浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1823-1833.DOI: 10.3969/j.issn.1004-1524.20230491
张思雨1(), 林朝阳1,2, 叶雨轩1,2, 沈志成1,*(
)
收稿日期:
2023-04-18
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
张思雨(1998—),女,山西晋城人,硕士研究生,主要从事转基因水稻研究。E-mail:13327562932@163.com
通讯作者:
*沈志成,E-mail:zcshen@zju.edu.cn
基金资助:
ZHANG Siyu1(), LIN Chaoyang1,2, YE Yuxuan1,2, SHEN Zhicheng1,*(
)
Received:
2023-04-18
Online:
2023-08-25
Published:
2023-08-29
摘要:
为培育抗虫耐除草剂转基因水稻(Oryza sativa L.),本研究将抗虫融合基因cry1Ab-vip3Af2与耐草甘膦基因cp4-epsps构建在同一T-DNA中,并利用农杆菌侵染法导入秀水134水稻。对获得的转化体的分子特征及抗虫耐除草剂性能进行分析研究,从众多转化体中筛选得到优良转化体VB3。High efficiency TAIL-PCR (Hi-Tail PCR)的分析结果表明,VB3转化体中外源T-DNA的插入位点未编码已知或预测的功能基因。DNA杂交印迹结果显示,VB3转化体的外源T-DNA以单拷贝的形式整合在水稻基因组中。酶联免疫吸附反应和蛋白质免疫印迹分析结果表明,T1、T2代VB3转化体的不同组织中均检测到较高的外源蛋白表达量,且不同世代之间表达量无明显差异。室内生测结果显示,VB3转化体对大螟(Sesamia inferens)、二化螟(Chilo suppressalis)和稻纵卷叶螟(Cnaphalocrocis medinalis)均表现出较高的抗性。三种靶标昆虫的幼虫取食VB3植物组织后,48 h的死亡率达到90%左右,72 h内全部死亡。草甘膦耐受性能测定结果表明,VB3转化体能够耐受20、40和80 mL·hm-2的草甘膦。综上所述,本研究筛选出的VB3转化体具有较好的生产应用前景。
中图分类号:
张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833.
ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833.
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
cry1Ab-vip3Af2-F | ACCTTCTTCTTGTTCAGGTCGATCTC |
cry1Ab-vip3Af2-R | CATCAACACCATGCTGCACATCTACC |
cp4-epsps-F | TTCATGAGGACGTTCAGGATGGTCAC |
cp4-epsps-R | AGATGGGCGTACAGGTCAAATCCGA |
表1 特异性PCR用到的引物及序列
Table 1 Primers of PCR
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
cry1Ab-vip3Af2-F | ACCTTCTTCTTGTTCAGGTCGATCTC |
cry1Ab-vip3Af2-R | CATCAACACCATGCTGCACATCTACC |
cp4-epsps-F | TTCATGAGGACGTTCAGGATGGTCAC |
cp4-epsps-R | AGATGGGCGTACAGGTCAAATCCGA |
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
RB-1 | GGCACTGGCCGTCGTTTTACAACGTCGT |
RB-2 | ACGATGGACTCCAGTCCGGCCGCGTTACCCAACTTAA- TCGCCTTGCAGC |
RB-3 | GCACCGATCGCCCTTCCCAACAGTTGC |
LB-1 | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
LB-2 | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCAT- ATAAGAAACCCTTAG |
LB-3 | CTAAAACCAAAATCCAGTACTAAAATCC |
AC1 | ACGATGGACTCCAGAG |
表2 Hi-Tail PCR用到的引物及序列
Table 2 Primers of Hi-Tail PCR
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
RB-1 | GGCACTGGCCGTCGTTTTACAACGTCGT |
RB-2 | ACGATGGACTCCAGTCCGGCCGCGTTACCCAACTTAA- TCGCCTTGCAGC |
RB-3 | GCACCGATCGCCCTTCCCAACAGTTGC |
LB-1 | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
LB-2 | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCAT- ATAAGAAACCCTTAG |
LB-3 | CTAAAACCAAAATCCAGTACTAAAATCC |
AC1 | ACGATGGACTCCAGAG |
靶标昆虫 Target pests | 被试组织 Subject tissue | 幼虫数量 Quantity of larvae | 水稻生长期 Rice growth stage | 观察时间 Observation time/h |
---|---|---|---|---|
大螟 Sesamia inferens | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
二化螟 Chilo suppressalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
稻纵卷叶螟 Cnaphalocrocis medinalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves |
表3 靶标害虫室内生物活性测定
Table 3 The laboratory bioassay of target pests
靶标昆虫 Target pests | 被试组织 Subject tissue | 幼虫数量 Quantity of larvae | 水稻生长期 Rice growth stage | 观察时间 Observation time/h |
---|---|---|---|---|
大螟 Sesamia inferens | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
二化螟 Chilo suppressalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
稻纵卷叶螟 Cnaphalocrocis medinalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves |
除草剂剂量 Herbicide concentration/ (mL·hm-2) | 被试组织 Subject tissue | 观察时间 Observation time/d |
---|---|---|
0 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
20 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
40 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
80 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 |
表4 草甘膦耐受性能测定
Table 4 Glyphosate tolerance determination
除草剂剂量 Herbicide concentration/ (mL·hm-2) | 被试组织 Subject tissue | 观察时间 Observation time/d |
---|---|---|
0 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
20 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
40 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
80 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 |
图2 T0代水稻转化体中外源蛋白的表达量 A,Cry1Ab-Vip3Af2蛋白的表达量,图中虚线所示Cry1Ab-Vip3Af2的表达量为5 μg·g-1,以此为筛选标准;B,CP4-EPSPS蛋白的表达量,图中虚线所示CP4-EPSPS的表达量为150 μg·g-1,以此为筛选标准。
Fig.2 The expression level of exogenous proteins in T0 transformants of rice A, The expression level of Cry1Ab-Vip3Af2, the dotted line showed the Cry1Ab-Vip3Af2 expression level was 5 μg·g-1, which was used as the screening standard; B, The expression level of CP4-EPSPS, the dotted line showed the CP4-EPSPS expression level was 150 μg·g-1, which was used as the screening standard.
图3 T1、T2代VB3水稻转化体的PCR检测结果 A,cry1Ab-vip3Af2基因的PCR检测结果;B,cp4-epsps基因的PCR检测结果;M,DNA分子量标准;+,阳性质粒;-,非转基因水稻对照;1~3,VB3的T1代和T2代样品。
Fig.3 PCR analysis of T1, T2 generations of VB3 A, PCR analysis of cry1Ab-vip3Af2; B, PCR analysis of cp4-epsps; M, DNA molecular marker;-, Non-transgenic rice control;+, Positive plasmids; 1-3, Samples of T1 and T2 generations of VB3.
图4 VB3边界序列鉴定及分析 A,对VB3边界的三轮Hi-Tail PCR电泳结果。R1,第一轮PCR反应产物;R2,第二轮PCR反应产物;R3,第三轮PCR反应产物;M,DNA分子量标准。B,VB3边界的PCR鉴定结果。M,DNA分子量标准。
Fig.4 Identification and analyzation of VB3 border sequences A, The electrophoresis result of Hi-Tail PCR about VB3 border sequences. R1, Round 1 products; R2, Round 2 products; R3, Round 3 products; M, DNA molecular marker. B, The identification of VB3 border sequences. M, DNA molecular marker.
图5 VB3的Southern blot杂交结果 A,以cry1Ab全长DNA序列为探针的杂交图;B,以cp4-epsps全长DNA序列为探针的杂交图;+,阳性质粒;NT,以相同酶切的阴性水稻对照组;M,DNA分子量标准。
Fig.5 Southern bloting of transgenic rice VB3 A, Hybridization with cry1Ab full-length gene as probe; B, Hybridization with cp4-epsps full-length gene as probe;+, Positive plasmids; NT, Non-transgenic rice control digested with the same enzyme; M, DNA molecular maker.
图6 VB3各组织中外源蛋白的表达量 A,VB3各组织中Cry1Ab-Vip3Af2蛋白的表达量;B,VB3各组织中CP4-EPSPS蛋白的表达量。
Fig.6 The expression level of exogenous proteins in different tissues of VB3 A, The expression level of Cry1Ab-Vip3Af2 in different tissues of VB3; B, The expression level of CP4-EPSPS in different tissues of VB3.
图7 T1、T2代VB3水稻中Cry1Ab-Vip3Af2蛋白和CP4-EPSPS蛋白的Western blotting检测 A,Cry1Ab-Vip3Af2蛋白的Western blotting检测结果;B,CP4-EPSPS蛋白的Western blotting检测结果;M,标准蛋白分子量;+,原核表达的蛋白;-,非转基因水稻对照组;L,叶片组织;St,茎秆组织;Sd,籽粒。
Fig.7 Western blotting about Cry1Ab-Vip3Af2 and CP4-EPSPS in T1 and T2 generations of VB3 A, Western blotting of Cry1Ab-Vip3Af2; B, Western blotting of CP4-EPSPS; M, Protein pageruler;+, Protein expressed by E.coli;-, Non-transgenic rice control; L, Leaves; St, Stem; Sd, Seed.
时期 Stage | 水稻株系 Rice line | 大螟Sesamia inferens | 二化螟Chilo suppressalis | 稻纵卷叶螟Cnaphalocrocis medinalis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
死亡率Mortality/% | 死亡率Mortality/% | 死亡率Mortality/% | ||||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
分蘖期 Tillering stage | VB3 VB3 | 29.37± 3.00** | 91.30± 2.50** | 100** | 31.40± 2.44** | 85.07± 2.04** | 100** | 32.57± 2.68** | 92.10± 1.97** | 100** |
秀水134 Xiushui 134 | 3.06± 0.57 | 5.80± 1.45 | 7.33± 0.81 | 2.80± 0.46 | 3.77± 0.45 | 7.60± 0.56 | 3.30± 0.44 | 5.57± 0.76 | 8.50± 0.53 | |
抽穗期 Heading stage | VB3 VB3 | 23.63± 2.65** | 88.73± 1.23** | 100** | 22.53± 1.78** | 86.73± 2.87** | 100** | 23.43± 1.25** | 87.03± 1.69** | 100** |
秀水134 Xiushui 134 | 3.47± 0.40 | 4.67± 0.40 | 8.30± 0.9 | 2.57± 0.23 | 3.97± 0.42 | 6.87± 0.25 | 3.03± 0.23 | 5.67± 0.57 | 7.83± 0.81 | |
灌浆期 Filling stage | VB3 VB3 | 30.37± 2.57** | 82.97± 2.32** | 100** | 32.60± 2.04** | 93.77± 1.17** | 100** | 26.53± 0.96** | 89.00± 2.26** | 100** |
秀水134 Xiushui 134 | 2.77± 0.42 | 4.57± 0.61 | 7.37± 0.55 | 4.00± 0.46 | 5.17± 0.45 | 7.50± 0.17 | 2.80± 0.36 | 4.67± 0.32 | 8.17± 0.25 |
表5 大螟、二化螟、稻纵卷叶螟幼虫取食VB3和非转基因水稻叶片的死亡率
Table 5 Mortality of Sesamia inferens, Chilo suppressalis, Cnaphalocrocis medinalis fed on VB3 and non-transgenic rice leaves
时期 Stage | 水稻株系 Rice line | 大螟Sesamia inferens | 二化螟Chilo suppressalis | 稻纵卷叶螟Cnaphalocrocis medinalis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
死亡率Mortality/% | 死亡率Mortality/% | 死亡率Mortality/% | ||||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
分蘖期 Tillering stage | VB3 VB3 | 29.37± 3.00** | 91.30± 2.50** | 100** | 31.40± 2.44** | 85.07± 2.04** | 100** | 32.57± 2.68** | 92.10± 1.97** | 100** |
秀水134 Xiushui 134 | 3.06± 0.57 | 5.80± 1.45 | 7.33± 0.81 | 2.80± 0.46 | 3.77± 0.45 | 7.60± 0.56 | 3.30± 0.44 | 5.57± 0.76 | 8.50± 0.53 | |
抽穗期 Heading stage | VB3 VB3 | 23.63± 2.65** | 88.73± 1.23** | 100** | 22.53± 1.78** | 86.73± 2.87** | 100** | 23.43± 1.25** | 87.03± 1.69** | 100** |
秀水134 Xiushui 134 | 3.47± 0.40 | 4.67± 0.40 | 8.30± 0.9 | 2.57± 0.23 | 3.97± 0.42 | 6.87± 0.25 | 3.03± 0.23 | 5.67± 0.57 | 7.83± 0.81 | |
灌浆期 Filling stage | VB3 VB3 | 30.37± 2.57** | 82.97± 2.32** | 100** | 32.60± 2.04** | 93.77± 1.17** | 100** | 26.53± 0.96** | 89.00± 2.26** | 100** |
秀水134 Xiushui 134 | 2.77± 0.42 | 4.57± 0.61 | 7.37± 0.55 | 4.00± 0.46 | 5.17± 0.45 | 7.50± 0.17 | 2.80± 0.36 | 4.67± 0.32 | 8.17± 0.25 |
[1] | QIAO F B, HU R F, HUANG J K. Genetically modified (GM) rice versus non-GM rice: pesticide use and yield[J]. Science China Life Sciences, 2020, 63(5): 785-787. |
[2] | KUMAR A, PRASAD S, MISHRA V K, et al. Effect of submergence stress on physiological indices and yield of rice (Oryza sativa L.) genotypes[J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(1): 994-999. |
[3] | KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology, 1997, 35(1/2): 25-34. |
[4] | RIEGLER M. Insect threats to food security[J]. Science, 2018, 361(6405): 846. |
[5] | JOSHI M, BIRARI V, VARADHARASU P, et al. Role of biotechnology in insect-pests management[J]. Agriculture & Food: e-Newsletter, 2020, 2(4): 574-576. |
[6] | MATEOS FERNÁNDEZ R, PETEK M, GERASYMENKO I, et al. Insect pest management in the age of synthetic biology[J]. Plant Biotechnology Journal, 2022, 20(1): 25-36. |
[7] | RIZWAN M, ATTA B, SABIR A M, et al. Evaluation of the entomopathogenic fungi as a non-traditional control of the rice leaf roller, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) under controlled conditions[J]. Egyptian Journal of Biological Pest Control, 2019, 29(1): 1-4. |
[8] | BILAL M, HUSSAIN M, UMER M, et al. Population incidence and efficacy of chemical control against rice leaffolder (Cnaphnalocrocis medinalis Guenee) (pyralidae: Lepidoptera)[J]. Asian Plant Research Journal, 2019: 1-7. |
[9] | AKBAR N, EHSANULLAH, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
[10] | SALIM M, MASIH R. Efficacy of insecticides against rice borers at NARC, Islamabad[J]. Pakistan Journal of Agricultural Research, 1988, 8(4): 477-479. |
[11] | STEVENS J, DUNSE K, FOX J, et al. Biotechnological approaches for the control of insect pests in crop plants[M]// SOUDARARAJAN R P, Pesticides-Advances in Chemical and Botanical Pesticides. Rijeka: IntechOpen, 2012. |
[12] | MAKKAR G S, BENTUR J. Breeding for stem borer and gall midge resistance in rice[M]//RAMESH A, SURINDER S, Breeding Insect Resistant Crops for Sustainable Agriculture. Singapore: Springer Singapore, 2017: 323-352. |
[13] | HORGAN F G. Integrated pest management for sustainable rice cultivation: a holistic approach[M]//TAKUII S, Achieving sustainable cultivation of rice Volume 2. Cambridge, UK: Burleigh Dodds Science Publishing, 2017: 309-342. |
[14] | DU B, CHEN R Z, GUO J P, et al. Current understanding of the genomic, genetic, and molecular control of insect resistance in rice[J]. Molecular Breeding, 2020, 40(2): 1-25. |
[15] | TILGAM J, KUMAR K, JAYASWAL D, et al. Success of microbial genes based transgenic crops: Bt and beyond Bt[J]. Molecular Biology Reports, 2021, 48(12): 8111-8122. |
[16] | CHEN M, SHELTON A, YE G Y. Insect-resistant genetically modified rice in China: from research to commercialization[J]. Annual Review of Entomology, 2011, 56: 81-101. |
[17] | TU J, ZHANG G, DATTA K, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin[J]. Nature Biotechnology, 2000, 18(10): 1101-1104. |
[18] | TABASHNIK B E, BRÉVAULT T, CARRIÈRE Y. Insect resistance to Bt crops: lessons from the first billion acres[J]. Nature Biotechnology, 2013, 31(6): 510-521. |
[19] | KIM J H, LEE S Y, KIM W J, et al. Resistance of transgenic rice events (rbcS: cry1Ac) against three lepidopteran rice pests[J]. Journal of Asia-Pacific Entomology, 2018, 21(2): 645-650. |
[20] | TABASHNIK B E, FABRICK J A, CARRIÈRE Y. Global patterns of insect resistance to transgenic bt crops: the first 25 years[J]. Journal of Economic Entomology, 2023, 116(2): 297-309. |
[21] | TABASHNIK B E, CARRIÈRE Y. Global patterns of resistance to bt crops highlighting pink bollworm in the United States, China, and India[J]. Journal of Economic Entomology, 2019, 112(6): 2513-2523. |
[22] | CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can Pyramids and seed mixtures delay resistance to bt crops?[J]. Trends in Biotechnology, 2016, 34(4): 291-302. |
[23] | 李香菊. 我国转基因耐除草剂作物研发与应用[J]. 现代农药, 2023, 22(1): 5-10. |
LI X J. The development and application of genetically modified herbicide-tolerant crops in China[J]. Modern Agrochemicals, 2023, 22(1): 5-10. (in Chinese with English abstract) | |
[24] | 沈志成. 抗虫融合基因、融合蛋白及其应用: CN100427600C[P]. 2008-10-22. |
[25] | 沈志成, 李京. 通过基因融合降低Vip3蛋白对转基因植物毒性的方法: CN103045628A[P]. 2014-09-17. |
[26] | HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1/2): 205-218. |
[27] | HEALEY A, FURTADO A, COOPER T, et al. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species[J]. Plant Methods, 2014, 10: 21. |
[28] | LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654. |
[29] | 项雅琴. 一种Bt转基因玉米的分子特征研究及功能性状分析[D]. 杭州: 浙江大学, 2021. |
XIANG Y Q. Molecular characteristics and functional traits analysis of bt transgenic corn[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
[30] | HORGAN F G, ROMENA A M, BERNAL C C, et al. Stem borers revisited: host resistance, tolerance, and vulnerability determine levels of field damage from a complex of Asian rice stemborers[J]. Crop Protection, 2021, 142: 105513. |
[31] | XU C, CHENG J H, LIN H Y, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Scientific Reports, 2018, 8(1): 15788. |
[32] | GAO Y L, HU Y, FU Q, et al. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis[J]. Journal of Invertebrate Pathology, 2010, 105(1): 11-15. |
[33] | 许超, 沈志成. 一种管理玉米螟对Bt毒素抗性的方法: CN113793639A[P]. 2021-12-14. |
[34] | BEN HAMADOU-CHARFI D, BOUKEDI H, ABDELKEFI-MESRATI L, et al. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin[J]. Journal of Invertebrate Pathology, 2013, 114(2): 139-143. |
[35] | WELCH K L, UNNITHAN G C, DEGAIN B A, et al. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea[J]. Journal of Invertebrate Pathology, 2015, 132: 149-156. |
[36] | TABASHNIK B E, CARRIÈRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926-935. |
[37] | TABASHNIK B E, UNNITHAN G C, YELICH A J, et al. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins[J]. Pest Management Science, 2022, 78(10): 3973-3979. |
[38] | GREEN J M. The benefits of herbicide-resistant crops[J]. Pest Management Science, 2012, 68(10): 1323-1331. |
[1] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[2] | 徐莉, 王其, 丁婷, 江腾. 玉米GRMZM2G455909基因的克隆及其抗病功能初步分析[J]. 浙江农业学报, 2022, 34(9): 1976-984. |
[3] | 杨茹梦, 尹璐, 钱昌元, 左翠花, 于海燕, 李想. 转基因康乃馨Moonlite品系检测用质粒标准样品研制[J]. 浙江农业学报, 2022, 34(8): 1692-1702. |
[4] | 瞿展, 杨立桃. 转基因玉米TC1507质粒DNA标准物质的研制[J]. 浙江农业学报, 2021, 33(3): 390-395. |
[5] | 王燚, 魏运民, 余世田, 韩蓉蓉, 颉永红, 刘卢生, 蒋曹德, 玉永雄. 丹波黑大豆GmDREPP基因的克隆与耐铝性[J]. 浙江农业学报, 2020, 32(6): 941-952. |
[6] | 姜媛媛, 纪艺, 来勇敏, 陈笑芸, 徐俊锋, 徐晓丽, 马莲菊. 转Cry抗虫基因玉米对家蚕的安全性评价[J]. 浙江农业学报, 2020, 32(11): 2042-2049. |
[7] | 姜媛媛, 纪艺, 来勇敏, 祝旋, 陈笑芸, 徐俊锋, 马莲菊, 徐晓丽. 转cry1Ab/cry2Aj基因玉米双抗12-5对意大利蜜蜂成虫的影响[J]. 浙江农业学报, 2019, 31(11): 1834-1840. |
[8] | 汤婷, 谢实龙, 祝旋, 徐俊锋, 唐俊, 汪小福. CaMV35S启动子及其在转基因作物中的应用和检测[J]. 浙江农业学报, 2019, 31(1): 161-170. |
[9] | 梁晋刚, 焦悦, 刘鹏程, 张秀杰. 丛枝菌根真菌作为指示性物种评估转基因作物对土壤微生物影响的研究概述[J]. 浙江农业学报, 2018, 30(7): 1267-1272. |
[10] | 宋君, 叶先林, 尹全, 张富丽, 王东, 李洁. 采用蒙特卡洛法评定转基因玉米DAS-4-40278-9的测量不确定度[J]. 浙江农业学报, 2018, 30(5): 681-687. |
[11] | 刘岩, 计东风, 沈国新, 魏佳, 林天宝, 朱燕, 吕志强. 桑树Na+/H+逆向转运蛋白基因的克隆及功能分析[J]. 浙江农业学报, 2017, 29(6): 874-881. |
[12] | 芦春斌, 张雁, 陈博慧, 林泽斌, 仇平乐, 刘标. 抗草甘膦转基因大豆对雄性生殖损伤小鼠体外受精作用的影响[J]. 浙江农业学报, 2017, 29(6): 910-916. |
[13] | 余笑波, 沙跃兵, 张江东, 赵雷, 陈怡, 隋志伟. 转基因油菜Ms8质粒分子的制备[J]. 浙江农业学报, 2017, 29(5): 694-700. |
[14] | 常丽娟, 宋君, 张富丽, 刘文娟, 唐春燕, 王东, 尹全. 实时荧光定量PCR方法检测转基因玉米MIR604[J]. 浙江农业学报, 2017, 29(11): 1769-1774. |
[15] | 芦春斌1,林泽斌1,张雁1,陈博慧1,吴家乐1,刘标2,*. 抗草甘膦转基因大豆粕对雄鼠运动机能的影响[J]. 浙江农业学报, 2016, 28(7): 1115-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||