 陈发波, 方平, 姚启伦, 等. 不同类型芥菜变种遗传差异的SSR分子标记检测[J]. 河南农业科学, 2014, 43(11):97-103. |
CHEN F B, FANG P, YAO Q L, et al. Study on genetic diversity of different mustard varieties (Brassica juncea) using SSR markers[J]. Journal of Henan Agricultural Sciences, 2014, 43(11):97-103.(in Chinese with English abstract) |
[1] | 王郅琪, 孙建, 梁俊超, 赵云燕, 颜廷献, 颜小文, 危文亮, 乐美旺. 基于分子标记的江西省芝麻地方种质遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1565-1580. |
[2] | 杨生海, 刘西兰, 张勇. 利用加权基因共表达网络分析牛口蹄疫病毒感染通路变化[J]. 浙江农业学报, 2021, 33(9): 1617-1624. |
[3] | 刘士力, 卞玉玲, 贾永义, 迟美丽, 李飞, 郑建波, 程顺, 顾志敏. 基于线粒体CO Ⅰ 基因序列的红螯螯虾养殖群体遗传结构分析[J]. 浙江农业学报, 2021, 33(8): 1385-1392. |
[4] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
[5] | 黄宣, 金林灿, 叶朝辉, 姜洁锋, 施贤波. 浙江近年育成粳稻新品种(系)部分抗病虫基因的分子检测与育种应用[J]. 浙江农业学报, 2021, 33(7): 1159-1169. |
[6] | 张静珍, 王连军, 雷剑, 柴沙沙, 杨新笋, 张文英. 基于cpSSR标记的山药种质资源DNA指纹图谱构建及遗传多样性分析[J]. 浙江农业学报, 2021, 33(7): 1222-1233. |
[7] | 安红卫, 宋勤飞, 牛素贞. 贵州茶树种质资源遗传多样性、群体结构和遗传分化研究[J]. 浙江农业学报, 2021, 33(7): 1234-1243. |
[8] | 尹明华, 曹晴, 陈红, 邓思宇, 邓燕梅. 江西铅山红芽芋和青秆芋的转录组比较分析[J]. 浙江农业学报, 2020, 32(9): 1533-1543. |
[9] | 洪霞, 赵永彬, 屈为栋, 陈银龙, 邱莉萍, 王娇阳. 基于表型性状与简单重复序列标记的浙江省芋种质资源遗传多样性比较[J]. 浙江农业学报, 2020, 32(9): 1544-1554. |
[10] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
[11] | 葛金涛, 王江英, 赵文静, 邵小斌, 朱朋波, 汤雪燕, 孙明伟, 刘兴满. 魏可葡萄气生根发育的转录组分析[J]. 浙江农业学报, 2020, 32(9): 1645-1655. |
[12] | 严福林, 王波, 温迪, 徐文芬, 孙庆文, 魏升华. 苗药小花清风藤叶绿体基因psbA-trnH序列特征及遗传多样性分析[J]. 浙江农业学报, 2020, 32(5): 810-815. |
[13] | 朱宇, 刘洋. 二化螟幼虫热胁迫响应的转录组分析[J]. 浙江农业学报, 2020, 32(5): 849-857. |
[14] | 郭勤卫, 张婷, 刘慧琴, 章心惠, 李朝森, 项小敏, 赵东风, 万红建. 应用ISSR分子标记评价我国丝瓜种质资源遗传多样性[J]. 浙江农业学报, 2020, 32(4): 616-623. |
[15] | 胡倩文, 徐延浩, 王容, 张文英, 华为, 吕超. 大麦4个穗部性状的关联分析[J]. 浙江农业学报, 2020, 32(11): 1941-1953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||