浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1650-1659.DOI: 10.3969/j.issn.1004-1524.2021.09.09
郑钢a,b,c(
), 顾翠花a,b,c, 王杰a,b,c, 林琳a,b,c,*(
)
收稿日期:2020-11-13
出版日期:2021-09-25
发布日期:2021-10-09
作者简介:* 林琳,E-mail: 928299135@qq.com通讯作者:
林琳
基金资助:
ZHENG Ganga,b,c(
), GU Cuihuaa,b,c, WANG Jiea,b,c, LIN Lina,b,c,*(
)
Received:2020-11-13
Online:2021-09-25
Published:2021-10-09
Contact:
LIN Lin
摘要:
为探究黄薇(Heimia myrtifolia)对干旱胁迫的适应能力,以黄薇一年生扦插苗为试验材料,设置5个水分处理(CK、T1、T2、T3、T4,土壤相对含水量分别保持在65%~75%、45%~60%、30%~45%、15%~30%、5%~15%),采用盆栽试验连续处理20 d,研究黄薇部分生理生化指标、光合作用和气孔变化对干旱胁迫的响应。结果表明:随着干旱程度的加深,黄薇叶片的净光合速率、蒸腾速率、气孔导度显著(P<0.05)下降,胞间二氧化碳浓度先降后升,类胡萝卜素、叶绿素和叶绿素a、b含量呈上升趋势,叶片下表皮气孔随着土壤水分散失而关闭,气孔形态结构也发生适应性的变化;丙二醛含量持续增高,过氧化氢酶活性和过氧化物酶活性先上升后下降,超氧化物歧化酶在T1~T2处理下保持较高活性,在T3处理下降至CK水平;脯氨酸含量先下降后上升,可溶性糖含量显著(P<0.05)增加。综上,黄薇对轻中度干旱具有良好的适应性,但不能承受长时间的重度干旱。研究结果可为后续黄薇的引种驯化和培育应用提供理论依据。
中图分类号:
郑钢, 顾翠花, 王杰, 林琳. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659.
ZHENG Gang, GU Cuihua, WANG Jie, LIN Lin. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham.et Schlechtend.[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650-1659.
图1 不同处理下黄薇叶片的丙二醛含量和抗氧化酶活性变化 柱上无相同字母的表示处理间差异显著(P<0. 05)。下同。
Fig.1 Changes of malondialdehyde content and antioxidant enzymes activities in leaves of Heimia myrtifolia under different treatments Bars marked without the same letters indicated significant difference at P<0.05. The same as below. MDA, Malondialdehyde; CAT, Catalase; SOD, Superoxide dismutase; POD, Peroxidase.The same as below.
图3 不同处理下黄薇叶片的光合参数变化 Pn,净光合速率;Tr,蒸腾速率;Ci,胞间CO2深度;Gs,气孔导度。
Fig.3 Changes of photosynthetic parameters in leaves of Heimia myrtifolia under different treatments Pn, Net photosynthetic rate; Tr, Transpiration rate; Ci, Intercellular carbon dioxide; Gs, Stomatal conductance.
| 处理Treatment | SL/μm | SW/μm | SA/μm2 | SD/μm-2 |
|---|---|---|---|---|
| CK | 30.8±1.8 a | 20.6±1.7 a | 487.1±53.6 a | 177.6±8.7 a |
| T1 | 29.1±1.3 b | 19.4±1.4 b | 435.1±32.0 b | 164.3±5.4 b |
| T2 | 25.2±1.8 c | 16.2±1.2 c | 327.3±34.1 c | 162.7±4.0 b |
| T3 | 23.1±1.1 d | 15.5±1.2 d | 297.4±19.6 d | 149.8±4.4 c |
| T4 | 22.9±1.3 e | 16.0±1.4 cd | 285.9±24.7 d | 143.3±5.5 d |
表1 不同处理下黄薇叶片的气孔长、宽、面积、密度变化
Table 1 Stomatal length, width, area and density in leaves of Heimia myrtifolia under different treatments
| 处理Treatment | SL/μm | SW/μm | SA/μm2 | SD/μm-2 |
|---|---|---|---|---|
| CK | 30.8±1.8 a | 20.6±1.7 a | 487.1±53.6 a | 177.6±8.7 a |
| T1 | 29.1±1.3 b | 19.4±1.4 b | 435.1±32.0 b | 164.3±5.4 b |
| T2 | 25.2±1.8 c | 16.2±1.2 c | 327.3±34.1 c | 162.7±4.0 b |
| T3 | 23.1±1.1 d | 15.5±1.2 d | 297.4±19.6 d | 149.8±4.4 c |
| T4 | 22.9±1.3 e | 16.0±1.4 cd | 285.9±24.7 d | 143.3±5.5 d |
| 指标 Index | MDA | POD | CAT | SOD | Pro | SS | Chl | Pn | Ci | Gs | Tr | SA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| POD | -0.524** | |||||||||||
| CAT | -0.483* | 0.877** | ||||||||||
| SOD | -0.875** | 0.676** | 0.730* | |||||||||
| Pro | 0.782** | -0.838** | -0.679** | -0.818** | ||||||||
| SS | 0.882** | -0.255 | -0.077 | -0.642** | 0.653** | |||||||
| Chl | 0.904** | -0.409* | -0.221 | -0.661** | 0.729** | 0.943** | ||||||
| Pn | -0.945** | 0.348 | 0.242 | 0.767** | -0.711** | -0.974** | -0.926** | |||||
| Ci | -0.271 | -0.579** | -0.672** | -0.066 | 0.129 | -0.589** | -0.462* | 0.493* | ||||
| Gs | -0.889** | 0.202 | 0.067 | 0.607** | -0.583** | -0.973** | -0.942** | 0.963** | 0.631** | |||
| Tr | -0.740** | -0.146 | -0.177 | 0.418* | -0.265 | -0.861* | -0.786** | 0.842** | 0.808** | 0.925* | ||
| SA | -0.856** | 0.222 | 0.034 | 0.612** | -0.617** | -0.984** | -0.916** | 0.953** | 0.611** | 0.964** | 0.865** | |
| SD | -0.875** | 0.202 | 0.140 | 0.631** | -0.533** | -0.905** | -0.906** | 0.913** | 0.555** | 0.946** | 0.891** | 0.897** |
表2 不同处理下黄薇叶片各生理生化指标的相关性
Table 2 Correlation of physiological and biochemical indexes in leaves of Heimia myrtifolia under different treatments
| 指标 Index | MDA | POD | CAT | SOD | Pro | SS | Chl | Pn | Ci | Gs | Tr | SA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| POD | -0.524** | |||||||||||
| CAT | -0.483* | 0.877** | ||||||||||
| SOD | -0.875** | 0.676** | 0.730* | |||||||||
| Pro | 0.782** | -0.838** | -0.679** | -0.818** | ||||||||
| SS | 0.882** | -0.255 | -0.077 | -0.642** | 0.653** | |||||||
| Chl | 0.904** | -0.409* | -0.221 | -0.661** | 0.729** | 0.943** | ||||||
| Pn | -0.945** | 0.348 | 0.242 | 0.767** | -0.711** | -0.974** | -0.926** | |||||
| Ci | -0.271 | -0.579** | -0.672** | -0.066 | 0.129 | -0.589** | -0.462* | 0.493* | ||||
| Gs | -0.889** | 0.202 | 0.067 | 0.607** | -0.583** | -0.973** | -0.942** | 0.963** | 0.631** | |||
| Tr | -0.740** | -0.146 | -0.177 | 0.418* | -0.265 | -0.861* | -0.786** | 0.842** | 0.808** | 0.925* | ||
| SA | -0.856** | 0.222 | 0.034 | 0.612** | -0.617** | -0.984** | -0.916** | 0.953** | 0.611** | 0.964** | 0.865** | |
| SD | -0.875** | 0.202 | 0.140 | 0.631** | -0.533** | -0.905** | -0.906** | 0.913** | 0.555** | 0.946** | 0.891** | 0.897** |
| [1] |
ABDELGAWAD H, FARFAN-VIGNOLO E R, DE VOS D, et al. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes[J]. Plant Science, 2015, 231:1-10.
DOI URL |
| [2] |
FATHI A, TARI D B. Effect of drought stress and its mechanism in plants[J]. International Journal of Life Sciences, 2016, 10(1):1-6.
DOI URL |
| [3] | 李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展[J]. 中国沙漠, 2010, 30(5):1053-1059. |
| LI L, JIA Z Q, ZHU Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China[J]. Journal of Desert Research, 2010, 30(5):1053-1059.(in Chinese with English abstract) | |
| [4] |
GODOY O, DE LEMOS-FILHO J P, VALLADARES F. Invasive species can handle higher leaf temperature under water stress than Mediterranean natives[J]. Environmental and Experimental Botany, 2011, 71(2):207-214.
DOI URL |
| [5] | 方文培. 中国植物志[M]. 北京: 科学出版社, 2004. |
| [6] | RAWAT G S, CHANDOLA S, NAITHANI H B. A note on the occurrence of Heimia myrtifolia (Lythraceae) in India[J]. Indian Forester, 2007, 133(5):697-699. |
| [7] |
王传琛, 刘际松. 杭州城市气候[J]. 地理学报, 1982, 37(2):164-173.
DOI |
| WANG C C, LIU J S. The climate of the City of Hangzhou[J]. Acta Geographica Sinica, 1982, 37(2):164-173.(in Chinese with English abstract) | |
| [8] | 陈柯辰. 1961—2012年杭州的升温趋势和四季分配之变化[J]. 中国农学通报, 2013, 29(35):345-350. |
| CHEN K C. Warming trend and seasonal variation in Hangzhou from 1961 to 2012[J]. Chinese Agricultural Science Bulletin, 2013, 29(35):345-350.(in Chinese with English abstract) | |
| [9] | 张午朝, 高冰, 马育军. 长江流域1961—2015年不同等级干旱时空变化分析[J]. 人民长江, 2019, 50(2):53-57. |
| ZHANG W Z, GAO B, MA Y J. Temporal and spatial variation characteristics of different drought grades from 1961 to 2015 in Yangtze River Basin[J]. Yangtze River, 2019, 50(2):53-57.(in Chinese with English abstract) | |
| [10] | 李静. 大豆和反枝苋生物量及养分积累对季节性干旱的响应[D]. 哈尔滨: 东北农业大学, 2019. |
| LI J. Response of biomass and nutrient accumulation of soybean and Amaranthus retroflexus to seasonal drought[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
| [11] |
RIZHSKY L, LIANG H J, MITTLER R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3):1143-1151.
DOI URL |
| [12] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5):868-882. |
| ZHANG C M, SHI S L, WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5):868-882.(in Chinese with English abstract) | |
| [13] | 韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J]. 西北植物学报, 2003, 23(1):23-27. |
| HAN R L, LI L X, LIANG Z S. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1):23-27.(in Chinese with English abstract) | |
| [14] | 陈振, 元慕田, 曹琪琪, 等. 土壤含水量对苜蓿和沙棘气孔导度与叶水势的影响[J]. 中国水土保持科学, 2019, 17(2):37-43. |
| CHEN Z, YUAN M T, CAO Q Q, et al. Effects of soil water content on stomatal conductance and leaf water potential of Medicago sativa and Hippophae rhamnoides[J]. Science of Soil and Water Conservation, 2019, 17(2):37-43.(in Chinese with English abstract) | |
| [15] | 王凯丽, 高彦钊, 李姗, 等. 短期干旱胁迫下棉花气孔表现及光合特征研究[J]. 中国生态农业学报(中英文), 2019, 27(6):901-907. |
| WANG K L, GAO Y Z, LI S, et al. Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.)[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6):901-907.(in Chinese with English abstract) | |
| [16] | 黄莉娟, 赵丽丽, 唐华江, 等. 不同毛花雀稗种质对干旱胁迫的响应及其抗旱性评价[J]. 西南农业学报, 2019, 32(11):2557-2563. |
| HUANG L J, ZHAO L L, TANG H J, et al. Drought stress responses of six Paspalum dilatatum germplasms and drought resistance evaluation[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11):2557-2563.(in Chinese with English abstract) | |
| [17] | AYOUB N, SINGAB A N, EL-NAGGAR M, et al. Investigation of phenolic leaf extract of Heimia myrtifolia(Lythraceae): pharmacological properties (stimulation of mineralization of SaOS-2 osteosarcoma cells) and identification of polyphenols[J]. Drug Discoveries & Therapeutics, 2010, 4(5):341-348. |
| [18] |
RUMALLA C S, JADHAV A N, SMILLIE T, et al. Alkaloids from Heimia salicifolia[J]. Phytochemistry, 2008, 69(8):1756-1762.
DOI URL |
| [19] |
GU C H, DONG B, XU L, et al. The complete chloroplast genome of Heimia myrtifolia and comparative analysis within Myrtales[J]. Molecules, 2018, 23(4):846-865.
DOI URL |
| [20] | 顾帆, 季梦成, 顾翠花, 等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5):894-901. |
| GU F, JI M C, GU C H, et al. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia[J]. Journal of Zhejiang A & F University, 2019, 36(5):894-901.(in Chinese with English abstract) | |
| [21] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000, 3(3):217-223.
DOI URL |
| [22] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6):153-155. |
| LI D X, GUO Y X, YUN H Y, et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(6):153-155.(in Chinese with English abstract) | |
| [23] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-260. |
| [24] | 乔滨杰, 王德秋, 高海燕, 等. 干旱胁迫下杨树无性系苗期光合与气孔形态变异研究[J]. 植物研究, 2020, 40(2):177-188. |
| QIAO B J, WANG D Q, GAO H Y, et al. Photosynthetic and stomatal morphological variation of poplar clones in seedling stage under drought stress[J]. Bulletin of Botanical Research, 2020, 40(2):177-188.(in Chinese with English abstract) | |
| [25] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
DOI URL |
| [26] |
NIU Y, WANG Y P, LI P, et al. Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana[J]. Acta Physiologiae Plantarum, 2013, 35(4):1189-1200.
DOI URL |
| [27] |
GUO Y Y, YU H Y, YANG M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2):244-250.
DOI URL |
| [28] | LAWLOR D W, CORNIC G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell & Environment, 2002, 25(2):275-294. |
| [29] |
DE SOYZA A G, KILLINGBECK K T, WHITFORD W G. Plant water relations and photosynjournal during and after drought in a Chihuahuan desert arroyo[J]. Journal of Arid Environments, 2004, 59(1):27-39.
DOI URL |
| [30] |
WALL G W, GARCIA R L, KIMBALL B A, et al. Interactive effects of elevated carbon dioxide and drought on wheat[J]. Agronomy Journal, 2006, 98(2):354-381.
DOI URL |
| [31] | 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7):1809-1816. |
| JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1809-1816.(in Chinese with English abstract) | |
| [32] |
EARL H J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency[J]. Environmental and Experimental Botany, 2002, 48(3):237-246.
DOI URL |
| [33] | 程宇飞, 刘卫东. 4个品种新西兰麻的抗旱生理研究及评价[J]. 经济林研究, 2017, 35(4):164-170. |
| CHENG Y F, LIU W D. Research and evaluation on drought-resistant physiology of four cultivars of Phormium tenax[J]. Nonwood Forest Research, 2017, 35(4):164-170.(in Chinese with English abstract) | |
| [34] | 马富举, 李丹丹, 蔡剑, 等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 应用生态学报, 2012, 23(3):724-730. |
| MA F J, LI D D, CAI J, et al. Responses of wheat seedlings root growth and leaf photosynjournal to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(3):724-730.(in Chinese with English abstract) | |
| [35] |
JEON M W, ALI M B, HAHN E J, et al. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature[J]. Environmental and Experimental Botany, 2006, 55(1/2):183-194.
DOI URL |
| [36] | 王兴荣, 张彦军, 李玥, 等. 干旱胁迫对大豆生长的影响及抗旱性评价方法与指标筛选[J]. 植物遗传资源学报, 2018, 19(1):49-56. |
| WANG X R, ZHANG Y J, LI Y, et al. Effects of drought stress on growth and screening methods and indexes for drought-resistance in soybean[J]. Journal of Plant Genetic Resources, 2018, 19(1):49-56.(in Chinese with English abstract) | |
| [37] | JAVID M G, SOROOSHZADEH A, MORADI F, et al. The role of phytohormones in alleviating salt stress in crop plants[J]. Australian Journal of Crop Science, 2011, 5(6):726-734. |
| [38] | 王洪瑞, 敖红. 干旱胁迫对红皮云杉和嫩江云杉渗透调节及抗氧化系统的影响[J]. 东北林业大学学报, 2020, 48(8):16-21. |
| WANG H R, AO H. Response of osmotic regulation and antioxidant system to drought stress in Korean spruce and Nenjiang spruce[J]. Journal of Northeast Forestry University, 2020, 48(8):16-21. (in Chinese with English abstract) | |
| [39] |
GOMES F P, OLIVA M A, MIELKE M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J]. Scientia Horticulturae, 2010, 126(3):379-384.
DOI URL |
| [40] | 安玉艳, 梁宗锁, 郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J]. 生态学报, 2011, 31(3):716-725. |
| AN Y Y, LIANG Z S, HAO W F. Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress[J]. Acta Ecologica Sinica, 2011, 31(3):716-725.(in Chinese with English abstract) | |
| [41] |
MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309.
DOI URL |
| [42] | 裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5):1386-1396. |
|
PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings[J]. Acta Ecologica Sinica, 2013, 33(5):1386-1396.(in Chinese with English abstract)
DOI URL |
|
| [43] | 谢志玉, 张文辉, 刘新成. 干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J]. 西北植物学报, 2010, 30(5):948-954. |
| XIE Z Y, ZHANG W H, LIU X C. Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under soil drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(5):948-954.(in Chinese with English abstract) | |
| [44] | 王宁, 袁美丽, 陈浩, 等. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响[J]. 草业学报, 2019, 28(1):70-78. |
| WANG N, YUAN M L, CHEN H, et al. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings[J]. Acta Prataculturae Sinica, 2019, 28(1):70-78.(in Chinese with English abstract) | |
| [45] |
SOHRABI Y, HEIDARI G, WEISANY W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress[J]. Symbiosis, 2012, 56(1):5-18.
DOI URL |
| [46] | 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2):403-410. |
| WU Y B, YE B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2):403-410.(in Chinese with English abstract) |
| [1] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [2] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
| [3] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
| [4] | 李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518. |
| [5] | 杨明凤, 吉春容, 刘勇, 白书军, 陈雪, 刘爱琳. 花铃期持续干旱胁迫对棉花生长与土壤干旱阈值的影响[J]. 浙江农业学报, 2024, 36(4): 738-747. |
| [6] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
| [7] | 虎丽霞, 张婧, 高彦强, 毛尔晔, 韩康宁, 杨滟, 颉建明. 长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J]. 浙江农业学报, 2024, 36(2): 295-307. |
| [8] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. |
| [9] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
| [10] | 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响[J]. 浙江农业学报, 2023, 35(10): 2275-2285. |
| [11] | 魏茜雅, 梁腊梅, 林欣琪, 秦中维, 李映志. 褪黑素种子引发处理对干旱胁迫下朝天椒生长与生理特性的影响[J]. 浙江农业学报, 2023, 35(10): 2378-2388. |
| [12] | 方明雅, 余宏伟, 武雅娴, 韩文炎, 李鑫, 刘海河. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
| [13] | 何秀丽, 王人民. 外源褪黑素对金线兰有效成分含量及抗氧化酶活性的影响[J]. 浙江农业学报, 2023, 35(1): 58-66. |
| [14] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
| [15] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||