浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 654-666.DOI: 10.3969/j.issn.1004-1524.20240229
乔慧茹1,2(), 房祥军2, 吴伟杰2, 刘瑞玲2, 陈杭君2, 邓尚贵1, 沙浩2, 郜海燕2,*(
)
收稿日期:
2024-03-11
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
乔慧茹(1999—),女,河南许昌人,硕士研究生,研究方向为食品物流保鲜与品质调控。E-mail:1394174682@qq.com
通讯作者:
* 郜海燕,E-mail:spsghy@163.com
基金资助:
QIAO Huiru1,2(), FANG Xiangjun2, WU Weijie2, LIU Ruiling2, CHEN Hangjun2, DENG Shanggui1, SHA Hao2, GAO Haiyan2,*(
)
Received:
2024-03-11
Online:
2025-03-25
Published:
2025-04-02
摘要:
为提高铁皮石斛叶的资源利用率,本研究旨在探究乳酸菌发酵对蓝莓-铁皮石斛叶复合饮料品质和风味成分的影响,以开发一种具有独特口感、营养价值和健康益处的复合发酵饮料。以蓝莓和铁皮石斛叶为主要原料,以植物乳杆菌(Lactobacillus plantarum)为发酵菌种,制备蓝莓-铁皮石斛叶复合发酵饮料。通过单因素和正交试验优化蓝莓汁与铁皮石斛叶汁的体积比、蔗糖添加质量分数、植物乳杆菌接种体积分数和发酵时间,确定最佳发酵工艺参数。结果表明,最佳发酵参数为:蓝莓汁与铁皮石斛叶汁体积比为1∶1,蔗糖添加质量分数为6%,植物乳杆菌接种体积分数为2%,发酵时间为48 h。在此条件下,发酵饮料酸甜可口,可溶性固形物含量为9.47%,总糖含量为56.28 mg·mL-1,总酚含量为1.80 mg·mL-1,花色苷含量为13.21 mg·L-1,感官评分为84.50分。与发酵前相比,发酵后饮料的DPPH、ABTS+和羟自由基清除率分别提高13.50%、11.00%和17.88%。此外,共检出73种挥发性风味物质,以酯类、醇类、醛类和酚类化合物为主,其中壬酸乙酯、乙酸乙酯、丁酸乙酯、芳樟醇、1-壬醇、2-乙基-1-己醇、1-庚醇和1-戊醇含量较高。发酵促进酸类物质转化为酯类物质,显著提升了饮料的酯类物质含量,赋予其鲜甜柔润的口感。乳酸菌发酵显著改善了蓝莓-铁皮石斛叶复合饮料的品质和风味,提升了其抗氧化活性和营养价值。本研究为农副产品的深加工和高值化利用提供了新途径,具有重要的应用前景。
中图分类号:
乔慧茹, 房祥军, 吴伟杰, 刘瑞玲, 陈杭君, 邓尚贵, 沙浩, 郜海燕. 蓝莓与铁皮石斛叶复合乳酸菌发酵饮料工艺优化与品质分析[J]. 浙江农业学报, 2025, 37(3): 654-666.
QIAO Huiru, FANG Xiangjun, WU Weijie, LIU Ruiling, CHEN Hangjun, DENG Shanggui, SHA Hao, GAO Haiyan. Process optimization and quality analysis of composite lactic acid bacteria fermented beverage with blueberries and Dendrobium officinale leaves[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 654-666.
水平 Level | 因素Factor | |||
---|---|---|---|---|
A体积比 Volume ratio | B蔗糖添加质量分数 Addition mass fraction of sugar/% | C植物乳杆菌接种体积分数 Inoculation volume fraction of Lactobacillus plantarum/% | D发酵时间 Fermentation time/h | |
1 | 3∶1 | 4 | 2 | 36 |
2 | 1∶1 | 5 | 3 | 48 |
3 | 1∶3 | 6 | 4 | 60 |
表1 正交试验的因素水平
Table 1 Factor level for orthogonal experiment
水平 Level | 因素Factor | |||
---|---|---|---|---|
A体积比 Volume ratio | B蔗糖添加质量分数 Addition mass fraction of sugar/% | C植物乳杆菌接种体积分数 Inoculation volume fraction of Lactobacillus plantarum/% | D发酵时间 Fermentation time/h | |
1 | 3∶1 | 4 | 2 | 36 |
2 | 1∶1 | 5 | 3 | 48 |
3 | 1∶3 | 6 | 4 | 60 |
图1 蓝莓汁与铁皮石斛叶汁体积比、蔗糖添加质量分数、植物乳杆菌接种体积分数和发酵时间对复合饮料感官评分和活菌数的影响
Fig.1 Effect of volume ratio of blueberry juice to Dendrobium officinale leaf juice, addition mass fraction of sugar, inoculation volume fraction of Lactobacillus plantarum and fermentation time on sensory score and viable bacteria count of composite beverage
试验编号 Test No. | A体积比 Volume ratio | B蔗糖添加 质量分数 Addition mass fraction of sugar/% | C植物乳杆菌 接种体积分数 Inoculation volume fraction of Lactobacillus plantarum/% | D发酵时间 Fermentation time/h | Y1感官评分 Sensory evaluation | Y2活菌数 Number of live bacteria/lg (CFU·mL-1) | Y3乳酸含量 Lactic acid content/ (mmol·L-1) |
---|---|---|---|---|---|---|---|
1 | 3∶1 | 4 | 2 | 36 | 77.70 | 9.12 | 30.08 |
2 | 3∶1 | 5 | 4 | 48 | 78.40 | 8.82 | 29.86 |
3 | 3∶1 | 6 | 3 | 60 | 78.60 | 7.96 | 22.94 |
4 | 1∶1 | 4 | 4 | 60 | 77.40 | 8.23 | 26.14 |
5 | 1∶1 | 5 | 3 | 36 | 80.80 | 9.32 | 21.92 |
6 | 1∶1 | 6 | 2 | 48 | 84.30 | 11.45 | 39.82 |
7 | 1∶3 | 4 | 3 | 48 | 73.40 | 10.59 | 33.43 |
8 | 1∶3 | 5 | 2 | 60 | 71.90 | 8.48 | 29.21 |
9 | 1∶3 | 6 | 4 | 36 | 72.30 | 8.29 | 22.63 |
表2 正交试验设计方案与结果
Table 2 Design and results of orthogonal test
试验编号 Test No. | A体积比 Volume ratio | B蔗糖添加 质量分数 Addition mass fraction of sugar/% | C植物乳杆菌 接种体积分数 Inoculation volume fraction of Lactobacillus plantarum/% | D发酵时间 Fermentation time/h | Y1感官评分 Sensory evaluation | Y2活菌数 Number of live bacteria/lg (CFU·mL-1) | Y3乳酸含量 Lactic acid content/ (mmol·L-1) |
---|---|---|---|---|---|---|---|
1 | 3∶1 | 4 | 2 | 36 | 77.70 | 9.12 | 30.08 |
2 | 3∶1 | 5 | 4 | 48 | 78.40 | 8.82 | 29.86 |
3 | 3∶1 | 6 | 3 | 60 | 78.60 | 7.96 | 22.94 |
4 | 1∶1 | 4 | 4 | 60 | 77.40 | 8.23 | 26.14 |
5 | 1∶1 | 5 | 3 | 36 | 80.80 | 9.32 | 21.92 |
6 | 1∶1 | 6 | 2 | 48 | 84.30 | 11.45 | 39.82 |
7 | 1∶3 | 4 | 3 | 48 | 73.40 | 10.59 | 33.43 |
8 | 1∶3 | 5 | 2 | 60 | 71.90 | 8.48 | 29.21 |
9 | 1∶3 | 6 | 4 | 36 | 72.30 | 8.29 | 22.63 |
因素 Factor | 感官评分Sensory evaluation | 活菌数Number of live bacteria | 乳酸含量Lactic acid content | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | R | 最优水平 Optimum level | k1/lg (CFU· mL-1) | k2/lg (CFU· mL-1) | k3lg (CFU· mL-1) | R | 最优水平 Optimum level | k1/ (mmol· L-1) | k2/ (mmol· L-1) | k3/ (mmol· L-1) | R | 最优水平 Optimum level | |
A体积比 | 78.23 | 80.83 | 72.53 | 8.30 | 2 | 8.63 | 9.67 | 9.12 | 1.04 | 2 | 27.63 | 29.29 | 28.42 | 1.66 | 2 |
Volume ratio | |||||||||||||||
B蔗糖添加质量 | 76.16 | 77.03 | 77.10 | 0.94 | 3 | 9.31 | 8.87 | 9.23 | 0.44 | 1 | 29.88 | 27.00 | 28.46 | 2.88 | 1 |
分数 Addition mass fraction of sugar/% | |||||||||||||||
C植物乳杆菌 | 78.00 | 77.60 | 76.03 | 1.97 | 1 | 9.68 | 9.29 | 8.45 | 1.23 | 1 | 33.04 | 26.10 | 26.21 | 6.94 | 1 |
接种体积分数 Inoculation volume fraction of Lactobacillus plantarum/% | |||||||||||||||
D发酵时间 | 76.90 | 78.70 | 76.00 | 2.70 | 2 | 8.91 | 10.29 | 8.22 | 2.07 | 2 | 24.88 | 34.37 | 26.10 | 9.49 | 2 |
Fermentation time/h |
表3 极差分析结果
Table 3 Range analysis results
因素 Factor | 感官评分Sensory evaluation | 活菌数Number of live bacteria | 乳酸含量Lactic acid content | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | R | 最优水平 Optimum level | k1/lg (CFU· mL-1) | k2/lg (CFU· mL-1) | k3lg (CFU· mL-1) | R | 最优水平 Optimum level | k1/ (mmol· L-1) | k2/ (mmol· L-1) | k3/ (mmol· L-1) | R | 最优水平 Optimum level | |
A体积比 | 78.23 | 80.83 | 72.53 | 8.30 | 2 | 8.63 | 9.67 | 9.12 | 1.04 | 2 | 27.63 | 29.29 | 28.42 | 1.66 | 2 |
Volume ratio | |||||||||||||||
B蔗糖添加质量 | 76.16 | 77.03 | 77.10 | 0.94 | 3 | 9.31 | 8.87 | 9.23 | 0.44 | 1 | 29.88 | 27.00 | 28.46 | 2.88 | 1 |
分数 Addition mass fraction of sugar/% | |||||||||||||||
C植物乳杆菌 | 78.00 | 77.60 | 76.03 | 1.97 | 1 | 9.68 | 9.29 | 8.45 | 1.23 | 1 | 33.04 | 26.10 | 26.21 | 6.94 | 1 |
接种体积分数 Inoculation volume fraction of Lactobacillus plantarum/% | |||||||||||||||
D发酵时间 | 76.90 | 78.70 | 76.00 | 2.70 | 2 | 8.91 | 10.29 | 8.22 | 2.07 | 2 | 24.88 | 34.37 | 26.10 | 9.49 | 2 |
Fermentation time/h |
样品 Sample | pH | 可溶性固 形物含量 Soluble solid content/% | 总酚含量 Total phenol content/ (mg·mL-1) | 总糖含量 Total sugar content (mg·mL-1) | 花色苷含量 Anthocyanin content/ (mg·L-1) | DPPH自由基 清除率 DPPH radical scavenging rate/% | ABTS+自由基 清除率 ABTS+ radical scavenging rate/% | 羟自由基 清除率 ·OH scavenging rate/% |
---|---|---|---|---|---|---|---|---|
发酵前 Pre-fermentation | 3.66 ±0.01 a | 7.93 ±0.11 b | 1.94 ±0.03 a | 50.34 ±1.20 b | 9.01 ±1.27 b | 74.73 ±1.62 c | 80.72 ±1.54 c | 62.63 ±2.91 c |
发酵后 Post-fermentation | 3.48 ±0.05 b | 9.47 ±0.31 a | 1.80 ±0.03 b | 56.28 ±3.21 a | 13.21 ±0.24 a | 84.83 ±0.59 b | 89.62 ±0.97 b | 73.83 ±2.03 b |
抗坏血酸 Ascorbic acid | — | — | — | — | — | 92.14 ±1.87 a | 98.80 ±0.49 a | 90.76 ±1.28 a |
表4 蓝莓-铁皮石斛叶复合饮料的营养成分含量与抗氧化能力
Table 4 Nutrient composition content and antioxidant capacity of blueberry and Dendrobium officinale leaf compound drink
样品 Sample | pH | 可溶性固 形物含量 Soluble solid content/% | 总酚含量 Total phenol content/ (mg·mL-1) | 总糖含量 Total sugar content (mg·mL-1) | 花色苷含量 Anthocyanin content/ (mg·L-1) | DPPH自由基 清除率 DPPH radical scavenging rate/% | ABTS+自由基 清除率 ABTS+ radical scavenging rate/% | 羟自由基 清除率 ·OH scavenging rate/% |
---|---|---|---|---|---|---|---|---|
发酵前 Pre-fermentation | 3.66 ±0.01 a | 7.93 ±0.11 b | 1.94 ±0.03 a | 50.34 ±1.20 b | 9.01 ±1.27 b | 74.73 ±1.62 c | 80.72 ±1.54 c | 62.63 ±2.91 c |
发酵后 Post-fermentation | 3.48 ±0.05 b | 9.47 ±0.31 a | 1.80 ±0.03 b | 56.28 ±3.21 a | 13.21 ±0.24 a | 84.83 ±0.59 b | 89.62 ±0.97 b | 73.83 ±2.03 b |
抗坏血酸 Ascorbic acid | — | — | — | — | — | 92.14 ±1.87 a | 98.80 ±0.49 a | 90.76 ±1.28 a |
图2 样品中挥发性成分GC-IMS三维谱图 整个图背景为蓝色,3个坐标轴分别表示迁移时间(X轴)、保留时间(Y轴)和信号峰强度(Z轴),每一个点代表一种挥发性有机物。颜色代表物质的峰强度,从蓝色到红色,颜色越深表示峰强度越大。左图代表未发酵组样品,右图代表发酵样品。
Fig.2 GC-IMS three-dimensional spectra of volatile components in the sample The background is blue, and the three axes represent migration time (X-axis), retention time (Y-axis), and signal peak strength (Z-axis), with each point representing a volatile organic compound. The color represents the peak strength of the substance, from blue to red, and the darker the color, the greater the peak strength. The left picture is unfermented sample, the right picture is fermented sample.
图3 样品中挥发性成分GC-IMS差异谱图 纵坐标代表气相色谱的保留时间(s),横坐标代表相对迁移时间(归一化处理,a.u.)。如果发酵样品和未发酵组的挥发性有机物含量一样,则扣减后的背景为白色,而红色代表该物质的浓度在发酵样品中高于未发酵样品,蓝色代表该物质的浓度在发酵样品中低于未发酵样品。左图为未发酵样品,右图为发酵样品。
Fig.3 GC-IMS differential spectra of volatile components in the samples Vertical coordinates represent retention time (s) for gas chromatography, and horizontal coordinates represent relative migration time (normalized treatment, a.u.). If the volatile organic compound content of the fermented sample is the same as that of the unfermented sample, the reduced background is white, and the red color indicates that the concentration of the substance in the fermented sample is higher than that in the unfermented sample, the blue color indicates that the concentration of the substance in the fermented sample is lower than that in the unfermented sample. The left figure is the unfermented sample, the right figure is the fermented sample.
图4 未发酵样品定性图谱 整个图背景为蓝色,横坐标1.0处红色竖线为RIP峰(反应离子峰,经归一化处理)。纵坐标代表气相色谱的保留时间(s),横坐标代表相对迁移时间(归一化处理,a.u.)。RIP峰两侧的每1个数字代表1种挥发性有机物。颜色代表物质的峰强度,从蓝色到红色,颜色越深表示峰强度越大。图5同。
Fig.4 Qualitative map of unfermented samples The background is blue and the red vertical line at 1.0 is RIP peak (reactive ion peak, normalized). Vertical coordinates represent retention time (s) for gas chromatography, and horizontal coordinates represent relative migration time (normalized treatment, a.u.). Each number on either side of the RIP peak represents a volatile organic compound. The color represents the peak strength of the substance, from blue to red, and the darker the color, the greater the peak strength. The same as in Figure 5.
图6 发酵前后样品中所有挥发性成分的指纹图谱 图中每1行代表1个样品中选取的全部信号峰,每1列代表同一挥发性有机物在不同样品中的信号峰。从图中可以看出每种样品的完整挥发性有机物信息和样品之间挥发性有机物的差异,颜色越亮说明该物质含量越高;物质后缀M、D或T分别为同一个物质的单体、二聚体和三聚体。F,发酵组样品;W,未发酵组样品。
Fig.6 Fingerprints of all volatile components in the samples before and after fermentation Each row in the graph represents all of the signal peaks selected from one sample, and each column represents the signal peaks of the same volatile organic compound in different samples, the complete volatile organic compound information of each sample and the differences in volatile organic compound between the samples can be seen in the figure. The brighter the color, the higher the content of the substance; The substance suffixes M, D, or T are monomers, dimers, and trimers of the same substance, respectively. F, Fermented group sample; W, Unfermented group sample.
图7 发酵前后样品挥发性成分PCA得分图 F,发酵组样品;W,未发酵组样品。
Fig.7 PCA score of volatile components before and after fermentation F, Fermented group samples; W, Unfermented group samples.
图8 样品中挥发性成分的最近邻-欧氏距离图 F,发酵组样品;W,未发酵组样品。
Fig.8 Nearest neighbor-euclidean distance diagram of volatile components in samples F, Fermented group samples; W, Unfermented group samples.
[1] | 蔡光先, 李娟, 李顺祥, 等. 铁皮石斛古代与现代的应用概况[J]. 湖南中医药大学学报, 2011, 31(5): 77-81. |
CAI G X, LI J, LI S X, et al. Applications of Dendrobium officinale in ancient and modern times[J]. Journal of Traditional Chinese Medicine University of Hunan, 2011, 31(5): 77-81. (in Chinese with English abstract) | |
[2] | WANG Y H. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: a review[J]. Journal of Ethnopharmacology, 2021, 270: 113851. |
[3] | LU H X, YANG K, ZHAN L H, et al. Optimization of flavonoid extraction in Dendrobium officinale leaves and their inhibitory effects on tyrosinase activity[J]. International Journal of Analytical Chemistry, 2019(1): 7849198. |
[4] | 周桂芬, 庞敏霞, 陈素红, 等. 铁皮石斛茎、叶多糖含量及多糖部位柱前衍生化-高效液相色谱指纹图谱比较研究[J]. 中国中药杂志, 2014, 39(5): 795-802. |
ZHOU G F, PANG M X, CHEN S H, et al. Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale[J]. China Journal of Chinese Materia Medica, 2014, 39(5): 795-802. (in Chinese with English abstract) | |
[5] | 巩卫琪, 薛娇. 响应面法优化铁皮石斛叶发酵饮料工艺[J]. 饮料工业, 2022, 25(6): 28-32. |
GONG W Q, XUE J. Optimization of fermented beverage from leaves of Dendrobium officinale by response surface methodology[J]. Beverage Industry, 2022, 25(6): 28-32. (in Chinese with English abstract) | |
[6] | 潘利华, 王建飞, 叶兴乾, 等. 蓝莓花青素的提取工艺及其免疫调节活性[J]. 食品科学, 2014, 35(2): 81-86. |
PAN L H, WANG J F, YE X Q, et al. Optimization of extraction process and evaluation of immunomodulatory activity of anthocyanins from blueberry[J]. Food Science, 2014, 35(2): 81-86. (in Chinese with English abstract) | |
[7] | MAURO C, GUERGOLETTO K, GARCIA S. Development of blueberry and carrot juice blend fermented by Lactobacillus reuteri LR92[J]. Beverages, 2016, 2(4): 37. |
[8] | WANG M, LEI M, SAMINA N, et al. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran[J]. Food Chemistry, 2020, 330: 127156. |
[9] | DI CAGNO R, FILANNINO P, GOBBETTI M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice[J]. International Journal of Food Microbiology, 2017, 248: 56-62. |
[10] | SIVAPRAGASAM N, NEELAKANDAN N, VASANTHA RUPASINGHE H P. Potential health benefits of fermented blueberry: a review of current scientific evidence[J]. Trends in Food Science & Technology, 2023, 132: 103-120. |
[11] | WU Y, LI S J, TAO Y, et al. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation[J]. Food Chemistry, 2021, 348: 129083. |
[12] | 和丽媛. 蓝莓-玫瑰复合饮料的研制[J]. 轻工科技, 2024, 40(1): 1-3. |
HE L Y. Development of blueberry-rose drink[J]. Light Industry Science and Technology, 2024, 40(1): 1-3. (in Chinese) | |
[13] | 徐丽萍, 吴媛媛, 王鑫, 等. 响应曲面法优化红树莓多糖提取工艺[J]. 中国食品添加剂, 2017, 28(9): 182-187. |
XU L P, WU Y Y, WANG X, et al. Optimization of process conditions of red raspberry polysaccharide extraction by response surface methodology[J]. China Food Additives, 2017, 28(9): 182-187. (in Chinese with English abstract) | |
[14] | ZHENG Y T, LIU S, XIE J H, et al. Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber[J]. LWT, 2020, 132: 109943. |
[15] | LIU Y, LIU Y X, TAO C, et al. Effect of temperature and pH on stability of anthocyanin obtained from blueberry[J]. Journal of Food Measurement and Characterization, 2018, 12(3): 1744-1753. |
[16] | LEE B J, KIM J S, KANG Y M, et al. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods[J]. Food Chemistry, 2010, 122(1): 271-276. |
[17] | 闫世芳, 鲍玉花, 肖明, 等. 黑枸杞玫瑰复合饮料的研制及其品质和抗氧化活性评价[J]. 食品安全质量检测学报, 2022, 13(9): 2972-2980. |
YAN S F, BAO Y H, XIAO M, et al. Development of Lycium ruthenicum Murr. and R. setate×R. rugosa compound beverage and evaluation of its quality and antioxidant activity[J]. Journal of Food Safety & Quality, 2022, 13(9): 2972-2980. (in Chinese with English abstract) | |
[18] | AMOUSSA A M O, ZHANG L X, LAGNIKA C, et al. Effects of preheating and drying methods on pyridoxine, phenolic compounds, ginkgolic acids, and antioxidant capacity of Ginkgo biloba nuts[J]. Journal of Food Science, 2021, 86(9): 4197-4208. |
[19] | HUR S J, LEE S Y, KIM Y C, et al. Effect of fermentation on the antioxidant activity in plant-based foods[J]. Food Chemistry, 2014, 160: 346-356. |
[20] | 李艳霞, 周志军, 田新华, 等. 不同种源蓝靛果果实生物活性成分含量及抗氧化活性评价[J]. 温带林业研究, 2022, 5(3): 42-47. |
LI Y X, ZHOU Z J, TIAN X H, et al. Evaluation on the contents of bioactive components and antioxidant activity of Lonicera caerulea fruit from different provenances[J]. Journal of Temperate Forestry Research, 2022, 5(3): 42-47. (in Chinese with English abstract) | |
[21] | ZHANG Y, LIU W P, WEI Z H, et al. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum[J]. LWT, 2021, 139: 110590. |
[22] | YUAN F, YAN J, YAN X X, et al. Comparative transcriptome analysis of genes involved in volatile compound synthesis in blueberries (Vaccinium virgatum) during postharvest storage[J]. Postharvest Biology and Technology, 2020, 170: 111327. |
[23] | 熊涛, 马晓娟. 植物乳杆菌NCU166发酵胡萝卜浆风味物质的分析[J]. 食品科学, 2013, 34(2): 152-154. |
XIONG T, MA X J. Analysis of flavor compounds from Lactobacillus plantarum-fermented carrot slurry[J]. Food Science, 2013, 34(2): 152-154. (in Chinese with English abstract) | |
[24] | 牛佳佳, 赵彪, 崔巍, 等. 酥梨汁乳酸菌发酵工艺优化及挥发性成分分析[J]. 食品工业科技, 2023, 44(14): 171-181. |
NIU J J, ZHAO B, CUI W, et al. Optimization of lactic acid bacteria fermentation process and volatile component analysis of suli pear juice[J]. Science and Technology of Food Industry, 2023, 44(14): 171-181. (in Chinese with English abstract) |
[1] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
[2] | 邵雪, 牛犇, 房祥军, 吴伟杰, 吴来春, 郜海燕, 陈杭君. 方便粥的干燥方式优选与风味优化[J]. 浙江农业学报, 2024, 36(4): 894-904. |
[3] | 韩延超, 陈慧芝, 牛犇, 张小栓, 韩树人, 王晓艳, 王冠楠, 刘瑞玲, 郜海燕. 振动胁迫对蓝莓花色苷代谢及相关基因表达的影响[J]. 浙江农业学报, 2024, 36(3): 622-633. |
[4] | 杨紫瀚, 吴伟杰, 高原, 刘瑞玲, 申屠旭萍, 郜海燕, 陈杭君. 莲藕解酒功能软糖的制备及功效评价[J]. 浙江农业学报, 2024, 36(2): 404-415. |
[5] | 张喜闻, 郭晓农, 王泽兴, 王亚玲. 不同复合益生菌对藜麦秸秆发酵饲料的发酵工艺优化[J]. 浙江农业学报, 2023, 35(12): 2818-2829. |
[6] | 潘旭婕, 刘瑞玲, 邓尚贵, 吴伟杰, 陈杭君, 郜海燕. 乳酸菌发酵杨梅果酱工艺优化及其风味成分分析[J]. 浙江农业学报, 2022, 34(7): 1502-1512. |
[7] | 周强, 韩延超, 吴伟杰, 丁玉庭, 邵平, 童川, 郜海燕. 山核桃油脂凝胶制备工艺优化[J]. 浙江农业学报, 2021, 33(12): 2390-2396. |
[8] | 李璐, 韩强, 吴伟杰, 房祥军, 郜海燕. 蓝莓苹果重组蜜饯干燥工艺优化及对品质的影响[J]. 浙江农业学报, 2019, 31(5): 816-822. |
[9] | 康海婷, 凌丹燕, 吴志娟, 路梅, 宗宇, 郭卫东. 蓝莓枝干溃疡病病原鉴定及品种抗病性研究[J]. 浙江农业学报, 2019, 31(3): 436-443. |
[10] | 范铭, 向露, 刘哲, 陆胜民. 基于体外降糖活性的桑葚渣水提物的超声辅助工艺优化[J]. 浙江农业学报, 2019, 31(3): 480-486. |
[11] | 马露, 孔维洲, 王丽萍, 张喜康, 王聪, 李佩佩, 刘敦华. 响应面法优化发酵鹿肉干工艺及其货架期预测[J]. 浙江农业学报, 2019, 31(12): 2109-2119. |
[12] | 郑雅燕, 杨颖, 陆胜民, 曹亚裙. 白萝卜发酵饮料菌株筛选、鉴定及品质分析[J]. 浙江农业学报, 2017, 29(3): 506-514. |
[13] | 任艳玲1, 田虹2, 王涛2,*, 蔡秋2, 陈霄2, 王兴宁2, 于晓飞3, 罗阿东2, 柯绍英2, 欧后丁3, 黄碟2. 出口蓝莓基地病虫害调查初报[J]. 浙江农业学报, 2016, 28(6): 1025-. |
[14] | 薛璐1,刘小路1,鲁晓翔1,张鹏2,陈绍慧2,李江阔2. 近红外漫反射无损检测蓝莓硬度的研究[J]. 浙江农业学报, 2015, 27(9): 1646-. |
[15] | 杨乐,侯智霞*,杨俊枫,宫中志,王冲,史文君. UV\|C对蓝莓酚类物质及其相关酶活性的影响[J]. 浙江农业学报, 2015, 27(6): 955-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||