浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1650-1659.DOI: 10.3969/j.issn.1004-1524.2021.09.09
郑钢a,b,c(), 顾翠花a,b,c, 王杰a,b,c, 林琳a,b,c,*(
)
收稿日期:
2020-11-13
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
林琳
作者简介:
* 林琳,E-mail: 928299135@qq.com基金资助:
ZHENG Ganga,b,c(), GU Cuihuaa,b,c, WANG Jiea,b,c, LIN Lina,b,c,*(
)
Received:
2020-11-13
Online:
2021-09-25
Published:
2021-10-09
Contact:
LIN Lin
摘要:
为探究黄薇(Heimia myrtifolia)对干旱胁迫的适应能力,以黄薇一年生扦插苗为试验材料,设置5个水分处理(CK、T1、T2、T3、T4,土壤相对含水量分别保持在65%~75%、45%~60%、30%~45%、15%~30%、5%~15%),采用盆栽试验连续处理20 d,研究黄薇部分生理生化指标、光合作用和气孔变化对干旱胁迫的响应。结果表明:随着干旱程度的加深,黄薇叶片的净光合速率、蒸腾速率、气孔导度显著(P<0.05)下降,胞间二氧化碳浓度先降后升,类胡萝卜素、叶绿素和叶绿素a、b含量呈上升趋势,叶片下表皮气孔随着土壤水分散失而关闭,气孔形态结构也发生适应性的变化;丙二醛含量持续增高,过氧化氢酶活性和过氧化物酶活性先上升后下降,超氧化物歧化酶在T1~T2处理下保持较高活性,在T3处理下降至CK水平;脯氨酸含量先下降后上升,可溶性糖含量显著(P<0.05)增加。综上,黄薇对轻中度干旱具有良好的适应性,但不能承受长时间的重度干旱。研究结果可为后续黄薇的引种驯化和培育应用提供理论依据。
中图分类号:
郑钢, 顾翠花, 王杰, 林琳. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659.
ZHENG Gang, GU Cuihua, WANG Jie, LIN Lin. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham.et Schlechtend.[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650-1659.
图1 不同处理下黄薇叶片的丙二醛含量和抗氧化酶活性变化 柱上无相同字母的表示处理间差异显著(P<0. 05)。下同。
Fig.1 Changes of malondialdehyde content and antioxidant enzymes activities in leaves of Heimia myrtifolia under different treatments Bars marked without the same letters indicated significant difference at P<0.05. The same as below. MDA, Malondialdehyde; CAT, Catalase; SOD, Superoxide dismutase; POD, Peroxidase.The same as below.
图3 不同处理下黄薇叶片的光合参数变化 Pn,净光合速率;Tr,蒸腾速率;Ci,胞间CO2深度;Gs,气孔导度。
Fig.3 Changes of photosynthetic parameters in leaves of Heimia myrtifolia under different treatments Pn, Net photosynthetic rate; Tr, Transpiration rate; Ci, Intercellular carbon dioxide; Gs, Stomatal conductance.
处理Treatment | SL/μm | SW/μm | SA/μm2 | SD/μm-2 |
---|---|---|---|---|
CK | 30.8±1.8 a | 20.6±1.7 a | 487.1±53.6 a | 177.6±8.7 a |
T1 | 29.1±1.3 b | 19.4±1.4 b | 435.1±32.0 b | 164.3±5.4 b |
T2 | 25.2±1.8 c | 16.2±1.2 c | 327.3±34.1 c | 162.7±4.0 b |
T3 | 23.1±1.1 d | 15.5±1.2 d | 297.4±19.6 d | 149.8±4.4 c |
T4 | 22.9±1.3 e | 16.0±1.4 cd | 285.9±24.7 d | 143.3±5.5 d |
表1 不同处理下黄薇叶片的气孔长、宽、面积、密度变化
Table 1 Stomatal length, width, area and density in leaves of Heimia myrtifolia under different treatments
处理Treatment | SL/μm | SW/μm | SA/μm2 | SD/μm-2 |
---|---|---|---|---|
CK | 30.8±1.8 a | 20.6±1.7 a | 487.1±53.6 a | 177.6±8.7 a |
T1 | 29.1±1.3 b | 19.4±1.4 b | 435.1±32.0 b | 164.3±5.4 b |
T2 | 25.2±1.8 c | 16.2±1.2 c | 327.3±34.1 c | 162.7±4.0 b |
T3 | 23.1±1.1 d | 15.5±1.2 d | 297.4±19.6 d | 149.8±4.4 c |
T4 | 22.9±1.3 e | 16.0±1.4 cd | 285.9±24.7 d | 143.3±5.5 d |
指标 Index | MDA | POD | CAT | SOD | Pro | SS | Chl | Pn | Ci | Gs | Tr | SA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
POD | -0.524** | |||||||||||
CAT | -0.483* | 0.877** | ||||||||||
SOD | -0.875** | 0.676** | 0.730* | |||||||||
Pro | 0.782** | -0.838** | -0.679** | -0.818** | ||||||||
SS | 0.882** | -0.255 | -0.077 | -0.642** | 0.653** | |||||||
Chl | 0.904** | -0.409* | -0.221 | -0.661** | 0.729** | 0.943** | ||||||
Pn | -0.945** | 0.348 | 0.242 | 0.767** | -0.711** | -0.974** | -0.926** | |||||
Ci | -0.271 | -0.579** | -0.672** | -0.066 | 0.129 | -0.589** | -0.462* | 0.493* | ||||
Gs | -0.889** | 0.202 | 0.067 | 0.607** | -0.583** | -0.973** | -0.942** | 0.963** | 0.631** | |||
Tr | -0.740** | -0.146 | -0.177 | 0.418* | -0.265 | -0.861* | -0.786** | 0.842** | 0.808** | 0.925* | ||
SA | -0.856** | 0.222 | 0.034 | 0.612** | -0.617** | -0.984** | -0.916** | 0.953** | 0.611** | 0.964** | 0.865** | |
SD | -0.875** | 0.202 | 0.140 | 0.631** | -0.533** | -0.905** | -0.906** | 0.913** | 0.555** | 0.946** | 0.891** | 0.897** |
表2 不同处理下黄薇叶片各生理生化指标的相关性
Table 2 Correlation of physiological and biochemical indexes in leaves of Heimia myrtifolia under different treatments
指标 Index | MDA | POD | CAT | SOD | Pro | SS | Chl | Pn | Ci | Gs | Tr | SA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
POD | -0.524** | |||||||||||
CAT | -0.483* | 0.877** | ||||||||||
SOD | -0.875** | 0.676** | 0.730* | |||||||||
Pro | 0.782** | -0.838** | -0.679** | -0.818** | ||||||||
SS | 0.882** | -0.255 | -0.077 | -0.642** | 0.653** | |||||||
Chl | 0.904** | -0.409* | -0.221 | -0.661** | 0.729** | 0.943** | ||||||
Pn | -0.945** | 0.348 | 0.242 | 0.767** | -0.711** | -0.974** | -0.926** | |||||
Ci | -0.271 | -0.579** | -0.672** | -0.066 | 0.129 | -0.589** | -0.462* | 0.493* | ||||
Gs | -0.889** | 0.202 | 0.067 | 0.607** | -0.583** | -0.973** | -0.942** | 0.963** | 0.631** | |||
Tr | -0.740** | -0.146 | -0.177 | 0.418* | -0.265 | -0.861* | -0.786** | 0.842** | 0.808** | 0.925* | ||
SA | -0.856** | 0.222 | 0.034 | 0.612** | -0.617** | -0.984** | -0.916** | 0.953** | 0.611** | 0.964** | 0.865** | |
SD | -0.875** | 0.202 | 0.140 | 0.631** | -0.533** | -0.905** | -0.906** | 0.913** | 0.555** | 0.946** | 0.891** | 0.897** |
[1] |
ABDELGAWAD H, FARFAN-VIGNOLO E R, DE VOS D, et al. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes[J]. Plant Science, 2015, 231:1-10.
DOI URL |
[2] |
FATHI A, TARI D B. Effect of drought stress and its mechanism in plants[J]. International Journal of Life Sciences, 2016, 10(1):1-6.
DOI URL |
[3] | 李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展[J]. 中国沙漠, 2010, 30(5):1053-1059. |
LI L, JIA Z Q, ZHU Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China[J]. Journal of Desert Research, 2010, 30(5):1053-1059.(in Chinese with English abstract) | |
[4] |
GODOY O, DE LEMOS-FILHO J P, VALLADARES F. Invasive species can handle higher leaf temperature under water stress than Mediterranean natives[J]. Environmental and Experimental Botany, 2011, 71(2):207-214.
DOI URL |
[5] | 方文培. 中国植物志[M]. 北京: 科学出版社, 2004. |
[6] | RAWAT G S, CHANDOLA S, NAITHANI H B. A note on the occurrence of Heimia myrtifolia (Lythraceae) in India[J]. Indian Forester, 2007, 133(5):697-699. |
[7] |
王传琛, 刘际松. 杭州城市气候[J]. 地理学报, 1982, 37(2):164-173.
DOI |
WANG C C, LIU J S. The climate of the City of Hangzhou[J]. Acta Geographica Sinica, 1982, 37(2):164-173.(in Chinese with English abstract) | |
[8] | 陈柯辰. 1961—2012年杭州的升温趋势和四季分配之变化[J]. 中国农学通报, 2013, 29(35):345-350. |
CHEN K C. Warming trend and seasonal variation in Hangzhou from 1961 to 2012[J]. Chinese Agricultural Science Bulletin, 2013, 29(35):345-350.(in Chinese with English abstract) | |
[9] | 张午朝, 高冰, 马育军. 长江流域1961—2015年不同等级干旱时空变化分析[J]. 人民长江, 2019, 50(2):53-57. |
ZHANG W Z, GAO B, MA Y J. Temporal and spatial variation characteristics of different drought grades from 1961 to 2015 in Yangtze River Basin[J]. Yangtze River, 2019, 50(2):53-57.(in Chinese with English abstract) | |
[10] | 李静. 大豆和反枝苋生物量及养分积累对季节性干旱的响应[D]. 哈尔滨: 东北农业大学, 2019. |
LI J. Response of biomass and nutrient accumulation of soybean and Amaranthus retroflexus to seasonal drought[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[11] |
RIZHSKY L, LIANG H J, MITTLER R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3):1143-1151.
DOI URL |
[12] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5):868-882. |
ZHANG C M, SHI S L, WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5):868-882.(in Chinese with English abstract) | |
[13] | 韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J]. 西北植物学报, 2003, 23(1):23-27. |
HAN R L, LI L X, LIANG Z S. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1):23-27.(in Chinese with English abstract) | |
[14] | 陈振, 元慕田, 曹琪琪, 等. 土壤含水量对苜蓿和沙棘气孔导度与叶水势的影响[J]. 中国水土保持科学, 2019, 17(2):37-43. |
CHEN Z, YUAN M T, CAO Q Q, et al. Effects of soil water content on stomatal conductance and leaf water potential of Medicago sativa and Hippophae rhamnoides[J]. Science of Soil and Water Conservation, 2019, 17(2):37-43.(in Chinese with English abstract) | |
[15] | 王凯丽, 高彦钊, 李姗, 等. 短期干旱胁迫下棉花气孔表现及光合特征研究[J]. 中国生态农业学报(中英文), 2019, 27(6):901-907. |
WANG K L, GAO Y Z, LI S, et al. Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.)[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6):901-907.(in Chinese with English abstract) | |
[16] | 黄莉娟, 赵丽丽, 唐华江, 等. 不同毛花雀稗种质对干旱胁迫的响应及其抗旱性评价[J]. 西南农业学报, 2019, 32(11):2557-2563. |
HUANG L J, ZHAO L L, TANG H J, et al. Drought stress responses of six Paspalum dilatatum germplasms and drought resistance evaluation[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11):2557-2563.(in Chinese with English abstract) | |
[17] | AYOUB N, SINGAB A N, EL-NAGGAR M, et al. Investigation of phenolic leaf extract of Heimia myrtifolia(Lythraceae): pharmacological properties (stimulation of mineralization of SaOS-2 osteosarcoma cells) and identification of polyphenols[J]. Drug Discoveries & Therapeutics, 2010, 4(5):341-348. |
[18] |
RUMALLA C S, JADHAV A N, SMILLIE T, et al. Alkaloids from Heimia salicifolia[J]. Phytochemistry, 2008, 69(8):1756-1762.
DOI URL |
[19] |
GU C H, DONG B, XU L, et al. The complete chloroplast genome of Heimia myrtifolia and comparative analysis within Myrtales[J]. Molecules, 2018, 23(4):846-865.
DOI URL |
[20] | 顾帆, 季梦成, 顾翠花, 等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5):894-901. |
GU F, JI M C, GU C H, et al. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia[J]. Journal of Zhejiang A & F University, 2019, 36(5):894-901.(in Chinese with English abstract) | |
[21] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000, 3(3):217-223.
DOI URL |
[22] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6):153-155. |
LI D X, GUO Y X, YUN H Y, et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(6):153-155.(in Chinese with English abstract) | |
[23] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-260. |
[24] | 乔滨杰, 王德秋, 高海燕, 等. 干旱胁迫下杨树无性系苗期光合与气孔形态变异研究[J]. 植物研究, 2020, 40(2):177-188. |
QIAO B J, WANG D Q, GAO H Y, et al. Photosynthetic and stomatal morphological variation of poplar clones in seedling stage under drought stress[J]. Bulletin of Botanical Research, 2020, 40(2):177-188.(in Chinese with English abstract) | |
[25] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
DOI URL |
[26] |
NIU Y, WANG Y P, LI P, et al. Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana[J]. Acta Physiologiae Plantarum, 2013, 35(4):1189-1200.
DOI URL |
[27] |
GUO Y Y, YU H Y, YANG M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2):244-250.
DOI URL |
[28] | LAWLOR D W, CORNIC G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell & Environment, 2002, 25(2):275-294. |
[29] |
DE SOYZA A G, KILLINGBECK K T, WHITFORD W G. Plant water relations and photosynjournal during and after drought in a Chihuahuan desert arroyo[J]. Journal of Arid Environments, 2004, 59(1):27-39.
DOI URL |
[30] |
WALL G W, GARCIA R L, KIMBALL B A, et al. Interactive effects of elevated carbon dioxide and drought on wheat[J]. Agronomy Journal, 2006, 98(2):354-381.
DOI URL |
[31] | 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7):1809-1816. |
JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1809-1816.(in Chinese with English abstract) | |
[32] |
EARL H J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency[J]. Environmental and Experimental Botany, 2002, 48(3):237-246.
DOI URL |
[33] | 程宇飞, 刘卫东. 4个品种新西兰麻的抗旱生理研究及评价[J]. 经济林研究, 2017, 35(4):164-170. |
CHENG Y F, LIU W D. Research and evaluation on drought-resistant physiology of four cultivars of Phormium tenax[J]. Nonwood Forest Research, 2017, 35(4):164-170.(in Chinese with English abstract) | |
[34] | 马富举, 李丹丹, 蔡剑, 等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 应用生态学报, 2012, 23(3):724-730. |
MA F J, LI D D, CAI J, et al. Responses of wheat seedlings root growth and leaf photosynjournal to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(3):724-730.(in Chinese with English abstract) | |
[35] |
JEON M W, ALI M B, HAHN E J, et al. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature[J]. Environmental and Experimental Botany, 2006, 55(1/2):183-194.
DOI URL |
[36] | 王兴荣, 张彦军, 李玥, 等. 干旱胁迫对大豆生长的影响及抗旱性评价方法与指标筛选[J]. 植物遗传资源学报, 2018, 19(1):49-56. |
WANG X R, ZHANG Y J, LI Y, et al. Effects of drought stress on growth and screening methods and indexes for drought-resistance in soybean[J]. Journal of Plant Genetic Resources, 2018, 19(1):49-56.(in Chinese with English abstract) | |
[37] | JAVID M G, SOROOSHZADEH A, MORADI F, et al. The role of phytohormones in alleviating salt stress in crop plants[J]. Australian Journal of Crop Science, 2011, 5(6):726-734. |
[38] | 王洪瑞, 敖红. 干旱胁迫对红皮云杉和嫩江云杉渗透调节及抗氧化系统的影响[J]. 东北林业大学学报, 2020, 48(8):16-21. |
WANG H R, AO H. Response of osmotic regulation and antioxidant system to drought stress in Korean spruce and Nenjiang spruce[J]. Journal of Northeast Forestry University, 2020, 48(8):16-21. (in Chinese with English abstract) | |
[39] |
GOMES F P, OLIVA M A, MIELKE M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J]. Scientia Horticulturae, 2010, 126(3):379-384.
DOI URL |
[40] | 安玉艳, 梁宗锁, 郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J]. 生态学报, 2011, 31(3):716-725. |
AN Y Y, LIANG Z S, HAO W F. Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress[J]. Acta Ecologica Sinica, 2011, 31(3):716-725.(in Chinese with English abstract) | |
[41] |
MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309.
DOI URL |
[42] | 裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5):1386-1396. |
PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings[J]. Acta Ecologica Sinica, 2013, 33(5):1386-1396.(in Chinese with English abstract)
DOI URL |
|
[43] | 谢志玉, 张文辉, 刘新成. 干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J]. 西北植物学报, 2010, 30(5):948-954. |
XIE Z Y, ZHANG W H, LIU X C. Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under soil drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(5):948-954.(in Chinese with English abstract) | |
[44] | 王宁, 袁美丽, 陈浩, 等. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响[J]. 草业学报, 2019, 28(1):70-78. |
WANG N, YUAN M L, CHEN H, et al. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings[J]. Acta Prataculturae Sinica, 2019, 28(1):70-78.(in Chinese with English abstract) | |
[45] |
SOHRABI Y, HEIDARI G, WEISANY W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress[J]. Symbiosis, 2012, 56(1):5-18.
DOI URL |
[46] | 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2):403-410. |
WU Y B, YE B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2):403-410.(in Chinese with English abstract) |
[1] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
[2] | 刘新宇, 陈鹏, 张光辉, 赵俊杰, 李博浩, 张南, 孙韦珂, 许娟娟, 叶行涛, 魏金鹏, 于高波. 外源脯氨酸对番茄体内残留百菌清降解的调控作用[J]. 浙江农业学报, 2020, 32(3): 437-446. |
[3] | 边建文, 崔岩, 杨宋琪, 罗光宏, 孟宪刚. 衣藻和固氮鱼腥藻对盐胁迫下小麦幼苗生长的影响[J]. 浙江农业学报, 2020, 32(10): 1748-1756. |
[4] | 孙德智, 杨恒山, 张庆国, 范富, 苏雅乐其其格, 彭靖, 韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用[J]. 浙江农业学报, 2019, 31(8): 1286-1294. |
[5] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[6] | 叶子飘, 尹建华, 陈先茂, 安婷, 段世华. 几个杂交水稻品种蜡熟期剑叶光合特性研究[J]. 浙江农业学报, 2019, 31(3): 355-364. |
[7] | 李莉, 田士林, 姜俊, 宋丽. 一氧化氮对弱光胁迫下苗期及坐果初期辣椒生长和抗性相关指标的影响[J]. 浙江农业学报, 2019, 31(12): 2036-2042. |
[8] | 郭彦宏, 张晶星, 杨永娟, 陈俊通, 孙明, 廖晶. 六种野生广义菊属植物对干旱胁迫的生理响应[J]. 浙江农业学报, 2018, 30(8): 1349-1354. |
[9] | 李洋, 刘凯, 魏吉鹏, 张兰, 李鑫, 韩文炎, 李青云. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
[10] | 林义成, 傅庆林, 郭彬, 刘琛, 丁能飞. 盐胁迫对红叶石楠花青素含量及抗氧化系统的影响[J]. 浙江农业学报, 2018, 30(6): 970-977. |
[11] | 姜武, 吴志刚, 陈松林, 陶正明. 镉胁迫对铁皮石斛叶片抗氧化酶活性的影响及动力学分析[J]. 浙江农业学报, 2017, 29(9): 1421-1429. |
[12] | 冯芳芳, 魏清江, 苏受婷, 宁少君, 廖小娜, 辜青青. 干旱胁迫对2种柑橘幼苗生长形态、渗透调节物质含量和抗氧化酶活性的影响[J]. 浙江农业学报, 2017, 29(9): 1515-1523. |
[13] | 李春兰, 杨永花, 杨振坤, 王金秋, 廖伟彪. 五个观赏海棠品种抗旱性比较[J]. 浙江农业学报, 2017, 29(5): 782-790. |
[14] | 张晓梅, 胡超轶, 刘涛, 周艳虹. 不同光质对黄瓜幼苗抗旱性的影响[J]. 浙江农业学报, 2017, 29(1): 58-63. |
[15] | 柯维忠, 王丽, 杨星鹏, 徐玉琴, 吴丹, 江霞, 夏瑾华, 尹明华, 洪森荣. 广丰千金薯驯化移栽苗对PEG干旱胁迫的光合生理响应[J]. 浙江农业学报, 2016, 28(9): 1462-1475. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||