浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1752-1761.DOI: 10.3969/j.issn.1004-1524.2022.08.19
收稿日期:
2021-11-03
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
朱诚
作者简介:
*朱诚,E-mail: pzhch@cjlu.edu.cn基金资助:
HUANG Lingzhi1(), JIANG Guangze2, DING Yanfei1, ZHU Cheng1,*(
)
Received:
2021-11-03
Online:
2022-08-25
Published:
2022-08-26
Contact:
ZHU Cheng
摘要:
随着乳饮料行业快速发展,掺杂使假现象层出不穷,对核桃乳真实成分的准确鉴定变的尤为重要。核桃乳属深加工食品,DNA破坏严重,DNA提取是开展核桃乳DNA条形码鉴定的首要环节。为优化核桃乳DNA提取方法,并基于psbA-trnH基因DNA条形码建立核桃乳的掺假造假鉴定方法。以10种不同品牌的核桃乳为样品,采用3种方法(静置抽提、异丙醇沉淀、抽真空冻干)进行预处理,再用2种CTAB裂解沉淀方法和3种试剂盒方法(康为新型植物基因组DNA提取试剂盒、爱思进植物基因组DNA提取试剂盒和天根深加工食品DNA提取试剂盒)提取核桃乳DNA,并在此基础上创新尝试了CTAB与爱思进试剂盒结合方法。以提取的市售核桃乳DNA为模板,利用自行设计的特异性基因psbA-trnH-wal鉴定样品中是否含有核桃成分,确定造假情况;选择常见植物候选基因psbA-trnH鉴定样品中是否含有其他成分,确定掺假情况。结果表明,抽真空冻干预处理方法优于其他2种预处理方式。CTAB与爱思进试剂盒结合方法能提取到纯度好、得率高、扩增能力强的核桃乳DNA,是最佳的核桃乳DNA提取方法。扩增及比对结果显示,1款核桃乳样品中含有花生,属于掺假产品。抽真空冻干预处理、CTAB与爱思进试剂盒结合为优化后的核桃乳DNA提取方法,psbA-trnH-wal基因和psbA-trnH基因结合能够对核桃乳及其掺假造假品进行快速准确的鉴定。
中图分类号:
黄灵芝, 姜广泽, 丁艳菲, 朱诚. 核桃乳DNA提取方法优化与DNA条形码鉴定[J]. 浙江农业学报, 2022, 34(8): 1752-1761.
HUANG Lingzhi, JIANG Guangze, DING Yanfei, ZHU Cheng. Optimization of DNA extraction method and DNA barcoding identification of walnut milk[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1752-1761.
候选DNA条形码 Candidate DNA barcodes | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 退火温度 Annealing temperature/℃ | 扩增大小 Amplification size/bp |
---|---|---|---|---|
CP-03 [ | CGGACGAGAATAAAGATAGAGT | TTTTGGGGATAGAGGGACTTGA | 55 | 123 |
psbA-trnH-wal | ATCAAGAGGATTGGTATTGCTCC | TCCGCCCCTATACTCCATGT | 64 | 129 |
psbA-trnH [ | TGTAAAACGGCCAGTGTTATGCATGAACGTAATGCTC | CAGGAAACAGCTATGACCGCGCATGG- TGGATTCACAATCC | 64 | 350 |
表1 基因引物序列
Table 1 Gene primer sequences
候选DNA条形码 Candidate DNA barcodes | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 退火温度 Annealing temperature/℃ | 扩增大小 Amplification size/bp |
---|---|---|---|---|
CP-03 [ | CGGACGAGAATAAAGATAGAGT | TTTTGGGGATAGAGGGACTTGA | 55 | 123 |
psbA-trnH-wal | ATCAAGAGGATTGGTATTGCTCC | TCCGCCCCTATACTCCATGT | 64 | 129 |
psbA-trnH [ | TGTAAAACGGCCAGTGTTATGCATGAACGTAATGCTC | CAGGAAACAGCTATGACCGCGCATGG- TGGATTCACAATCC | 64 | 350 |
图1 三种不同预处理方法提取的核桃乳DNA电泳图 M,10 000 bp DNA 分子量标准;N,空白对照;方法1,静置沉淀;方法2,异丙醇沉淀;方法3,抽真空冻干;1~30,核桃乳样品编号1~30。
Fig.1 DNA electrophoresis of walnut milk extracted by three different pre-treatment methods M, 10 000 bp DNA marker; N, Negative; Method 1, Static extraction; Method 2, Isopropanol precipitation; Method 3, Vacuum lyophilization; 1-30: Sample serial number 1-30.
样品编号 Sample serial number | 方法Method 1 | 方法Method 2 | 方法Method 3 | |||
---|---|---|---|---|---|---|
浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | |
1-3 | 90.85±15.05 | 2.27±0.03 | 83.42±10.00 | 2.36±0.10 | 154.26±35.66 | 1.70±0.04 |
4-6 | 13.95±12.80 | 1.79±0.07 | 77.31±6.26 | 2.04±0.01 | 81.56±3.93 | 1.53±0.06 |
7-9 | 204.51±25.86 | 2.05±0.03 | 190.12±21.57 | 2.12±0.04 | 173.21±28.87 | 1.78±0.01 |
10-12 | 184.10±64.73 | 2.07±0.06 | 128.25±35.41 | 2.16±0.05 | 164.27±18.64 | 1.83±0.04 |
13-15 | 142.73±49.20 | 2.10±0.04 | 122.97±38.71 | 2.69±0.46 | 242.48±37.59 | 1.71±0.06 |
16-18 | 105.72±1.53 | 1.95±0.09 | 66.73±5.25 | 2.32±0.12 | 113.45±22.57 | 1.43±0.05 |
19-21 | 180.61±23.60 | 2.17±0.03 | 96.42±10.30 | 2.39±0.02 | 160.94±21.39 | 1.90±0.01 |
22-24 | 81.10±12.95 | 2.51±0.12 | 65.09±1.80 | 2.66±0.03 | 40.31±5.88 | 1.88±0.05 |
25-27 | 107.79±12.40 | 2.30±0.05 | 101.78±14.96 | 2.34±0.05 | 137.01±24.89 | 1.50±0.13 |
28-30 | 165.78±18.69 | 2.06±0.02 | 115.58±3.38 | 2.26±0.03 | 172.21±30.21 | 1.62±0.01 |
表2 三种预处理方法提取的核桃乳DNA浓度和纯度
Table 2 DNA concentration and purity of walnut milk extracted by three pre-treatment methods (n=3)
样品编号 Sample serial number | 方法Method 1 | 方法Method 2 | 方法Method 3 | |||
---|---|---|---|---|---|---|
浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | |
1-3 | 90.85±15.05 | 2.27±0.03 | 83.42±10.00 | 2.36±0.10 | 154.26±35.66 | 1.70±0.04 |
4-6 | 13.95±12.80 | 1.79±0.07 | 77.31±6.26 | 2.04±0.01 | 81.56±3.93 | 1.53±0.06 |
7-9 | 204.51±25.86 | 2.05±0.03 | 190.12±21.57 | 2.12±0.04 | 173.21±28.87 | 1.78±0.01 |
10-12 | 184.10±64.73 | 2.07±0.06 | 128.25±35.41 | 2.16±0.05 | 164.27±18.64 | 1.83±0.04 |
13-15 | 142.73±49.20 | 2.10±0.04 | 122.97±38.71 | 2.69±0.46 | 242.48±37.59 | 1.71±0.06 |
16-18 | 105.72±1.53 | 1.95±0.09 | 66.73±5.25 | 2.32±0.12 | 113.45±22.57 | 1.43±0.05 |
19-21 | 180.61±23.60 | 2.17±0.03 | 96.42±10.30 | 2.39±0.02 | 160.94±21.39 | 1.90±0.01 |
22-24 | 81.10±12.95 | 2.51±0.12 | 65.09±1.80 | 2.66±0.03 | 40.31±5.88 | 1.88±0.05 |
25-27 | 107.79±12.40 | 2.30±0.05 | 101.78±14.96 | 2.34±0.05 | 137.01±24.89 | 1.50±0.13 |
28-30 | 165.78±18.69 | 2.06±0.02 | 115.58±3.38 | 2.26±0.03 | 172.21±30.21 | 1.62±0.01 |
图2 六种方法提取核桃乳DNA电泳图 M,10 000 bp DNA分子量标准;N,空白对照;1,样品编号1-3;2,样品编号4-6;3,样品编号7-9;4,样品编号10-12;5,样品编号13-15;6,样品编号16-18;7,样品编号19-21;8,样品编号22-24;9,样品编号25-27;10,样品编号28-30。
Fig.2 DNA extraction of walnut milk by six methods M, 10 000 bp DNA marker; N, Negative; 1, Sample serial number 1-3; 2, Sample serial number 4-6; 3, Sample serial number 7-9; 4, Sample serial number 10-12; 5, Sample serial number 13-15; 6, Sample serial number 16-18; 7, Sample serial number 19-21; 8, Sample serial number 22-24; 9, Sample serial number 25-27; 10, Sample serial number 28-30.
样品编号 Sample serial number | CTAB方法1 CTAB method 1 | CTAB方法2 CTAB method 2 | 康为试剂盒方法 Kangwei kit | |||
---|---|---|---|---|---|---|
浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | |
1-3 | 121.17±71.21 | 2.51±0.14 | 54.26±35.66 | 1.70±0.04 | 57.64±2.55 | 1.51±0.07 |
4-6 | 500.00±55.96 | 1.12±0.05 | 181.56±3.93 | 1.81±0.06 | 15.96±5.87 | 1.66±0.24 |
7-9 | 318.33±31.75 | 1.31±0.08 | 173.21±28.87 | 1.78±0.01 | 9.66±0.06 | 2.20±0.01 |
10-12 | 774.85±287.93 | 2.64±0.13 | 164.27±18.64 | 1.83±0.04 | 27.78±0.36 | 1.53±0.07 |
13-15 | 848.45±37.32 | 0.95±0.01 | 242.48±37.59 | 1.43±0.05 | 30.35±2.23 | 1.80±0.02 |
16-18 | 309.10±53.07 | 1.35±0.05 | 113.45±22.57 | 1.71±0.06 | 10.59±0.77 | 1.87±0.05 |
19-21 | 1 234.48±222.30 | 2.24±0.10 | 160.94±21.39 | 1.90±0.01 | 8.12±0.29 | 1.99±0.05 |
22-24 | 495.23±162.69 | 2.84±0.06 | 40.31±5.88 | 1.50±0.13 | 21.75±1.56 | 1.79±0.05 |
25-27 | 649.18±32.82 | 2.80±0.18 | 137.01±24.89 | 1.88±0.05 | 14.75±1.49 | 1.81±0.06 |
28-30 | 542.05±216.55 | 2.81±0.03 | 172.21±30.21 | 1.62±0.01 | 14.40±0.90 | 1.96±0.02 |
样品编号 Sample serial number | 爱思进试剂盒方法 AxYGen kit | 天根试剂盒方法 TianGen kit | CTAB与爱思进试剂盒结合方法Combination method of CTAB and AxYGen | |||
浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | |
1-3 | 20.38±2.26 | 1.73±0.02 | 37.48±4.856 | 2.05±0.034 | 107.72±10.263 | 1.74±0.042 |
4-6 | 10.46±1.25 | 1.70±0.01 | 37.86±5.121 | 1.39±0.097 | 79.89±2.107 | 1.9±0.06 |
7-9 | 16.45±3.49 | 1.84±0.06 | 36.24±12.417 | 1.63±0.135 | 88.22±2.296 | 1.80±0.057 |
10-12 | 12.84±2.11 | 1.90±0.09 | 39.01±7.57 | 1.70±0.02 | 83.56±8.10 | 1.80±0.03 |
13-15 | 32.21±4.59 | 1.88±0.08 | 72.11±7.22 | 1.96±0.15 | 128.35±10.96 | 1.78±0.10 |
16-18 | 13.77±2.44 | 1.83±0.01 | 40.21±4.02 | 1.71±0.10 | 64.99±4.27 | 1.74±0.02 |
19-21 | 38.48±10.08 | 1.88±0.06 | 51.99±8.40 | 1.99±0.01 | 95.82±1.89 | 1.83±0.03 |
22-24 | 13.18±0.72 | 1.75±0.03 | 91.33±0.47 | 1.80±0.03 | 76.81±10.01 | 1.80±0.02 |
25-27 | 14.06±1.23 | 1.75±0.04 | 14.38±1.80 | 1.45±0.05 | 134.88±4.10 | 1.84±0.06 |
28-30 | 23.83±2.68 | 1.81±0.06 | 61.21±10.18 | 1.87±0.01 | 118.20±7.02 | 1.75±0.03 |
表3 六种方法提取核桃乳DNA浓度与纯度(n=3)
Table 3 DNA concentration and purity of walnut milk by six methods
样品编号 Sample serial number | CTAB方法1 CTAB method 1 | CTAB方法2 CTAB method 2 | 康为试剂盒方法 Kangwei kit | |||
---|---|---|---|---|---|---|
浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | |
1-3 | 121.17±71.21 | 2.51±0.14 | 54.26±35.66 | 1.70±0.04 | 57.64±2.55 | 1.51±0.07 |
4-6 | 500.00±55.96 | 1.12±0.05 | 181.56±3.93 | 1.81±0.06 | 15.96±5.87 | 1.66±0.24 |
7-9 | 318.33±31.75 | 1.31±0.08 | 173.21±28.87 | 1.78±0.01 | 9.66±0.06 | 2.20±0.01 |
10-12 | 774.85±287.93 | 2.64±0.13 | 164.27±18.64 | 1.83±0.04 | 27.78±0.36 | 1.53±0.07 |
13-15 | 848.45±37.32 | 0.95±0.01 | 242.48±37.59 | 1.43±0.05 | 30.35±2.23 | 1.80±0.02 |
16-18 | 309.10±53.07 | 1.35±0.05 | 113.45±22.57 | 1.71±0.06 | 10.59±0.77 | 1.87±0.05 |
19-21 | 1 234.48±222.30 | 2.24±0.10 | 160.94±21.39 | 1.90±0.01 | 8.12±0.29 | 1.99±0.05 |
22-24 | 495.23±162.69 | 2.84±0.06 | 40.31±5.88 | 1.50±0.13 | 21.75±1.56 | 1.79±0.05 |
25-27 | 649.18±32.82 | 2.80±0.18 | 137.01±24.89 | 1.88±0.05 | 14.75±1.49 | 1.81±0.06 |
28-30 | 542.05±216.55 | 2.81±0.03 | 172.21±30.21 | 1.62±0.01 | 14.40±0.90 | 1.96±0.02 |
样品编号 Sample serial number | 爱思进试剂盒方法 AxYGen kit | 天根试剂盒方法 TianGen kit | CTAB与爱思进试剂盒结合方法Combination method of CTAB and AxYGen | |||
浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | 浓度Concentration/ (ng·μL-1) | D260/D280 | |
1-3 | 20.38±2.26 | 1.73±0.02 | 37.48±4.856 | 2.05±0.034 | 107.72±10.263 | 1.74±0.042 |
4-6 | 10.46±1.25 | 1.70±0.01 | 37.86±5.121 | 1.39±0.097 | 79.89±2.107 | 1.9±0.06 |
7-9 | 16.45±3.49 | 1.84±0.06 | 36.24±12.417 | 1.63±0.135 | 88.22±2.296 | 1.80±0.057 |
10-12 | 12.84±2.11 | 1.90±0.09 | 39.01±7.57 | 1.70±0.02 | 83.56±8.10 | 1.80±0.03 |
13-15 | 32.21±4.59 | 1.88±0.08 | 72.11±7.22 | 1.96±0.15 | 128.35±10.96 | 1.78±0.10 |
16-18 | 13.77±2.44 | 1.83±0.01 | 40.21±4.02 | 1.71±0.10 | 64.99±4.27 | 1.74±0.02 |
19-21 | 38.48±10.08 | 1.88±0.06 | 51.99±8.40 | 1.99±0.01 | 95.82±1.89 | 1.83±0.03 |
22-24 | 13.18±0.72 | 1.75±0.03 | 91.33±0.47 | 1.80±0.03 | 76.81±10.01 | 1.80±0.02 |
25-27 | 14.06±1.23 | 1.75±0.04 | 14.38±1.80 | 1.45±0.05 | 134.88±4.10 | 1.84±0.06 |
28-30 | 23.83±2.68 | 1.81±0.06 | 61.21±10.18 | 1.87±0.01 | 118.20±7.02 | 1.75±0.03 |
图3 六种方法提取核桃乳CP-03基因扩增结果 M,500 bp DNA 分子量标准;N,空白对照;编号1-10同图2。图5同。
Fig.3 Amplication results of CP-03 gene from walnut milk by six methods M, 500 bp DNA marker; N, Negative; Numbers 1-10 were the same as in figure 2. The same as figure 5.
图4 十种坚果和十种核桃乳样品的特异性引物Wal-F和Wal-R PCR扩增结果 M,500 bp DNA分子量标准;N,阴性对照。图A中:1~3,核桃;4~6,腰果;7~9,巴旦木;10~12,夏威夷果;13~15,碧根果;16~18,榛子;19~21,杏仁;22~24,大豆;25~27,花生;28~30,松子。图B中:1-30为核桃乳样品编号,同表2。
Fig.4 PCR amplification results of 10 kinds of nuts and 10 kinds of walnut milk samples using specific primer Wal-F and Wal-R M, 500 bp DNA marker; N, Negative; In figure A: 1-3, Walnuts; 4-6, Cashews; 7-9, almonds; 10-12, Queensland nuts; 13-15, Pecans; 16-18, Hazelnuts; 19-21, Apricots; 22-24, Soybeans; 25-27, Peanuts; 28-30, Pine nuts. In figure B, 1-30 were sample serial number of walnut milk, and were the same as in Table 2.
样品编号 Sample serial number | 配料表源性成分 Ingredient table source ingredients | psbA-trnH比对结果 psbA-trnH alignment results | 相似度 Similarity/% | NCBI相似物种号 NCBI similar species number | 拉丁名 Latin name | 标签鉴定 Label identification |
---|---|---|---|---|---|---|
1-3 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
4-6 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
7-9 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
10-12 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
13-15 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
16-18 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
19-21 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
22-24 | 优质核桃仁 High-quality walnut kernels | 花生 Peanut | 100 | CP030998.1 | Arachis hypogaea | 不一致 Non-consistence |
25-27 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
28-30 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 99 | MF167464.1 | Juglans regia | 一致 Consistence |
表4 psbA-trnH基因扩增序列比对结果
Table 4 Alignment results of psbA-trnH amplification sequence
样品编号 Sample serial number | 配料表源性成分 Ingredient table source ingredients | psbA-trnH比对结果 psbA-trnH alignment results | 相似度 Similarity/% | NCBI相似物种号 NCBI similar species number | 拉丁名 Latin name | 标签鉴定 Label identification |
---|---|---|---|---|---|---|
1-3 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
4-6 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
7-9 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
10-12 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
13-15 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
16-18 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
19-21 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
22-24 | 优质核桃仁 High-quality walnut kernels | 花生 Peanut | 100 | CP030998.1 | Arachis hypogaea | 不一致 Non-consistence |
25-27 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 100 | MF167464.1 | Juglans regia | 一致 Consistence |
28-30 | 优质核桃仁 High-quality walnut kernels | 核桃 Walnut | 99 | MF167464.1 | Juglans regia | 一致 Consistence |
[1] | 魏晓璐, 黄鑫, 冯悦, 等. 核桃乳(露)饮品中花生、大豆成分的PCR检测方法[J]. 食品工业科技, 2014, 35(13): 288-291. |
WEI X L, HUANG X, FENG Y, et al. Detection of peanut and soybean in walnut milk using PCR[J]. Science and Technology of Food Industry, 2014, 35(13): 288-291. (in Chinese with English abstract) | |
[2] |
BHARDWAJ R, DOD H, SANDHU M S, et al. Acute effects of diets rich in almonds and walnuts on endothelial function[J]. Indian Heart Journal, 2018, 70(4): 497-501.
DOI URL |
[3] |
HAIDER S, BATOOL Z, TABASSUM S, et al. Effects of walnuts (Juglans regia) on learning and memory functions[J]. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 2011, 66(4): 335-340.
DOI URL |
[4] |
SUH K I, HWANG J M, BAE Y J, et al. Comprehensive DNA barcodes for species identification and discovery of cryptic diversity in mayfly larvae from South Korea: implications for freshwater ecosystem biomonitoring[J]. Entomological Research, 2019, 49(1): 46-54.
DOI URL |
[5] |
HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proceedings Biological Sciences, 2003, 270(1512): 313-321.
DOI URL |
[6] |
MARALIT B A, AGUILA R D, VENTOLERO M F H, et al. Detection of mislabeled commercial fishery by-products in the Philippines using DNA barcodes and its implications to food traceability and safety[J]. Food Control, 2013, 33(1): 119-125.
DOI URL |
[7] |
SMITH P J, MCVEAGH S M, STEINKE D. DNA barcoding for the identification of smoked fish products[J]. Journal of Fish Biology, 2008, 72(2): 464-471.
DOI URL |
[8] |
STOECKLE M Y, GAMBLE C C, KIRPEKAR R, et al. Commercial teas highlight plant DNA barcode identification successes and obstacles[J]. Scientific Reports, 2011, 1: 42.
DOI URL |
[9] |
RASMUSSEN R S, MORRISSEY M T, HEBERT P D N. DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8379-8385.
DOI URL |
[10] |
KUNDU S, SHARMA G, BALAKRISHNAN S, et al. DNA barcoding identified two endangered dolphins: threats on living aquatic mammals in India[J]. Mitochondrial DNA Part B, 2019, 4(1): 77-80.
DOI URL |
[11] | 李梅阁. 基于DNA条形码的浆果及其制品真伪鉴别技术研究[D]. 南京: 南京农业大学, 2016: 29-40. |
LI M G. Authentic identification technique of berry or berry products on DNA barcoding[D]. Nanjing: Nanjing Agricultural University, 2016: 29-40. (in Chinese with English abstract) | |
[12] |
ABDALLAH I B, TLILI N, MARTINEZ-FORCE E, et al. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties[J]. Food Chemistry, 2015, 173: 972-978.
DOI URL |
[13] |
PANTH N, PAUDEL K R, KARKI R. Phytochemical profile and biological activity of Juglans regia[J]. Journal of Integrative Medicine, 2016, 14(5): 359-373.
DOI URL |
[14] |
PSIFIDI A, DOVAS C I, BANOS G. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples[J]. Molecular and Cellular Probes, 2010, 24(2): 93-98.
DOI URL |
[15] |
D'ANGELO F, SANTILLO A, SEVI A, et al. Technical note: a simple salting-out method for DNA extraction from milk somatic cells: investigation into the goat CSN1S1 gene[J]. Journal of Dairy Science, 2007, 90(7): 3550-3552.
DOI URL |
[16] | CAPUANO F, PROROGA Y, MANCUSI A, et al. Evaluation of DNA preparation methods combined with different PCR-based assays for Coxiella burnetii detection in milk[J]. Large Animal Review, 2016, 22(2): 59-62. |
[17] |
USMAN T, YU Y, LIU C, et al. Comparison of methods for high quantity and quality genomic DNA extraction from raw cow milk[J]. Genetics and Molecular Research: GMR, 2014, 13(2): 3319-3328.
DOI URL |
[18] | 郭梁, 刘国强, 罗建兴, 等. 乳及乳制品中DNA提取方法的比较研究[J]. 农业与技术, 2021, 41(20): 46-50. |
GUO L, LIU G Q, LUO J X, et al. Comparative study on DNA extraction methods from milk and dairy products[J]. Agriculture and Technology, 2021, 41(20): 46-50. (in Chinese) | |
[19] | 任君安, 王国兰, 程曦, 等. 果蔬汁饮料DNA提取方法的比较研究[J]. 食品科技, 2013, 38(2): 42-45. |
REN J N, WANG G L, CHENG X, et al. Comparison of DNA extraction method for fruit and vegetable juices[J]. Food Science and Technology, 2013, 38(2): 42-45. (in Chinese with English abstract) | |
[20] | 韩晴, 王赞, 章晶晶, 等. 基于植物DNA条形码技术对杏仁露中花生源性成分的鉴别研究[J]. 现代食品科技, 2018, 34(2): 232-240. |
HAN Q, WANG Z, ZHANG J J, et al. Identification of peanuts in almond juice based on plant DNA barcode technology[J]. Modern Food Science and Technology, 2018, 34(2): 232-240. (in Chinese with English abstract) | |
[21] | 杨硕, 江丰, 刘艳, 等. 多重微滴式数字PCR定量检测市售核桃乳中核桃、大豆源性成分[J]. 食品科学, 2017, 38(16): 280-286. |
YANG S, JIANG F, LIU Y, et al. Duplex digital droplet PCR for the determination of walnut-derived and soybean-derived ingredients in walnut protein drink[J]. Food Science, 2017, 38(16): 280-286. (in Chinese with English abstract) | |
[22] | YANO T, SAKAI Y, UCHIDA K, et al. Detection of walnut residues in processed foods by polymerase chain reaction[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(7): 1793-1796. |
[23] |
KURZ C, LEITENBERGER M, CARLE R, et al. Evaluation of fruit authenticity and determination of the fruit content of fruit products using FT-NIR spectroscopy of cell wall components[J]. Food Chemistry, 2010, 119(2): 806-812.
DOI URL |
[24] | FÜGEL R, CARLE R, SCHIEBER A. Quality and authenticity control of fruit purées, fruit preparations and jams: a review[J]. Trends in Food Science & Technology, 2005, 16(10): 433-441. |
[25] |
POLLACK S J, KAWALEK M D, WILLIAMS-HILL D M, et al. Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products[J]. Food Control, 2018, 84: 297-304.
DOI URL |
[26] |
CALDWELL J M. Food analysis using organelle DNA and the effects of processing on assays[J]. Annual Review of Food Science and Technology, 2017, 8: 57-74.
DOI URL |
[27] | 邢冉冉, 吴亚君, 陈颖. 宏条形码技术在食品物种鉴定中的应用及展望[J]. 食品科学, 2018, 39(13): 280-288. |
XING R R, WU Y J, CHEN Y. DNA metabarcoding in food species identification: current applications and future prospects[J]. Food Science, 2018, 39(13): 280-288. (in Chinese with English abstract) | |
[28] |
PARDO M Á, JIMÉNEZ E, VIë ARSSON J R, et al. DNA barcoding revealing mislabeling of seafood in European mass caterings[J]. Food Control, 2018, 92: 7-16.
DOI URL |
[29] |
LEE S C, WANG C H, YEN C E, et al. DNA barcode and identification of the varieties and provenances of Taiwan's domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences[J]. Journal of Food and Drug Analysis, 2017, 25(2): 260-274.
DOI URL |
[30] |
UNCU A T, UNCU A O, FRARY A, et al. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil[J]. Food Chemistry, 2017, 221: 1026-1033.
DOI URL |
[31] | 夏义苗, 陈复生, 郝莉花, 等. 大豆油DNA提取及检测研究进展[J]. 中国食品学报, 2019, 19(10): 351-357. |
XIA Y M, CHEN F S, HAO L H, et al. Research progress of DNA extraction and detection for soybean oil[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 351-357. (in Chinese with English abstract) | |
[32] | 董蕾. 不同食品加工工艺对DNA提取和品质的影响[J]. 现代农业科技, 2019(5): 212-215. |
DONG L. Effect of food processing on DNA extraction and quality[J]. Modern Agricultural Science and Technology, 2019(5): 212-215. (in Chinese with English abstract) | |
[33] |
IKEDA S, TSURUMARU H, WAKAI S, et al. Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol[J]. Microbes and Environments, 2008, 23(2): 159-166.
DOI URL |
[34] |
SUN Z Y, GAO T, YAO H, et al. Identification of Lonicera japonica and its related species using the DNA barcoding method[J]. Planta Medica, 2011, 77(3): 301-306.
DOI URL |
[1] | 陈文强, 汪小福, 陈笑芸, 彭城, 徐俊锋, 蔡健. 基于ITS2和SNP技术鉴定浙江铁皮石斛的初步研究[J]. 浙江农业学报, 2021, 33(1): 69-76. |
[2] | 纪艺, 姜媛媛, 汪小福, 徐晓丽, 徐俊锋, 李玥莹, 陈笑芸. 几种动物生鲜肌肉组织样品DNA提取方法的比较研究[J]. 浙江农业学报, 2019, 31(9): 1471-1477. |
[3] | 巫伟峰, 陈孝丑, 陈发兴, 陈春, 张毅智. 基于ITS2序列探讨兰属的DNA条形码鉴定和系统发育关系[J]. 浙江农业学报, 2019, 31(8): 1295-1304. |
[4] | 赵孟良;韩睿;李莉*. 菊芋不同部位DNA提取的比较研究[J]. , 2013, 25(5): 0-996. |
[5] | 张巧艳;*;陈亭亭;陈笑芸;杨胜利;*;缪青梅. 基于SYBR Green I荧光定量PCR建立生乳及乳制品沙门氏菌快速检测技术[J]. , 2012, 24(5): 0-921. |
[6] | 汤江武;王新;姚晓红;吴逸飞;许尧兴;柳永. 棉粕发酵样品总DNA的提取方法[J]. , 2010, 22(4): 0-413. |
[7] | 魏战勇;梁静怡;李厚伟;王东方;陈红英;崔保安. 精液中猪细小病毒DNA三种提取方法效果比较[J]. , 2009, 21(05): 0-458. |
[8] | 孙志栋;王学德;倪西源;黄坚 . 棉花DNA提取方法的探讨[J]. , 2004, 16(4): 0-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||