浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2611-2620.DOI: 10.3969/j.issn.1004-1524.20221626
林先玉1(), 李紫倩1, 柏松1, 罗军1, 屈燕1,2,*(
)
收稿日期:
2022-12-16
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
林先玉(1995—),女,四川凉山人,硕士研究生,主要从事园林植物资源开发与利用研究。E-mail:1159688949@qq.com
通讯作者:
* 屈燕,E-mail:quyan@swfu.edu.cn
基金资助:
LIN Xianyu1(), LI Ziqian1, BAI Song1, LUO Jun1, QU Yan1,2,*(
)
Received:
2022-12-16
Online:
2023-11-25
Published:
2023-12-04
摘要:
为研究在干旱胁迫及复水过程中云南山茶抗氧化酶活性变化及关键基因的表达差异,本文以半年生云南山茶幼苗为材料,利用聚乙二醇(PEG-6000)对其进行干旱胁迫,测定云南山茶叶片过氧化物酶(POD)和超氧化物歧化酶(SOD)活性,并将对照组和重度干旱组的叶片进行转录组测序。结果表明:在胁迫期间,各处理组SOD活性持续上升,重度干旱胁迫下POD活性先上升后下降;在复水期间,POD、SOD活性都呈下降趋势,除轻度干旱胁迫组外其余两组POD和SOD活性均未能恢复到胁迫之前的水平。通过对关键基因差异表达分析发现,在重度干旱胁迫及复水过程中,33个抗氧化酶相关基因表达量与抗氧化酶活性有极显著相关性(P<0.01),19个显著相关(P<0.05)。POD相关基因均富集于苯丙烷类生物合成通路中,SOD相关基因主要富集于过氧化物酶体通路中,均为下调表达。在胁迫开始后相关基因表达量均发生了显著性变化,说明抗氧化酶相关基因在干旱胁迫及复水过程中参与了调控,积极响应干旱胁迫。
中图分类号:
林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620.
LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620.
图1 云南山茶POD 和SOD活性变化 图上没有相同大写字母表示不同处理组同一时间点在0.05水平上差异显著(P<0.05);图上没有相同小写字母表示同一处理组不同时间点在0.05水平上差异显著(P<0.05)。下同。
Fig.1 Changes of POD and SOD activity in Camellia reticulata leaves The capital letters on the bars indicate significant differences at the 0.05 level among different treatment groups at the same time point (P<0.05). The lowercase letters on the bars indicate significant differences at the 0.05 level at different time points in the same treatment group (P<0.05). The same as below.
基因ID及编号 Gene ID and number | 相关性 Correlation | 基因ID及编号 Gene ID and number | 相关性 Correlation |
---|---|---|---|
Cluster-23907.121858 CrPOD1 | -0.714** | Cluster-23907.193947 CrPOD27 | -0.778** |
Cluster-23907.205799 CrPOD2 | -0.834** | Cluster-23907.191538 CrPOD28 | 0.850** |
Cluster-23907.131313 CrPOD3 | -0.705* | Cluster-23907.186821 CrPOD29 | 0.816** |
Cluster-23907.133854 CrPOD4 | -0.799** | Cluster-23907.130118 CrPOD30 | 0.676* |
Cluster-23907.133898 CrPOD5 | -0.800** | Cluster-23907.135693 CrPOD31 | 0.769** |
Cluster-23907.215532 CrPOD6 | -0.689* | Cluster-23907.226143 CrPOD32 | 0.605* |
Cluster-23907.216128 CrPOD7 | -0.629* | Cluster-23907.135700 CrPOD33 | 0.621* |
Cluster-23907.136199 CrPOD8 | -0.749** | Cluster-23907.229292 CrPOD34 | 0.843** |
Cluster-23907.136924 CrPOD9 | -0.839** | Cluster-23907.172436 CrPOD35 | 0.765** |
Cluster-23907.141902 CrPOD10 | -0.606* | Cluster-23907.247053 CrPOD36 | 0.639* |
Cluster-23907.144090 CrPOD11 | -0.687* | Cluster-23907.26403 CrPOD37 | 0.805** |
Cluster-23907.145111 CrPOD12 | -0.805** | Cluster-23907.177551 CrPOD38 | 0.746** |
Cluster-23907.149843 CrPOD13 | 0.686* | Cluster-23907.86700 CrPOD39 | 0.688* |
Cluster-23907.157313 CrPOD14 | -0.887** | Cluster-23907.89908 CrPOD40 | 0.675* |
Cluster-23907.159841 CrPOD15 | -0.683* | Cluster-23907.97564 CrPOD41 | 0.738** |
Cluster-23907.162853 CrPOD16 | -0.848** | Cluster-23907.185111 CrPOD42 | 0.626* |
Cluster-23907.169530 CrPOD17 | -0.814** | Cluster-23907.154253 CrSOD1 | -0.918** |
Cluster-23907.169635 CrPOD18 | -0.888** | Cluster-23907.154259 CrSOD2 | -0.631* |
Cluster-23907.169636 CrPOD19 | -0.686* | Cluster-23907.154756 CrSOD3 | -0.837** |
Cluster-23907.227562 CrPOD20 | -0.874** | Cluster-23907.156212 CrSOD4 | -0.762** |
Cluster-23907.233931 CrPOD21 | -0.768** | Cluster-23907.158564 CrSOD5 | -0.864** |
Cluster-23907.177905 CrPOD22 | -0.665* | Cluster-23907.170549 CrSOD6 | -0.847** |
Cluster-23907.179414 CrPOD23 | -0.785** | Cluster-23907.183528 CrSOD7 | -0.789** |
Cluster-23907.180565 CrPOD24 | -0.732** | Cluster-23907.187659 CrSOD8 | -0.843** |
Cluster-23907.183161 CrPOD25 | -0.695* | Cluster-23907.204201 CrSOD9 | -0.808** |
Cluster-23907.80759 CrPOD26 | -0.706* | Cluster-23907.210282 CrSOD10 | -0.742** |
表1 POD、SOD活性与其关键基因表达量的相关性分析
Table 1 Correlation analysis of POD and SOD activity and their key genes expression
基因ID及编号 Gene ID and number | 相关性 Correlation | 基因ID及编号 Gene ID and number | 相关性 Correlation |
---|---|---|---|
Cluster-23907.121858 CrPOD1 | -0.714** | Cluster-23907.193947 CrPOD27 | -0.778** |
Cluster-23907.205799 CrPOD2 | -0.834** | Cluster-23907.191538 CrPOD28 | 0.850** |
Cluster-23907.131313 CrPOD3 | -0.705* | Cluster-23907.186821 CrPOD29 | 0.816** |
Cluster-23907.133854 CrPOD4 | -0.799** | Cluster-23907.130118 CrPOD30 | 0.676* |
Cluster-23907.133898 CrPOD5 | -0.800** | Cluster-23907.135693 CrPOD31 | 0.769** |
Cluster-23907.215532 CrPOD6 | -0.689* | Cluster-23907.226143 CrPOD32 | 0.605* |
Cluster-23907.216128 CrPOD7 | -0.629* | Cluster-23907.135700 CrPOD33 | 0.621* |
Cluster-23907.136199 CrPOD8 | -0.749** | Cluster-23907.229292 CrPOD34 | 0.843** |
Cluster-23907.136924 CrPOD9 | -0.839** | Cluster-23907.172436 CrPOD35 | 0.765** |
Cluster-23907.141902 CrPOD10 | -0.606* | Cluster-23907.247053 CrPOD36 | 0.639* |
Cluster-23907.144090 CrPOD11 | -0.687* | Cluster-23907.26403 CrPOD37 | 0.805** |
Cluster-23907.145111 CrPOD12 | -0.805** | Cluster-23907.177551 CrPOD38 | 0.746** |
Cluster-23907.149843 CrPOD13 | 0.686* | Cluster-23907.86700 CrPOD39 | 0.688* |
Cluster-23907.157313 CrPOD14 | -0.887** | Cluster-23907.89908 CrPOD40 | 0.675* |
Cluster-23907.159841 CrPOD15 | -0.683* | Cluster-23907.97564 CrPOD41 | 0.738** |
Cluster-23907.162853 CrPOD16 | -0.848** | Cluster-23907.185111 CrPOD42 | 0.626* |
Cluster-23907.169530 CrPOD17 | -0.814** | Cluster-23907.154253 CrSOD1 | -0.918** |
Cluster-23907.169635 CrPOD18 | -0.888** | Cluster-23907.154259 CrSOD2 | -0.631* |
Cluster-23907.169636 CrPOD19 | -0.686* | Cluster-23907.154756 CrSOD3 | -0.837** |
Cluster-23907.227562 CrPOD20 | -0.874** | Cluster-23907.156212 CrSOD4 | -0.762** |
Cluster-23907.233931 CrPOD21 | -0.768** | Cluster-23907.158564 CrSOD5 | -0.864** |
Cluster-23907.177905 CrPOD22 | -0.665* | Cluster-23907.170549 CrSOD6 | -0.847** |
Cluster-23907.179414 CrPOD23 | -0.785** | Cluster-23907.183528 CrSOD7 | -0.789** |
Cluster-23907.180565 CrPOD24 | -0.732** | Cluster-23907.187659 CrSOD8 | -0.843** |
Cluster-23907.183161 CrPOD25 | -0.695* | Cluster-23907.204201 CrSOD9 | -0.808** |
Cluster-23907.80759 CrPOD26 | -0.706* | Cluster-23907.210282 CrSOD10 | -0.742** |
基因ID Gene ID | 引物序列 Primer sequence(5'-3') |
---|---|
Cluster-23907.105087 | F:GGTGAGAAGCGACCAATGGA |
R:TGGGTGGCTTGTGTTCCATT | |
Cluster-23907.21994 | F:CGGGAAGCTGAGATGGAAGG |
R:ATCAAATCCCCGACGTTGGT | |
Cluster-23907.22854 | F:TCTCCTTGGTGTAGCTCCGA |
R:ACATTCATTCCGCCTCAGCA | |
Cluster-23907.128010 | F:GCTTGAACGAGCCTTTCACC |
R:TCACGAAGTTTGCGGAGGAA | |
Cluster-23907.131185 | F:CCATCAACTCTGGCGTCACT |
R:TTCAGAGCCTTGCCGAGAAG | |
Cluster-23907.35810 | F:CGTTCTCTCCGTTGCCTTCT |
R:CTCCGAGAGTGTTCCAGAGC | |
Cluster-23907.43736 | F:GCCGGAGTTTCCTTTGAGGA |
R:AGAGAACCAGCTTCGTTGGG | |
Cluster-23907.45879 | F:TGGCGTGGAAGTTCATCCTC |
R:ACCGAATTTCTCCTGCCCTG | |
Cluster-23907.42603 | F:GGGAACAATGAGGGCTCACA |
R:GAGGTGCCAGAGGATGATGG |
表2 qRT-PCR 引物序列
Table 2 qRT-PCR primer sequences
基因ID Gene ID | 引物序列 Primer sequence(5'-3') |
---|---|
Cluster-23907.105087 | F:GGTGAGAAGCGACCAATGGA |
R:TGGGTGGCTTGTGTTCCATT | |
Cluster-23907.21994 | F:CGGGAAGCTGAGATGGAAGG |
R:ATCAAATCCCCGACGTTGGT | |
Cluster-23907.22854 | F:TCTCCTTGGTGTAGCTCCGA |
R:ACATTCATTCCGCCTCAGCA | |
Cluster-23907.128010 | F:GCTTGAACGAGCCTTTCACC |
R:TCACGAAGTTTGCGGAGGAA | |
Cluster-23907.131185 | F:CCATCAACTCTGGCGTCACT |
R:TTCAGAGCCTTGCCGAGAAG | |
Cluster-23907.35810 | F:CGTTCTCTCCGTTGCCTTCT |
R:CTCCGAGAGTGTTCCAGAGC | |
Cluster-23907.43736 | F:GCCGGAGTTTCCTTTGAGGA |
R:AGAGAACCAGCTTCGTTGGG | |
Cluster-23907.45879 | F:TGGCGTGGAAGTTCATCCTC |
R:ACCGAATTTCTCCTGCCCTG | |
Cluster-23907.42603 | F:GGGAACAATGAGGGCTCACA |
R:GAGGTGCCAGAGGATGATGG |
[1] | 金钱荣, 龚彩艳, 金鸿龚. 云南山茶的园林美学价值研究[J]. 内蒙古林业调查设计, 2010, 33(2): 3-4, 7. |
JIN Q R, GONG C Y, JIN H G. Study on the landscape aesthetic value of Camellia yunnanensis[J]. Inner Mongolia Forestry Investigation and Design, 2010, 33(2): 3-4, 7. (in Chinese) | |
[2] | 陈蕴. 云南山茶花栽培技术[J]. 中国园艺文摘, 2017, 33(6): 167-168. |
CHEN Y. Cultivation techniques of camellia in Yunnan[J]. Chinese Horticulture Abstracts, 2017, 33(6): 167-168. (in Chinese) | |
[3] | 杨桂英, 王兵益, 何瀚, 等. 从叶片解剖结构探讨云南山茶不同倍性的耐旱潜力[J]. 西南农业学报, 2015, 28(6): 2714-2719. |
YANG G Y, WANG B Y, HE H, et al. Drought resistance potential of different ploidy of Camellia reticulata from leaf anatomic traits view[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2714-2719. (in Chinese with English abstract) | |
[4] | 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018, 46(17): 23-27. |
LAI J L, LI X X, XUE L, et al. Research progress on drought resistance of plants[J]. Jiangsu Agricultural Sciences, 2018, 46(17): 23-27. (in Chinese) | |
[5] | 姜宗庆, 李成忠, 余乐, 等. 干旱胁迫对薄壳山核桃叶片丙二醛含量和3种抗氧化酶活性的影响[J]. 上海农业学报, 2019, 35(1): 7-10. |
JIANG Z Q, LI C Z, YU L, et al. Effects of drought stress on MDA content and 3 antioxidant enzymes activities in leaves of Carya illinoensis[J]. Acta Agriculturae Shanghai, 2019, 35(1): 7-10. (in Chinese with English abstract) | |
[6] | 林宇丰, 李魏, 戴良英. 抗氧化酶在植物抗旱过程中的功能研究进展[J]. 作物研究, 2015, 29(3): 326-330. |
LIN Y F, LI W, DAI L Y. Research progress of antioxidant enzymes functioning in plant drought resistant process[J]. Crop Research, 2015, 29(3): 326-330. (in Chinese with English abstract) | |
[7] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[8] | 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207-210. |
ZHAO S J, XU C C, ZOU Q, et al. Improvement of determination method of malondialdehyde in plant tissues[J]. Plant Physiology Communications, 1994, 30(3): 207-210. (in Chinese) | |
[9] | 崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报, 2017, 33(3): 220-226. |
CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ROS signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220-226. (in Chinese with English abstract) | |
[10] | 连玲, 许惠滨, 何炜, 等. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. |
LIAN L, XU H B, HE W, et al. Expression of antioxidant enzyme genes in rice under PEG-simulated drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. (in Chinese with English abstract) | |
[11] | 陈爱萍, 隋晓青, 王玉祥, 等. 干旱胁迫及复水对伊犁绢蒿幼苗生长及生理特性的影响[J]. 草地学报, 2020, 28(5): 1216-1225. |
CHEN A P, SUI X Q, WANG Y X, et al. Effects of drought and re-watering on growth and physiological characteristics of Seriphidium transiliense seedlings[J]. Acta Agrestia Sinica, 2020, 28(5): 1216-1225. (in Chinese with English abstract) | |
[12] | 崔婷茹, 于慧敏, 李会彬, 等. 干旱胁迫及复水对狼尾草幼苗生理特性的影响[J]. 草业科学, 2017, 34(4): 788-793. |
CUI T R, YU H M, LI H B, et al. Effect of drought stress and rewatering on physiological characteristics of Pennisetum alopecuroides seedlings[J]. Pratacultural Science, 2017, 34(4): 788-793. (in Chinese with English abstract) | |
[13] | 孙继亮, 李六林, 陶书田, 等. 干旱胁迫和复水对梨幼树生理特性的影响[J]. 应用与环境生物学报, 2012, 18(2): 218-223. |
SUN J L, LI L L, TAO S T, et al. Effects of drought stress and rewatering on physiological characteristics of pear seedling[J]. Chinese Journal of Applied and Environmental Biology, 2012, 18(2): 218-223. (in Chinese with English abstract) | |
[14] | 弓萌萌, 张瑞禹, 刘洋, 等. 干旱胁迫对红树莓幼苗生长及根系酶活性变化的影响[J]. 经济林研究, 2022, 40(2): 232-240. |
GONG M M, ZHANG R Y, LIU Y, et al. Effects of drought stress on growth and root antioxidant enzymes activities in red raspberry seedlings[J]. Non-Wood Forest Research, 2022, 40(2): 232-240. (in Chinese with English abstract) | |
[15] | 安钰, 张清云, 李生兵, 等. 干旱胁迫及复水对甘草叶片抗氧化酶活性和光合特性的影响[J]. 宁夏农林科技, 2021, 62(7): 1-5. |
AN Y, ZHANG Q Y, LI S B, et al. Effects of drought stress and rehydration on antioxidant enzyme activity and photosynthetic characteristic of Glycyrrhiza uralensis fisch[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(7): 1-5. (in Chinese with English abstract) | |
[16] | 赵英, 吴敏, 邓平, 等. 干旱与复水对2种蟛蜞菊生长及生理生化特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(4): 113-122. |
ZHAO Y, WU M, DENG P, et al. Effects of drought and rewatering on growth and physiology characteristics of Wedelia chinensis and Wedelia trilobata[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 113-122. (in Chinese with English abstract) | |
[17] | 何凤, 吕庚鑫, 孟益德, 等. 干旱胁迫及复水对杜仲苗激素含量的影响[J]. 植物生理学报, 2021, 57(12): 2279-2290. |
HE F, LYU G X, MENG Y D, et al. Effects of drought stress and rehydration on hormone contents of Eucommia ulmoides seedling[J]. Plant Physiology Journal, 2021, 57(12): 2279-2290. (in Chinese with English abstract) | |
[18] | XU L X, HAN L B, HUANG B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255. |
[19] | 曾令霜, 李培英, 孙宗玖, 等. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
ZENG L S, LI P Y, SUN Z J, et al. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance[J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. (in Chinese with English abstract) | |
[20] | 高娅楠, 韩烈保, 许立新. 乙烯利对干旱胁迫下草地早熟禾抗氧化酶基因表达的影响[J]. 草地学报, 2021, 29(10): 2200-2213. |
GAO Y N, HAN L B, XU L X. Effects of ethephon on the antioxidant enzyme genes expression of Poa pratensis under drought stress[J]. Acta Agrestia Sinica, 2021, 29(10): 2200-2213. (in Chinese with English abstract) | |
[21] | 陈果, 曲衍杰, 任桓质, 等. VpSBP3基因负向调控转基因拟南芥盐胁迫抗性[J]. 青岛农业大学学报(自然科学版), 2021, 38(1): 7-14. |
CHEN G, QU Y J, REN H Z, et al. VpSBP3 gene negatively regulates salt stress resistance in transgenic Arabidopsis thaliana[J]. Journal of Qingdao Agricultural University (Natural Science), 2021, 38(1): 7-14. (in Chinese with English abstract) | |
[22] | 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. |
SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. (in Chinese with English abstract) | |
[23] | DIZHBITE T, TELYSHEVA G, JURKJANE V, et al. Characterization of the radical scavenging activity of lignins: natural antioxidants[J]. Bioresource Technology, 2004, 95(3): 309-317. |
[1] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. |
[2] | 李虹仪, 周润盛, 梁笑玲, 张楚玥, 吕祺欣, 杨长华, 张茂. 日粮钙磷水平对马岗鹅生长性能及肝脏基因表达的影响[J]. 浙江农业学报, 2023, 35(11): 2533-2542. |
[3] | 孔凡旺, 张志刚, 李伟, 陈玉峰, 王长江, 郑亚琴, 徐蒙. 桃4CL基因家族鉴定及其在果实色泽发育和采后贮藏冷害中的表达分析[J]. 浙江农业学报, 2023, 35(11): 2600-2610. |
[4] | 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响[J]. 浙江农业学报, 2023, 35(10): 2275-2285. |
[5] | 魏茜雅, 梁腊梅, 林欣琪, 秦中维, 李映志. 褪黑素种子引发处理对干旱胁迫下朝天椒生长与生理特性的影响[J]. 浙江农业学报, 2023, 35(10): 2378-2388. |
[6] | 方明雅, 余宏伟, 武雅娴, 韩文炎, 李鑫, 刘海河. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
[7] | 何秀丽, 王人民. 外源褪黑素对金线兰有效成分含量及抗氧化酶活性的影响[J]. 浙江农业学报, 2023, 35(1): 58-66. |
[8] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[9] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[10] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[11] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[12] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[13] | 李玉婷, 李莎, 曹杰, 李骄杨, 张亮, 许晓风. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049-1060. |
[14] | 余艳玲, 罗洪林, 罗辉, 冯鹏霏, 潘传燕, 宋漫玲, 肖蕊, 张永德. 卵形鲳鲹生肌调节因子基因家族的鉴定及在胚胎中的表达[J]. 浙江农业学报, 2022, 34(4): 695-705. |
[15] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||