浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 1981-1990.DOI: 10.3969/j.issn.1004-1524.20241096
        
               		王聪(
), 芦佳蕊, 林玉飞, 潘兴家, 王杰, 朱隆静(
)
                  
        
        
        
        
    
收稿日期:2024-12-20
									
				
									
				
									
				
											出版日期:2025-09-25
									
				
											发布日期:2025-10-15
									
			作者简介:朱隆静,E-mail:zhulongjing@wzvcst.edu.cn通讯作者:
					朱隆静
							基金资助:
        
               		WANG Cong(
), LU Jiarui, LIN Yufei, PAN Xingjia, WANG Jie, ZHU Longjing(
)
			  
			
			
			
                
        
    
Received:2024-12-20
									
				
									
				
									
				
											Online:2025-09-25
									
				
											Published:2025-10-15
									
			Contact:
					ZHU Longjing   
							摘要: 为探明塑料大棚在瞬时风荷载作用下的动力失效机理,本研究对8 m跨度的塑料大棚进行风振响应分析,讨论了塑料大棚脊高和肩高对节点位移风振系数的影响,并提出便于工程应用的整体位移风振系数建议值。结果表明:风荷载作用下,塑料大棚位移呈双峰曲线分布,第1个位移峰值出现在距离迎风面支座1.0 m处,第2个位移峰值出现在距离迎风面支座6.3 m处,瞬时风荷载作用下的最大位移为平均风荷载作用下的2.5倍左右;最大等效应力发生在迎风面支座处,瞬时风荷载作用下的最大等效应力为平均风荷载作用下的2.1倍左右;塑料大棚脊高对节点位移风振系数影响较小,在保持肩高不变的情况下,脊高从3.4 m增加到3.8 m,节点位移风振系数变化幅度约5%;当脊高不变时,节点位移风振系数随肩高增加而减小;对于8 m跨度,肩高1.8~2.0 m、脊高3.4~3.8 m的塑料大棚,其整体位移风振系数变化范围为2.23~2.43。研究结果为塑料大棚结构抗风设计提供了理论依据。
中图分类号:
王聪, 芦佳蕊, 林玉飞, 潘兴家, 王杰, 朱隆静. 塑料大棚的风振响应与风振系数[J]. 浙江农业学报, 2025, 37(9): 1981-1990.
WANG Cong, LU Jiarui, LIN Yufei, PAN Xingjia, WANG Jie, ZHU Longjing. Wind induced responses and wind vibration coefficients of plastic greenhouses[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1981-1990.
																													图1 塑料大棚结构示意图 S,跨度;H1,肩高;H2,水平支撑离地高度;H3,脊高;θ1,边柱角度;θ2,倾斜支撑与水平支撑夹角。
Fig.1 Schematic diagram of plastic greenhouse structure S, Span; H1, Shoulder height; H2, Height of horizontal brace from ground; H3, Ridge height; θ1, Side column angle; θ2, Angle between inclined brace and horizontal brace.
																													图3 风荷载体型系数 正值代表风压力,负值代表风吸力。S,跨度。
Fig.3 Shape coefficients of wind load The positive value represents the wind pressure, and the negative value represents the wind suction.S, Span.
																													图7 脊高对位移风振系数的影响 (A)肩高H1=1.8 m;(B)肩高H1=1.9 m;(C)肩高H1=2.0 m。
Fig.7 Effects of ridge height on displacement wind vibration coefficient (A) Shoulder height H1=1.8 m; (B) Shoulder height H1=1.9 m; (C) Shoulder height H1=2.0 m.
																													图8 肩高对位移风振系数的影响 (A)脊高H3=3.4 m;(B)脊高H3=3.6 m;(C)脊高H3=3.8 m。
Fig.8 Effects of shoulder height on displacement wind vibration coefficient (A) Ridge height H3=3.4 m; (B) Ridge height H3=3.6 m; (C) Ridge height H3=3.8 m.
| 脊高 Ridge height/m  |  不同肩高(m)下的整体位移风振系数 Global displacement wind vibration coefficient under different shoulder height (m)  | ||
|---|---|---|---|
| 1.8 | 1.9 | 2.0 | |
| 3.4 | 2.40 | 2.34 | 2.27 | 
| 3.5 | 2.43 | 2.36 | 2.27 | 
| 3.6 | 2.41 | 2.34 | 2.24 | 
| 3.7 | 2.41 | 2.33 | 2.25 | 
| 3.8 | 2.35 | 2.27 | 2.23 | 
表1 8 m跨度塑料大棚的整体位移风振系数
Table 1 Global displacement wind vibration coefficient of plastic greenhouse with 8 m span
| 脊高 Ridge height/m  |  不同肩高(m)下的整体位移风振系数 Global displacement wind vibration coefficient under different shoulder height (m)  | ||
|---|---|---|---|
| 1.8 | 1.9 | 2.0 | |
| 3.4 | 2.40 | 2.34 | 2.27 | 
| 3.5 | 2.43 | 2.36 | 2.27 | 
| 3.6 | 2.41 | 2.34 | 2.24 | 
| 3.7 | 2.41 | 2.33 | 2.25 | 
| 3.8 | 2.35 | 2.27 | 2.23 | 
| [1] | 魏晓明, 李明, 周长吉. 各国标准中塑料大棚雪荷载分布系数的比较[J]. 农机化研究, 2014, 36(1): 51-55. | 
| WEI X M, LI M, ZHOU C J. Compare of snow load shape coefficient of plastic tunnel in different greenhouse design codes[J]. Journal of Agricultural Mechanization Research, 2014, 36(1): 51-55. (in Chinese with English abstract) | |
| [2] | 李天来, 齐明芳, 孟思达. 中国设施园艺发展60年成就与展望[J]. 园艺学报, 2022, 49(10): 2119-2130. | 
| LI T L, QI M F, MENG S D. Sixty years of facility horticulture development in China: achievements and prospects[J]. Acta Horticulturae Sinica, 2022, 49(10): 2119-2130. (in Chinese with English abstract) | |
| [3] | 何衍萍, 闫俊月, 周磊. 塑料大棚恒载与风荷载组合的荷载分项系数计算分析[J]. 农业工程学报, 2016, 32(4): 179-184. | 
| HE Y P, YAN J Y, ZHOU L. Analyzing plastic greenhouse's partial coefficient for loads in combination of dead loads and wind loads[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 179-184. (in Chinese with English abstract) | |
| [4] | WANG C, NAN B, WANG T L, et al. Wind pressure acting on greenhouses: a review[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(2): 1-8. | 
| [5] | 闫俊月, 周磊, 周长吉, 等. 塑料大棚设计中基本风压取值方法[J]. 农业工程学报, 2014, 30(12): 171-176. | 
| YAN J Y, ZHOU L, ZHOU C J, et al. Method for calculating basic wind pressure of plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(12): 171-176. (in Chinese with English abstract) | |
| [6] | 杨小锋, 刘建, 曹明, 等. 热区经济型抗台风钢管塑料大棚结构优化设计[J]. 中国农机化学报, 2016, 37(12): 48-52. | 
| YANG X F, LIU J, CAO M, et al. Structural optimization design of economical steel tube plastic greenhouse with typhoon resistance in tropical region[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(12): 48-52. (in Chinese with English abstract) | |
| [7] | RYU H, CHOI M, CHO M, et al. Damage index estimation by analysis of meteorological disasters on film plastic greenhouses[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(5): 58-63. | 
| [8] | 李昊, 黄斌, 刘建, 等. 热带海岛地区薄膜温室建筑抗风研究综述[J]. 自然灾害学报, 2022, 31(5): 13-23. | 
| LI H, HUANG B, LIU J, et al. Review on wind resistance of thin-film greenhouse buildings in tropical islands[J]. Journal of Natural Disasters, 2022, 31(5): 13-23. (in Chinese with English abstract) | |
| [9] | BRIASSOULIS D, DOUGKA G, DIMAKOGIANNI D, et al. Analysis of the collapse of a greenhouse with vaulted roof[J]. Biosystems Engineering, 2016, 151: 495-509. | 
| [10] | MARAVEAS C, TSAVDARIDIS K D. Strengthening techniques for greenhouses[J]. AgriEngineering, 2020, 2(1): 37-54. | 
| [11] | 乔海洋, 兰涛, 丁敏, 等. 钢结构温室大棚夹箍T形节点极限承载力研究[J]. 工业建筑, 2021, 51(3): 115-120. | 
| QIAO H Y, LAN T, DING M, et al. Study on ultimate bearing capacity of T-shaped joints connected with clamps in steel greenhouses[J]. Industrial Construction, 2021, 51(3): 115-120. (in Chinese with English abstract) | |
| [12] | DOUGKA G, BRIASSOULIS D. Load carrying capacity of greenhouse covering films under wind action: optimising the supporting systems of greenhouse films[J]. Biosystems Engineering, 2020, 192: 199-214. | 
| [13] | HEO G, CHOI I, LEE J, et al. Pull-out resistance of rebar stake depending on installation conditions and compaction levels of agricultural soil[J]. Horticulturae, 2024, 10(3): 277. | 
| [14] | KIM M. Effects of uplift resistance on continuous-pipe-foundation of single-span plastic greenhouse by steel plate pipe connector[J]. Agriculture, 2022, 12(12): 1998. | 
| [15] | WANG C, JIANG Y C, LI X Y, et al. Wind-induced vibration response analysis of Chinese solar greenhouses[J]. Computers and Electronics in Agriculture, 2021, 181: 105954. | 
| [16] | 童乐为, 金健, 周锋. 中欧温室规范中风荷载取值的对比[J]. 农业工程学报, 2013, 29(21): 174-181. | 
| TONG L W, JIN J, ZHOU F. Comparative study on calculation of wind loads on greenhouse structures between codes of China and Europe[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21): 174-181. (in Chinese with English abstract) | |
| [17] | REN J, WANG J, GUO S R, et al. Finite element analysis of the static properties and stability of a large-span plastic greenhouse[J]. Computers and Electronics in Agriculture, 2019, 165: 104957. | 
| [18] | LEE J Y, RYU H R. Structural analysis of pipe-framed greenhouses using interface elements for cross-over connections[J]. Engineering Structures, 2022, 266: 114504. | 
| [19] | 董晓星, 杜南山, 国志信, 等. 河南省钢骨架塑料大棚拱架结构标准化设计研究[J]. 中国农机化学报, 2022, 43(9): 47-54. | 
| DONG X X, DU N S, GUO Z X, et al. Standardized design of arch structure of steel frame plastic greenhouse in Henan Province[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 47-54. (in Chinese with English abstract) | |
| [20] | 刘平, 王春颖, 秦洪政, 等. 拱棚自动插架装置设计与试验[J]. 农业工程学报, 2020, 36(3): 21-29. | 
| LIU P, WANG C Y, QIN H Z, et al. Design and test of automatic cuttage device for arched shed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 21-29. (in Chinese with English abstract) | |
| [21] | 王健, 丁为民, 武燕飞. 互插式连栋塑料温室屋面风压分布的风洞试验研究[J]. 农业工程学报, 2008, 24(1): 230-234. | 
| WANG J, DING W M, WU Y F. Wind tunnel test of wind pressure distribution on mutual insert multi-greenhouse roof[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1): 230-234. (in Chinese with English abstract) | |
| [22] | LIU J, WU X Y, SUN F Y, et al. Development and application of a crossed multi-arch greenhouse in tropical China[J]. Agriculture, 2022, 12(12): 2164. | 
| [23] | 郭韦佟, 丁敏, 邓婷, 等. 圆拱结构静力分析的直接刚度法[J]. 广西大学学报(自然科学版), 2017, 42(4): 1351-1360. | 
| GUO W T, DING M, DENG T, et al. Direct stiffness method for static analysis of circular arch structure[J]. Journal of Guangxi University(Natural Science Edition), 2017, 42(4): 1351-1360. (in Chinese with English abstract) | |
| [24] | 王佳佳, 丁敏, 蒋秀根, 等. 考虑二阶弯矩效应的自由扭转圆曲梁静力分析[J]. 中国农业大学学报, 2019, 24(3): 109-116. | 
| WANG J J, DING M, JIANG X G, et al. Static analysis of circular curved beam with free torsion considering second-order moment effect[J]. Journal of China Agricultural University, 2019, 24(3): 109-116. (in Chinese with English abstract) | |
| [25] | 雷隽卿, 王东霞, 蒋秀根, 等. 温室结构风振效应的数值模拟[J]. 中国农业大学学报, 2007, 12(4): 85-89. | 
| LEI J Q, WANG D X, JIANG X G, et al. Numerical analysis on wind vibration effect on greenhouse structures[J]. Journal of China Agricultural University, 2007, 12(4): 85-89. (in Chinese with English abstract) | |
| [26] | WANG C, JIANG Y C, WANG T L, et al. Analysis of wind-induced responses of landing assembled Chinese solar greenhouses[J]. Biosystems Engineering, 2022, 220: 214-232. | 
| [27] | 王军林, 郭华, 任小强, 等. 灾害风荷载下温室单层柱面网壳整体动力倒塌分析[J]. 农业工程学报, 2017, 33(9): 195-203. | 
| WANG J L, GUO H, REN X Q, et al. Global dynamic collapse analysis of single-layer cylindrical reticulated shell in greenhouse under disaster wind loads[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 195-203. (in Chinese with English abstract) | |
| [28] | SIM V, JUNG W. Wind fragility of steel and carbon-fiber reinforced plastic single-span greenhouses[J]. Journal of the Korean Society for Advanced Composite Structures, 2020, 11(1): 18-24. | 
| [29] | 姜迎春, 白义奎, 王永刚, 等. 塑料大棚结构风振响应规律研究[J]. 华中农业大学学报, 2018, 37(5): 123-130. | 
| JIANG Y C, BAI Y K, WANG Y G, et al. Wind-induced vibration response of plastic greenhouse structures[J]. Journal of Huazhong Agricultural University, 2018, 37(5): 123-130. (in Chinese with English abstract) | |
| [30] | JIANG Y C, BAI Y K, WANG C, et al. Dynamic response analyses of plastic greenhouse structure considering fluctuating wind load[J]. Advances in Civil Engineering, 2021, 2021(1): 8886557. | 
| [31] | 许晶, 胡治康, 史志清, 等. 拱形塑料大棚风振动力响应分析[J]. 中国农业大学学报, 2024, 29(11): 188-195. | 
| XU J, HU Z K, SHI Z Q, et al. Dynamic response analysis of wind load of arched plastic greenhouse[J]. Journal of China Agricultural University, 2024, 29(11): 188-195. (in Chinese with English abstract) | |
| [32] | WANG C, XU Z Y, JIANG Y C, et al. Numerical analysis of static and dynamic characteristics of large-span pipe-framed plastic greenhouses[J]. Biosystems Engineering, 2023, 232: 67-80. | 
| [33] | 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012. | 
| [34] | 中华人民共和国住房和城乡建设部. 农业温室结构荷载规范: GB/T 51183—2016 [S]. 北京: 中国计划出版社, 2016. | 
| [35] | 王修琼, 崔剑峰. Davenport谱中系数K的计算公式及其工程应用[J]. 同济大学学报(自然科学版), 2002, 30(7): 849-852. | 
| WANG X Q, CUI J F. Formula of coefficient K in expression of davenport spectrum and its engineering application[J]. Journal of Tongji University(Natural Science), 2002, 30(7): 849-852. (in Chinese with English abstract) | |
| [36] | 山东省农业标准化技术委员会. 拱圆大棚建造技术规范第1部分: 镀锌钢管装配型: DB37/T 4682.1—2023[S/OL]. (2023-12-28)[2024-10-12].https://dbba.sacinfo.org.cn/attachment/onlineRead/c223d09a020ad5c936dda25-5235700bc5cc5c59cffdb27d0c3268084d1260e83. | 
| [37] | ZHOU Z, LI Z M, MENG S P, et al. Wind-induced vibration responses of prestressed double-layered spherical latticed shells[J]. International Journal of Steel Structures, 2011, 11(2): 191-202. | 
| No related articles found! | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||