浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1277-1287.DOI: 10.3969/j.issn.1004-1524.2022.06.18
冯娟1(), 朱廷恒2,*(
), 罗春萍1, 杨佳玥1, 祝思瑜1, 李彤1
收稿日期:
2021-12-07
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
朱廷恒
作者简介:
*朱廷恒,E-mail: thzhu@zjut.edu.cn基金资助:
FENG Juan1(), ZHU Tingheng2,*(
), LUO Chunping1, YANG Jiayue1, ZHU Siyu1, LI Tong1
Received:
2021-12-07
Online:
2022-06-25
Published:
2022-06-30
Contact:
ZHU Tingheng
摘要:
聚乳酸(polylactic acid,PLA)材料是一种环境友好型的可降解塑料,在堆肥或高温条件下可以快速生物降解,但在自然条件下降解缓慢,产生大量的微塑料。本研究拟从黄粉虫肠道中筛选具有降解聚乳酸能力的微生物,鉴定降解菌的种类及测定降解菌的降解特性。采用PLA粉末为唯一食物喂养黄粉虫60 d,将其肠道提取液接种在以PLA为唯一碳源的固体培养基上进行富集、筛选及纯化降解菌。结合菌种形态观察、扫描电镜分析的方法和ITS序列序列信息构建系统进化树确定降解菌的分类;将筛选菌接入添加不同营养条件下的PLA液体发酵培养基,测定其降解效能。结果筛选出11株具有降解PLA塑料潜力的菌株,其中一株鉴定为真菌毛栓孔菌(Trametes hirsuta)FJ001菌株,接种在含有1.0%葡萄糖的PLA薄膜无机盐液体培养基中连续培养30 d,降解率可达20.1%。研究表明,黄粉虫肠道存在对PLA塑料有一定降解性的真菌,为降解聚乳酸材料微生物资源的开发提供了理论依据。
中图分类号:
冯娟, 朱廷恒, 罗春萍, 杨佳玥, 祝思瑜, 李彤. 黄粉虫(Tenebrio molitor)肠道中聚乳酸塑料降解菌的筛选及其降解特性[J]. 浙江农业学报, 2022, 34(6): 1277-1287.
FENG Juan, ZHU Tingheng, LUO Chunping, YANG Jiayue, ZHU Siyu, LI Tong. Isolation and identification of polylactic acid degrading microorganisms from mealworm(Tenebrio molitor)gut[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1277-1287.
图1 喂食PLA和喂食麸皮的黄粉虫粪便 A,麦麸喂养60 d的黄粉虫及其产生的粪便;B,350目PLA薄膜喂养60 d的黄粉虫及其产生粪便;C,黄粉虫啮食聚乳酸薄膜;D,PLA粉末喂食黄粉虫粪便放大160倍显微观察;E,未处理聚乳酸粉末放大160倍显微观察;F,麦麸喂养60 d的黄粉虫肠道提取物接种在PLA无机盐培养基微生物生长情况;G,PLA喂养60 d的黄粉虫肠道提取物接种在含有PLA无机盐培养基中生长情况。
Fig. 1 Fed on PLA or bran of mealworms A, Tenebrio molitor and its feces fed with wheat bran for 60 days; B, Tenebrio molitor fed with 350 mesh PLA film for 60 days and its feces; C, PLA film-feeding mealworm;D, Microscopic observation of feces of Tenebrio molitor fed with PLA powder at 160 times magnification;E, Microscopic observation of untreated polylactic acid powder at 160 times magnification;F, Microbial growth of Tenebrio molitor intestinal extract fed with wheat bran for 60 days inoculated in PLA inorganic salt medium; G, Growth of Tenebrio molitor intestinal extract inoculated in inorganic salt medium containing PLA for 60 days.
菌株Strain | 菌落形态Morphology | 产孢情况Spore | 可溶性色素Soluble pigment | 生长状况Growth status | |
---|---|---|---|---|---|
LT-01 | 圆形/橘红Circle/Orange | 无Spore-free | 橘红Orange | 稀少Sparse | |
LT-02 | 圆形/浓绿Circle/Dark green | 浓绿孢子Dark green spore | 无None | 旺盛Vigorous | |
LT-03 | 不规则/橘红Orange/Wavy | 无Spore-free | 无None | 一般Normal | |
LT-04 | 圆形/红色Circle/Pink | 无Spore-free | 红Red | 旺盛Vigorous | |
YZL-01 | 圆形/灰Circle/Gray | 灰色孢子Gray spore | 无None | 旺盛Vigorous | |
YZL-02 | 圆形/土黄Circle/Khaki | 土黄孢子Khaki spore | 无None | 一般Normal | |
CMY-01 | 圆形/亮黄色Circle/Bright yellow | 无Spore-free | 亮黄色Bright yellow | 一般Normal | |
CMY-02 | 不规则/黄Irregular/Chartreuse | 黄绿孢子Chartreuse spore | 黄绿Chartreuse | 一般Normal | |
ZML-01 | 不规则/绿Irregular/Chartreuse | 绿色孢子Green spore | 绿Green | 旺盛Vigorous | |
ZML-02 | 圆形/土黄Circle/Khaki | 无Spore-free | 无None | 一般Normal | |
FJ001 | 圆形/白色Circle/White | 无Spore-free | 无None | 旺盛Vigorous |
表1 十一株筛选菌株在PLA粉末固体培养基上培养情况
Table 1 Cultural characteristics of the 11 strains on an inorganic salt medium with PLA as the only carbon source
菌株Strain | 菌落形态Morphology | 产孢情况Spore | 可溶性色素Soluble pigment | 生长状况Growth status | |
---|---|---|---|---|---|
LT-01 | 圆形/橘红Circle/Orange | 无Spore-free | 橘红Orange | 稀少Sparse | |
LT-02 | 圆形/浓绿Circle/Dark green | 浓绿孢子Dark green spore | 无None | 旺盛Vigorous | |
LT-03 | 不规则/橘红Orange/Wavy | 无Spore-free | 无None | 一般Normal | |
LT-04 | 圆形/红色Circle/Pink | 无Spore-free | 红Red | 旺盛Vigorous | |
YZL-01 | 圆形/灰Circle/Gray | 灰色孢子Gray spore | 无None | 旺盛Vigorous | |
YZL-02 | 圆形/土黄Circle/Khaki | 土黄孢子Khaki spore | 无None | 一般Normal | |
CMY-01 | 圆形/亮黄色Circle/Bright yellow | 无Spore-free | 亮黄色Bright yellow | 一般Normal | |
CMY-02 | 不规则/黄Irregular/Chartreuse | 黄绿孢子Chartreuse spore | 黄绿Chartreuse | 一般Normal | |
ZML-01 | 不规则/绿Irregular/Chartreuse | 绿色孢子Green spore | 绿Green | 旺盛Vigorous | |
ZML-02 | 圆形/土黄Circle/Khaki | 无Spore-free | 无None | 一般Normal | |
FJ001 | 圆形/白色Circle/White | 无Spore-free | 无None | 旺盛Vigorous |
图3 降解菌FJ001在培养基上的培养情况及菌丝观察 A,FJ001接种在PLA粉末固体培养基上培养10 d生长状态;B,FJ001接种在PLA薄膜液体培养基10 d摇瓶培养;C,FJ001接种在三乙酸甘油酯无机盐培养基生长状态;D、E,FJ001接种在PDA培养基培养10 d正反面;F,FJ001菌株在酪氨酸培养基形成的透明圈;G、H,电镜观察菌丝。A, FJ001 was inoculated on PLA inorganic salt medium for 10 days; B, Strain FJ001 in PLA film content shake for 10 days; C, FJ001 was inoculated on triacetyl glycerin medium for 10 days; D, E, FJ001 was inoculated on PDA medium for 10 days;F, FJ001 was inoculated on tyrosine medium for 4 days;G, H, Electron microscope observation.
Fig. 3 Developing conditions FJ001 strain in medium
图6 PLA膜表面变化的扫描电镜照片 A,对照组PLA 膜(第10天);B,对照组 PLA 膜(第30天);C,FJ001作用下的 PLA 膜(第10天);D,FJ001作用下的 PLA 膜(第30天)。
Fig. 6 Scanning electron microscope images of surface change of PLA film A, PLA film control on the 10th day; B, PLA film control on the 30th day; C, PLA film degraded by FJ001 on the 10th day; D, PLA film degraded by FJ001 on the 30th day.
[1] | 周帅, 候璞, 李云龙, 等. 玉米秸秆/聚乳酸复合材料的制备及性能测试[J]. 林业工程学报, 2019, 4(5): 92-99. |
ZHOU S, HOU P, LI Y L, et al. Preparation and properties of corn stalk/polylactic acid composites[J]. Journal of Forestry Engineering, 2019, 4(5): 92-99. (in Chinese with English abstract)
DOI URL |
|
[2] |
VOZNYAK Y, MORAWIEC J, GALESKI A. Ductility of polylactide composites reinforced with poly (butylene succinate) nanofibers[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 218-224.
DOI URL |
[3] | YEO J, MUIRURI J K, TAN B H, et al. Biodegradable PHB-rubber copolymer toughened PLA green composites with ultrahigh extensibility[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15517-15527. |
[4] | 毛海龙, 白俊岩, 姜虎生, 等. 可降解塑料的微生物降解研究进展[J]. 微生物学杂志, 2014, 34(4): 80-84. |
MAO H L, BAI J Y, JIANG H S, et al. Research progress on microbial degradation of degradable plastics[J]. Journal of Microbiology, 2014, 34(4): 80-84. (in Chinese with English abstract) | |
[5] | 周帆, 庞志倡, 余小强, 等. 昆虫肠道微生物的研究进展和应用前景[J]. 应用昆虫学报, 2020, 57(3): 600-607. |
ZHOU F, PANG Z C, YU X Q, et al. Insect gut microbiota research: progress and applications[J]. Chinese Journal of Applied Entomology, 2020, 57(3): 600-607. (in Chinese with English abstract) | |
[6] | 郭鸿钦, 罗丽萍, 杨宇航, 等. 利用昆虫取食降解塑料研究进展[J]. 应用与环境生物学报, 2020, 26(6): 1546-1553. |
GUO H Q, LUO L P, YANG Y H, et al. Research progress on plastic degradation by worms[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1546-1553. (in Chinese with English abstract) | |
[7] |
YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776-13784.
DOI URL |
[8] | 张敏, 孟庆阳, 刁晓倩, 等. PLA/PBAT共混物的降解性能研究[J]. 中国塑料, 2016, 30(8): 79-86. |
ZHANG M, MENG Q Y, DIAO X Q, et al. Biodegradation behavior of PLA/PBAT blends[J]. China Plastics, 2016, 30(8): 79-86. (in Chinese with English abstract) | |
[9] | 白耀宇, 程家安. 我国黄粉虫的营养价值和饲养方法[J]. 昆虫知识, 2003, 40(4): 317-322. |
BAI Y Y, CHENG J A. Nutritive value and rearing methods of Tenebrio molitor in China[J]. Chinese Bulletin of Entomology, 2003, 40(4): 317-322. (in Chinese with English abstract) | |
[10] | BOVERA F, PICCOLO G, GASCO L, et al. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets[J]. British Poultry Science, 2015, 56(5): 569-575. |
[11] | 王哲, 信昕, 刘吉元, 等. 黄粉虫取食塑料的研究进展[J]. 应用昆虫学报, 2019, 56(1): 24-27. |
WANG Z, XIN X, LIU J Y, et al. Research progress on plastic-feeding yellow mealworms[J]. Chinese Journal of Applied Entomology, 2019, 56(1): 24-27. (in Chinese with English abstract) | |
[12] |
PENG B Y, CHEN Z B, CHEN J B, et al. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management[J]. Journal of Hazardous Materials, 2021, 416: 125803.
DOI URL |
[13] | 易力, 雷丽红, 杜美慧, 等. 几株细菌对聚苯乙烯泡沫及聚乳酸的降解性能[J]. 环境化学, 2021, 40(10): 3236-3245. |
YI L, LEI L H, DU M H, et al. Degradation of polystyrene foam and polylactic acid by several strains of bacteria[J]. Environmental Chemistry, 2021, 40(10): 3236-3245. (in Chinese with English abstract) | |
[14] |
PANYACHANAKUL T, SORACHART B, LUMYONG S, et al. Development of biodegradation process for Poly(DL-lactic acid) degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1[J]. Electronic Journal of Biotechnology, 2019, 40: 52-57.
DOI URL |
[15] | 沈叶红. 黄粉虫肠道菌的分离和取食塑料现象的研究[D]. 上海: 华东师范大学, 2011. |
SHEN Y H. Isolation of intestinal bacteria from T.Molitor L and study on the phenomenon of plastic degradation[D]. Shanghai: East China Normal University, 2011. (in Chinese with English abstract) | |
[16] | 江宇航, 辛维岗, 张棋麟, 等. 霉变饲用玉米真菌的分离、鉴定与乳酸菌素对其的防霉抑菌效果[J]. 浙江农业学报, 2021, 33(7): 1283-1291. |
JIANG Y H, XIN W G, ZHANG Q L, et al. Isolation and identification of fungi from mildewed feed corn and study on anti-mildew and antifungal effects of lactobacillin[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1283-1291. (in Chinese with English abstract) | |
[17] | 马志宇, 黄方园, 王巍, 等. 一株牛源致病性卡氏变形杆菌的分离鉴定与敏感药物筛选[J]. 浙江农业学报, 2021, 33(10): 1836-1843. |
MA Z Y, HUANG F Y, WANG W, et al. Isolation, identification and sensitive drug screening of a pathogenic Proteus cibarius strain from beef cattle[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1836-1843. (in Chinese with English abstract) | |
[18] | 林娟, 周景文, 康振, 等. 聚乳酸降解菌株筛选鉴定及降解过程优化[J]. 微生物学通报, 2013, 40(9): 1560-1569. |
LIN J, ZHOU J W, KANG Z, et al. Isolation, identification of poly lactic acid degrading microorganisms and optimization of the degradation process[J]. Microbiology China, 2013, 40(9): 1560-1569. (in Chinese with English abstract) | |
[19] | QI X, REN Y W, WANG X Z. New advances in the biodegradation of Poly(lactic) acid[J]. International Biodeterioration & Biodegradation, 2017, 117: 215-223. |
[20] |
PRANAMUDA H, TOKIWA Y, TANAKA H. Polylactide degradation by an Amycolatopsis sp[J]. Applied and Environmental Microbiology, 1997, 63(4): 1637-1640.
DOI URL |
[21] | BUTBUNCHU N, PATHOM-AREE W. Actinobacteria as promising candidate for polylactic acid type bioplastic degradation[J]. Frontiers in Microbiology, 2019, 10: 2834. |
[22] | 范森, 段梦洁, 刘亚兰, 等. 聚乳酸材料在不同土壤环境中生物降解的菌群结构分析[J]. 微生物学通报, 2017, 44(10): 2321-2329. |
FAN S, DUAN M J, LIU Y L, et al. Microbial diversity and community structure in biodegradation of poly(lactic) acid(PLA) in different soil environments[J]. Microbiology China, 2017, 44(10): 2321-2329. (in Chinese with English abstract) | |
[23] |
CHOMCHOEI A, PATHOM-AREE W, YOKOTA A, et al. Amycolatopsis thailandensis sp. nov., a poly(l-lactic acid)-degrading actinomycete, isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(4): 839-843.
DOI URL |
[24] | 贾昊, 张敏, 翁云宣, 等. 聚乳酸降解菌的分离鉴定及其产酶和降解特性[J]. 精细化工, 2020, 37(3): 507-514. |
JIA H, ZHANG M, WENG Y X, et al. Isolation and characterization of polylactic acid-degrading bacteria and their enzyme production and degradation characteristics[J]. Fine Chemicals, 2020, 37(3): 507-514. (in Chinese with English abstract) | |
[25] | 刘娜, 谢学辉, 王钰, 等. 细菌利用不同碳、氮源共代谢降解脱色偶氮染料研究进展[J]. 微生物学通报, 2019, 46(5): 1185-1195. |
LIU N, XIE X H, WANG Y, et al. Carbon and nitrogen co-metabolism during bacterial degradation and decolorization of azo dyes[J]. Microbiology China, 2019, 46(5): 1185-1195. (in Chinese with English abstract) | |
[26] | 许双燕, 张涛, 张成, 等. 一株红霉素降解菌的筛选、鉴定与降解特性[J]. 浙江农业学报, 2021, 33(1): 131-141. |
XU S Y, ZHANG T, ZHANG C, et al. Isolation and identification of an erythromycin degradation bacterium strain and its biodegradation characteristics[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 131-141. (in Chinese with English abstract) |
[1] | 许建军, 马燕, 吴其超, 王宝盛, 臧德奎. 野生玫瑰多态性cpDNA和ITS引物的筛选与验证[J]. 浙江农业学报, 2022, 34(5): 1032-1038. |
[2] | 吴嘉维, 姚张良, 胡琪琪, 张杰, 陈轶, 蒋建荣, 周国鑫, 王霞. 浙北桐乡梨锈病防治适期和防治药剂研究[J]. 浙江农业学报, 2021, 33(9): 1668-1675. |
[3] | 忻晓庭, 刘大群, 张程程, 吴敏, 陈登高, 章检明. 我国特色发酵蔬菜降解亚硝酸盐菌株的筛选鉴定及应用[J]. 浙江农业学报, 2021, 33(2): 335-345. |
[4] | 许双燕, 张涛, 张成, 林辉, 水贤磊, 郑华宝. 一株红霉素降解菌的筛选、鉴定与降解特性[J]. 浙江农业学报, 2021, 33(1): 131-141. |
[5] | 孙筱君, 沈琦, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武, 葛向阳. 氨氮降解微生物的筛选和初步应用[J]. 浙江农业学报, 2020, 32(9): 1683-1691. |
[6] | 张小彦, 何静, 侯彩霞, 张树衡. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. |
[7] | 俞洁雅, 倪梦萍, 丁良长, 胡洲铭, 肖建中, 郑强. 一株猪粪降解菌的筛选、评价及鉴定[J]. 浙江农业学报, 2020, 32(4): 586-592. |
[8] | 郭雪松, 田丽波, 商桑, 邹凯茜, 陈虹容, 李婉豫, 岳晓琦. 芒果蒂腐病拮抗放线菌A10和A17的分离、鉴定和特征化研究[J]. 浙江农业学报, 2020, 32(3): 460-468. |
[9] | 阮馨怡, 刘曦, 关玥, 孔海南, 林燕. 高效污泥降解菌种的筛选及在污泥堆肥中的效果[J]. 浙江农业学报, 2018, 30(9): 1569-1575. |
[10] | 叶日英, 徐德峰, 孙力军, 王雅玲, 王俊峰, 莫日坚, 王嘉伟, 包艳. 海洋源高产葡萄糖氧化酶细菌的筛选和主要酶学性质[J]. 浙江农业学报, 2018, 30(4): 672-678. |
[11] | 聂丽,魏赛金*. 促进链霉菌702产生农抗702的诱导子筛选研究[J]. 浙江农业学报, 2016, 28(7): 1177-. |
[12] | 丁旭升1,李寿仁1,吴光1,陈伟江1,来伊楠2,吴光洪1,*. 宁波与泸州节约型园林树种筛选及应用对比研究[J]. 浙江农业学报, 2015, 27(6): 986-. |
[13] | 王新,姚晓红,吴逸飞,柳永,孙宏,汤江武*. 氨氧化细菌的筛选鉴定及其最适反应条件研究[J]. 浙江农业学报, 2015, 27(6): 1042-. |
[14] | 董汪洋,王郑隆,杨云乔,夏丽丽,王璐,张东旭,柯乐芹,肖建中*. 杏鲍菇的菌株筛选与原生质体制备条件优化 [J]. 浙江农业学报, 2015, 27(5): 782-. |
[15] | 袁小利1,向天勇2,张正红2,宋哲岳2,单胜道1,*,邱蕾3. 稻草的高效渗漉降解工艺[J]. 浙江农业学报, 2014, 26(5): 1324-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||