浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1700-1709.DOI: 10.3969/j.issn.1004-1524.2021.09.14
收稿日期:
2020-12-07
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
张璐
作者简介:
* 张璐,E-mail: zhanglu1211@bjfu.edu.cn基金资助:
YIN Zexin(), ZHANG Lu*(
), HAO Dan, BAI Yifan
Received:
2020-12-07
Online:
2021-09-25
Published:
2021-10-09
Contact:
ZHANG Lu
摘要:
为探究牛粪堆肥替代泥炭用于茄科蔬菜育苗的可行性,以牛粪堆肥和泥炭为原料,配制100%(体积分数,下同)牛粪堆肥(T1)、75%牛粪堆肥+25%泥炭(T2)、50%牛粪堆肥+50%泥炭(T3)、25%牛粪堆肥+75%泥炭(T4)和100%泥炭(CK)5种育苗基质,开展茄子、辣椒和番茄的育苗试验。测定和分析育苗基质的理化性质,以及3种茄科植物的出苗率,并采用主成分分析法分析育苗基质理化性质与3种茄科蔬菜出苗率的关联性。结果表明:当添加比例不高于75%时,牛粪堆肥可以增加育苗基质养分含量,改善其物理环境。在5种育苗基质下,茄子的出苗率均小于80%,未达到生产实践要求。当牛粪堆肥的添加比例为50%时,辣椒出苗率最高(98%)。当牛粪堆肥的添加比例为25%时,番茄出苗率较高(88%),虽仍低于CK处理,但已可满足生产要求。在茄子育苗中,牛粪堆肥和泥炭均不适用;在辣椒育苗中,牛粪堆肥替代泥炭的比例可达50%;在番茄育苗中,牛粪堆肥替代泥炭的比例可达25%。
中图分类号:
殷泽欣, 张璐, 郝丹, 白一帆. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700-1709.
YIN Zexin, ZHANG Lu, HAO Dan, BAI Yifan. Feasibility of cow dung compost substituting peat in seedling nursery of three Solanaceae plants[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1700-1709.
指标 Index | 牛粪堆肥 Cow dung compost | 泥炭 Peat |
---|---|---|
pH | 7.56 | 5.85 |
EC/(mS·cm-1) | 3.24 | 0.77 |
全氮Total nitrogen/(g·kg-1) | 3.13 | 0.30 |
全磷Total phosphorus/(g·kg-1) | 14.40 | 6.55 |
全钾Total potassium/(g·kg-1) | 17.00 | 0.17 |
腐殖酸Humic acid/% | 3.16 | 14.26 |
容重Bulk density/(g·cm-3) | 0.47 | 0.24 |
表1 育苗基质原材料的部分理化性质
Table 1 Physiochemical properties of raw materials of seedling substrate
指标 Index | 牛粪堆肥 Cow dung compost | 泥炭 Peat |
---|---|---|
pH | 7.56 | 5.85 |
EC/(mS·cm-1) | 3.24 | 0.77 |
全氮Total nitrogen/(g·kg-1) | 3.13 | 0.30 |
全磷Total phosphorus/(g·kg-1) | 14.40 | 6.55 |
全钾Total potassium/(g·kg-1) | 17.00 | 0.17 |
腐殖酸Humic acid/% | 3.16 | 14.26 |
容重Bulk density/(g·cm-3) | 0.47 | 0.24 |
处理 | 牛粪堆肥Cow dung compost | 泥炭Peat |
---|---|---|
T1 | 100 | 0 |
T2 | 75 | 25 |
T3 | 50 | 50 |
T4 | 25 | 75 |
CK | 0 | 100 |
表2 各处理育苗基质中2种原材料的体积分数
Table 2 Volume fraction of 2 raw materials in seedling substrates under different treatments %
处理 | 牛粪堆肥Cow dung compost | 泥炭Peat |
---|---|---|
T1 | 100 | 0 |
T2 | 75 | 25 |
T3 | 50 | 50 |
T4 | 25 | 75 |
CK | 0 | 100 |
指标Index | T1 | T2 | T3 | T4 | CK |
---|---|---|---|---|---|
容重Bulk density/(g·cm-3) | 0.48±0.02 a | 0.45±0.02 ab | 0.44±0.02 ab | 0.39±0.05 b | 0.25±0.02 c |
最大含水量Maximum water content/% | 54.97±0.07 d | 63.45±0.02 c | 66.53±0.02 b | 75.92±0.02 a | 77.70±0.02 a |
总孔隙度Total porosity/% | 70.11±0.01 c | 75.51±0.01 b | 73.54±0.01 bc | 78.28±0.01 ab | 81.15±0.02 a |
通气孔隙Aeration porosity/% | 23.36±0.01 a | 22.65±0.01 ab | 20.99±0.01 bc | 23.05±0.01 a | 19.50±0.01 c |
持水孔隙Water-holding porosity/% | 46.75±0.01 d | 52.86±0.01 c | 52.55±0.01 c | 55.23±0.01 b | 61.65±0.01 a |
pH | 7.56±0.06 a | 7.48±0.02 a | 7.29±0.04 b | 6.95±0.02 c | 5.85±0.06 d |
EC/(mS·cm-1) | 3.24±0.11 a | 2.92±0.01 b | 2.73±0.03 c | 2.45±0.04 d | 0.77±0.01 e |
全氮Total nitrogen/(g·kg-1) | 3.13±0.31 a | 2.88±0.01 a | 1.19±0.02 b | 1.00±0.07 b | 0.30±0.01 c |
全磷Total phosphorus/(g·kg-1) | 14.40±0.38 a | 13.85±0.57 ab | 12.16±0.19 bc | 10.92±1.20 c | 6.55±0.31 d |
全钾Total potassium/(g·kg-1) | 17.00±0.53 a | 16.60±0.01 a | 12.97±0.40 b | 10.56±0.73 c | 0.17±0.16 d |
速效磷Available phosphorus/(mg·kg-1) | 919.10±21.45 ab | 947.11±9.13 a | 875.47±6.06 bc | 827.62±20.62 c | 346.78±25.38 d |
速效钾Available potassium/(mg·kg-1) | 2 630.21±57.32 a | 2 705.06±24.39 a | 2 513.59±16.21 a | 2 374.49±58.84 a | 1 174.51±245.19 b |
碱解氮Alkaline nitrogen/(mg·kg-1) | 580.07±62.61 a | 507.85±5.06 ab | 509.48±6.87 ab | 470.17±10.32 b | 387.92±2.92 c |
腐殖酸Humic acid/% | 3.16±0.16 e | 5.97±0.09 b | 3.74±0.16 d | 4.40±0.24 c | 14.26±0.13 a |
有机质Organic matter/(g·kg-1) | 151.79±7.36 e | 203.61±11.49 d | 342.10±7.36 c | 417.31±19.04 b | 929.09±34.77 a |
表3 各处理下育苗基质的理化性质
Table 3 Physiochemical properties of seedling substrates under different treatments
指标Index | T1 | T2 | T3 | T4 | CK |
---|---|---|---|---|---|
容重Bulk density/(g·cm-3) | 0.48±0.02 a | 0.45±0.02 ab | 0.44±0.02 ab | 0.39±0.05 b | 0.25±0.02 c |
最大含水量Maximum water content/% | 54.97±0.07 d | 63.45±0.02 c | 66.53±0.02 b | 75.92±0.02 a | 77.70±0.02 a |
总孔隙度Total porosity/% | 70.11±0.01 c | 75.51±0.01 b | 73.54±0.01 bc | 78.28±0.01 ab | 81.15±0.02 a |
通气孔隙Aeration porosity/% | 23.36±0.01 a | 22.65±0.01 ab | 20.99±0.01 bc | 23.05±0.01 a | 19.50±0.01 c |
持水孔隙Water-holding porosity/% | 46.75±0.01 d | 52.86±0.01 c | 52.55±0.01 c | 55.23±0.01 b | 61.65±0.01 a |
pH | 7.56±0.06 a | 7.48±0.02 a | 7.29±0.04 b | 6.95±0.02 c | 5.85±0.06 d |
EC/(mS·cm-1) | 3.24±0.11 a | 2.92±0.01 b | 2.73±0.03 c | 2.45±0.04 d | 0.77±0.01 e |
全氮Total nitrogen/(g·kg-1) | 3.13±0.31 a | 2.88±0.01 a | 1.19±0.02 b | 1.00±0.07 b | 0.30±0.01 c |
全磷Total phosphorus/(g·kg-1) | 14.40±0.38 a | 13.85±0.57 ab | 12.16±0.19 bc | 10.92±1.20 c | 6.55±0.31 d |
全钾Total potassium/(g·kg-1) | 17.00±0.53 a | 16.60±0.01 a | 12.97±0.40 b | 10.56±0.73 c | 0.17±0.16 d |
速效磷Available phosphorus/(mg·kg-1) | 919.10±21.45 ab | 947.11±9.13 a | 875.47±6.06 bc | 827.62±20.62 c | 346.78±25.38 d |
速效钾Available potassium/(mg·kg-1) | 2 630.21±57.32 a | 2 705.06±24.39 a | 2 513.59±16.21 a | 2 374.49±58.84 a | 1 174.51±245.19 b |
碱解氮Alkaline nitrogen/(mg·kg-1) | 580.07±62.61 a | 507.85±5.06 ab | 509.48±6.87 ab | 470.17±10.32 b | 387.92±2.92 c |
腐殖酸Humic acid/% | 3.16±0.16 e | 5.97±0.09 b | 3.74±0.16 d | 4.40±0.24 c | 14.26±0.13 a |
有机质Organic matter/(g·kg-1) | 151.79±7.36 e | 203.61±11.49 d | 342.10±7.36 c | 417.31±19.04 b | 929.09±34.77 a |
处理 Treatment | 茄子 Eggplant | 辣椒 Chili | 番茄 Tomato |
---|---|---|---|
T1 | 20.00±2.00 b | 63.30±6.33 b | 23.30±2.33 c |
T2 | 72.00±7.20 a | 85.00±8.50 ab | 68.00±6.80 b |
T3 | 66.00±6.60 a | 98.00±9.80 a | 76.00±7.60 ab |
T4 | 65.00±6.50 a | 84.00±8.40 ab | 88.00±8.80 ab |
CK | 78.00±7.00 a | 92.00±9.20 a | 96.00±7.43 a |
表4 不同处理下3种茄科植物的出苗率
Table 4 Emergence rates of three Solanaceae plants under different treatments %
处理 Treatment | 茄子 Eggplant | 辣椒 Chili | 番茄 Tomato |
---|---|---|---|
T1 | 20.00±2.00 b | 63.30±6.33 b | 23.30±2.33 c |
T2 | 72.00±7.20 a | 85.00±8.50 ab | 68.00±6.80 b |
T3 | 66.00±6.60 a | 98.00±9.80 a | 76.00±7.60 ab |
T4 | 65.00±6.50 a | 84.00±8.40 ab | 88.00±8.80 ab |
CK | 78.00±7.00 a | 92.00±9.20 a | 96.00±7.43 a |
指标 Index | 茄子Eggplant | 辣椒Chili | 番茄Tomato | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
容重Bulk density | -0.993 | -0.014 | -0.993 | -0.019 | -0.994 | -0.016 |
最大含水量Maximum water content | 0.794 | -0.515 | 0.771 | 0.530 | 0.802 | -0.551 |
总孔隙度Total porosity | 0.853 | -0.383 | 0.832 | 0.241 | 0.856 | -0.360 |
通气孔隙Aeration porosity | -0.864 | 0.063 | -0.860 | -0.065 | -0.861 | 0.017 |
持水孔隙Water-holding porosity | 0.923 | -0.357 | 0.903 | 0.238 | 0.925 | -0.324 |
pH | -0.993 | -0.066 | -0.995 | -0.012 | -0.993 | -0.057 |
EC | -0.995 | -0.094 | -0.997 | 0.072 | -0.993 | -0.111 |
全氮Total nitrogen | -0.896 | 0.251 | -0.888 | -0.453 | -0.902 | 0.316 |
全磷Total phosphorus | -0.994 | -0.016 | -0.995 | -0.077 | -0.996 | -0.002 |
全钾Total potassium | -0.985 | -0.171 | -0.991 | 0.118 | -0.983 | -0.183 |
速效磷Available phosphorus | -0.975 | -0.220 | -0.984 | 0.160 | -0.973 | -0.232 |
速效钾Available potassium | -0.977 | -0.211 | -0.986 | 0.143 | -0.975 | -0.219 |
碱解氮Alkaline nitrogen | -0.966 | 0.219 | -0.954 | -0.154 | -0.968 | 0.197 |
腐殖酸Humic acid | 0.917 | 0.030 | 0.912 | -0.255 | 0.912 | 0.126 |
有机质Organic matter | 0.953 | -0.227 | 0.944 | 0.327 | 0.957 | -0.257 |
累积贡献率Cumulative contribution/% | 87.27 | 96.37 | 92.64 | 98.13 | 88.01 | 97.26 |
表5 育苗基质理化性质与3种茄科植物出苗率的主成分分析结果
Table 5 Principal component analysis result of physicochemical properties of seedling substrates with emergence rate of three Solanaceae plants
指标 Index | 茄子Eggplant | 辣椒Chili | 番茄Tomato | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
容重Bulk density | -0.993 | -0.014 | -0.993 | -0.019 | -0.994 | -0.016 |
最大含水量Maximum water content | 0.794 | -0.515 | 0.771 | 0.530 | 0.802 | -0.551 |
总孔隙度Total porosity | 0.853 | -0.383 | 0.832 | 0.241 | 0.856 | -0.360 |
通气孔隙Aeration porosity | -0.864 | 0.063 | -0.860 | -0.065 | -0.861 | 0.017 |
持水孔隙Water-holding porosity | 0.923 | -0.357 | 0.903 | 0.238 | 0.925 | -0.324 |
pH | -0.993 | -0.066 | -0.995 | -0.012 | -0.993 | -0.057 |
EC | -0.995 | -0.094 | -0.997 | 0.072 | -0.993 | -0.111 |
全氮Total nitrogen | -0.896 | 0.251 | -0.888 | -0.453 | -0.902 | 0.316 |
全磷Total phosphorus | -0.994 | -0.016 | -0.995 | -0.077 | -0.996 | -0.002 |
全钾Total potassium | -0.985 | -0.171 | -0.991 | 0.118 | -0.983 | -0.183 |
速效磷Available phosphorus | -0.975 | -0.220 | -0.984 | 0.160 | -0.973 | -0.232 |
速效钾Available potassium | -0.977 | -0.211 | -0.986 | 0.143 | -0.975 | -0.219 |
碱解氮Alkaline nitrogen | -0.966 | 0.219 | -0.954 | -0.154 | -0.968 | 0.197 |
腐殖酸Humic acid | 0.917 | 0.030 | 0.912 | -0.255 | 0.912 | 0.126 |
有机质Organic matter | 0.953 | -0.227 | 0.944 | 0.327 | 0.957 | -0.257 |
累积贡献率Cumulative contribution/% | 87.27 | 96.37 | 92.64 | 98.13 | 88.01 | 97.26 |
指标 Index | 茄子Eggplant | 辣椒Chili | 番茄Tomato | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
容重Bulk density | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
最大含水量Maximum water content | 0.600 | 0.285 | 0.500 | 0.391 | 1.000** | <0.01 |
总孔隙度Total porosity | 0.700 | 0.188 | 0.300 | 0.624 | 0.900* | 0.037 |
通气孔隙Aeration porosity | -0.900* | 0.037 | -0.900* | 0.037 | -0.700 | 0.188 |
持水孔隙Water-holding porosity | 0.700 | 0.188 | 0.300 | 0.624 | 0.900* | 0.037 |
pH | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
EC | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
全氮Total nitrogen | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
全磷Total phosphorus | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
全钾Total potassium | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
速效磷Available phosphorus | -0.300 | 0.624 | -0.300 | 0.624 | -0.900* | 0.037 |
速效钾Available potassium | -0.300 | 0.624 | -0.300 | 0.624 | -0.900* | 0.037 |
碱解氮Alkaline nitrogen | -0.700 | 0.188 | -0.300 | 0.624 | -0.900* | 0.037 |
腐殖酸Humic acid | 0.900* | 0.037 | 0.400 | 0.505 | 0.700 | 0.188 |
有机质Organic matter | 0.600 | 0.285 | 0.500 | 0.391 | 1.000** | <0.01 |
表6 育苗基质理化因子与3种茄科植物出苗率的相关性特征
Table 6 Correlations within physicochemical factors of seedling substrates and emergence rates of three Solanaceae plants
指标 Index | 茄子Eggplant | 辣椒Chili | 番茄Tomato | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
容重Bulk density | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
最大含水量Maximum water content | 0.600 | 0.285 | 0.500 | 0.391 | 1.000** | <0.01 |
总孔隙度Total porosity | 0.700 | 0.188 | 0.300 | 0.624 | 0.900* | 0.037 |
通气孔隙Aeration porosity | -0.900* | 0.037 | -0.900* | 0.037 | -0.700 | 0.188 |
持水孔隙Water-holding porosity | 0.700 | 0.188 | 0.300 | 0.624 | 0.900* | 0.037 |
pH | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
EC | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
全氮Total nitrogen | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
全磷Total phosphorus | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
全钾Total potassium | -0.600 | 0.285 | -0.500 | 0.391 | -1.000** | <0.01 |
速效磷Available phosphorus | -0.300 | 0.624 | -0.300 | 0.624 | -0.900* | 0.037 |
速效钾Available potassium | -0.300 | 0.624 | -0.300 | 0.624 | -0.900* | 0.037 |
碱解氮Alkaline nitrogen | -0.700 | 0.188 | -0.300 | 0.624 | -0.900* | 0.037 |
腐殖酸Humic acid | 0.900* | 0.037 | 0.400 | 0.505 | 0.700 | 0.188 |
有机质Organic matter | 0.600 | 0.285 | 0.500 | 0.391 | 1.000** | <0.01 |
[1] | 游莹卓, 辛国凤, 魏珉, 等. 黄瓜免营养液无土育苗基质组配研究[J]. 中国土壤与肥料, 2015(3):95-99. |
YOU Y Z, XIN G F, WEI M, et al. Study on the composition of soilless media with free-nutrient solution for cucumber seedling[J]. Soil and Fertilizer Sciences in China, 2015(3):95-99.(in Chinese with English abstract) | |
[2] | 徐小莲. 我国蔬菜无土栽培现状与发展趋势[J]. 农业工程, 2019, 9(10):121-123. |
XU X L. Current situation and development trend of vegetable soilless cultivation in China[J]. Agricultural Engineering, 2019, 9(10):121-123.(in Chinese with English abstract) | |
[3] | 杨龙元. 牛粪堆肥制备成型基质及其育苗试验研究[D]. 武汉: 华中农业大学, 2017. |
YANG L Y. Research of dairy manure compost compressing into substrate and its effects on seedling[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[4] | 张玉凤, 田慎重, 边文范, 等. 有机物料对牛粪好氧堆肥过程的影响[J]. 山东农业科学, 2019, 51(5):76-82. |
ZHANG Y F, TIAN S Z, BIAN W F, et al. Effect of organic materials on aerobic composting of cow manure[J]. Shandong Agricultural Sciences, 2019, 51(5):76-82.(in Chinese with English abstract) | |
[5] | 刘铭, 尹福强. 牛粪作为烟草漂浮育苗替代基质的效果[J]. 江苏农业科学, 2018, 46(21):93-95. |
LIU M, YIN F Q. Effect of cow dung as an alternative substrate for tobacco float seedling[J]. Jiangsu Agricultural Sciences, 2018, 46(21):93-95.(in Chinese) | |
[6] | 郝丹, 张璐, 孙向阳, 等. 园林废弃物堆肥和牛粪有机肥用于金盏菊育苗的研究[J]. 西北林学院学报, 2019, 34(4):150-155. |
HAO D, ZHANG L, SUN X Y, et al. Effects of green waste compost and cow manure organic fertilizer on the emergence rate of Calendula officinalis[J]. Journal of Northwest Forestry University, 2019, 34(4):150-155.(in Chinese with English abstract) | |
[7] | 赵江宁, 李盛婷, 徐秋宇, 等. 不同栽培模式和立地条件对楸树人工林生长的影响[J]. 西北林学院学报, 2020, 35(3):106-113. |
ZHAO J N, LI S T, XU Q Y, et al. Effects of different cultivation patterns and site conditions on the growth of Catalpa bungei plantations[J]. Journal of Northwest Forestry University, 2020, 35(3):106-113.(in Chinese with English abstract) | |
[8] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[9] | 卫星, 李贵雨, 吕琳. 农林废弃物育苗基质的保水保肥效应[J]. 林业科学, 2015, 51(12):26-34. |
WEI X, LI G Y, LÜ L. Water and nutrient preservation of agri-forest residues used as nursery matrix[J]. Scientia Silvae Sinicae, 2015, 51(12):26-34.(in Chinese with English abstract) | |
[10] | 弭宝彬, 周火强, 谢玲玲, 等. 育苗基质配比及育苗方式对辣椒成苗的影响[J]. 中国农学通报, 2019, 35(28):63-69. |
MI B B, ZHOU H Q, XIE L L, et al. Proportions of seedling substrate and seedling culture mode affect pepper seedling formation[J]. Chinese Agricultural Science Bulletin, 2019, 35(28):63-69.(in Chinese with English abstract) | |
[11] | 张统帅, 闫丽娟, 李广, 等. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响[J]. 浙江农业学报, 2020, 32(8):1329-1341. |
ZHANG T S, YAN L J, LI G, et al. Effects of no tillage and straw mulching on soil nitrogen, water content and yield of spring wheat in dryland farming area[J]. Acta Agriculturae Zhejiangensis, 2020, 32(8):1329-1341.(in Chinese with English abstract) | |
[12] |
ABAD M, NOGUERA P, BURÉS S. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain[J]. Bioresource Technology, 2001, 77(2):197-200.
DOI URL |
[13] |
WANG L, ZUO X F, ZHENG F L, et al. The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region[J]. CATENA, 2020, 193:104615.
DOI URL |
[14] | 樊怀福, 杜长霞, 朱祝军, 等. 基质含水量对番茄生长、品质和产量的影响[J]. 浙江农业科学, 2011, 52(3):496-499. |
FAN H F, DU C X, ZHU Z J, et al. Effects of substrate water content on tomato growth, quality and yield[J]. Journal of Zhejiang Agricultural Sciences, 2011, 52(3):496-499.(in Chinese) | |
[15] | 孙军伟. 烤烟漂浮育苗基质中草炭替代和培育壮苗技术研究[D]. 郑州: 河南农业大学, 2009. |
SUN J W. Studies of peat substitution in matrix and nurture seedlings technique in the floating system of flue-cured tobacco[D]. Zhengzhou: Henan Agricultural University, 2009. (in Chinese with English abstract) | |
[16] | 马媛媛, 戴显庆, 彭绍好, 等. 天然沸石对松嫩平原黑钙土理化性质和保水能力的影响[J]. 北京林业大学学报, 2018, 40(2):51-57. |
MA Y Y, DAI X Q, PENG S H, et al. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2):51-57.(in Chinese with English abstract) | |
[17] | ADRIANO D C. Trace elements in terrestrial environment: biogeochemistry, bioavailability, and risk of metals[M]. New York: Springer, 2001. |
[18] |
ZHANG L, SUN X Y, TIAN Y, et al. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis[J]. Scientia Horticulturae, 2014, 176:70-78.
DOI URL |
[19] | 倪肖卫, 郭建斌, 殷庆霏, 等. 园林废弃物堆肥用作绿化基质对佛甲草生长的影响[J]. 干旱区资源与环境, 2019, 33(4):103-108. |
NI X W, GUO J B, YIN Q F, et al. Effects of green waste compost used as roof greening substrate on the growth of Sedum lineare[J]. Journal of Arid Land Resources and Environment, 2019, 33(4):103-108.(in Chinese with English abstract) | |
[20] | 王琳, 李素艳, 孙向阳, 等. 不同配比园林绿化废弃物和蘑菇渣混合蚯蚓堆肥的效果[J]. 浙江农林大学学报, 2019, 36(2):326-334. |
WANG L, LI S Y, SUN X Y, et al. Mixing garden wastes and spent mushroom compost of different ratios for vermicomposting[J]. Journal of Zhejiang A & F University, 2019, 36(2):326-334.(in Chinese with English abstract) | |
[21] | 边建文, 崔岩, 杨宋琪, 等. 衣藻和固氮鱼腥藻对盐胁迫下小麦幼苗生长的影响[J]. 浙江农业学报, 2020, 32(10):1748-1756. |
BIAN J W, CUI Y, YANG S Q, et al. Effects of Chlamydomonas debaryana Gor. and Anabaena azotica Ley. on wheat seedling growth under salt stress[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10):1748-1756.(in Chinese with English abstract) | |
[22] |
GARCIA-GOMEZ A, BERNAL M P, ROIG A. Growth of ornamental plants in two composts prepared from agroindustrial wastes[J]. Bioresource Technology, 2002, 83(2):81-87.
DOI URL |
[23] | 林薇, 周海霞, 兰挚谦, 等. 基于葵花杆硫酸铵生物基肥的番茄不同生育期配方肥的效果[J]. 浙江农业学报, 2019, 31(5):756-765. |
LIN W, ZHOU H X, LAN Z Q, et al. Application of formula fertilizer based on sunflower stem ammonium sulfate bio-based fertilizer in different growth stages of tomato[J]. Acta Agriculturae Zhejiangensis, 2019, 31(5):756-765.(in Chinese with English abstract) | |
[24] | 张敬敏, 刘春生, 叶桂梅, 等. 腐殖酸与无机肥配施对I-107欧美杨养分和土壤肥力的影响[J]. 林业科学, 2011, 47(9):158-161. |
ZHANG J M, LIU C S, YE G M, et al. Populus × euramericara cv.'74/76' nutrient content and soil fertility affected by application of humic acid with inorganic fertilizers[J]. Scientia Silvae Sinicae, 2011, 47(9):158-161.(in Chinese with English abstract) | |
[25] | 刘增照, 郝明德, 牛育华, 等. 施用腐殖酸肥料对猕猴桃果实品质和产量的影响[J]. 西北农业学报, 2019, 28(2):219-224. |
LIU Z Z, HAO M D, NIU Y H, et al. Effect of applying humic acid fertilizer on fruit quality and yield of kiwifruit[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(2):219-224.(in Chinese with English abstract) | |
[26] | 张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015. |
ZHANG L. The process control of green waste composting and the improvement and application of compost product[D]. Beijing: Beijing Forestry University, 2015. (in Chinese with English abstract) | |
[27] | 唐洪辉, 赵庆, 杨洋, 等. 不同基质配方对银叶金合欢苗木生长的影响[J]. 西南林业大学学报(自然科学), 2018, 38(1):1-9. |
TANG H H, ZHAO Q, YANG Y, et al. Effects of different media formulas on the growth of Acacia podalyriifolia seedlings[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(1):1-9.(in Chinese with English abstract) | |
[28] | 浩折霞, 黄大鹏, 顾少华, 等. 酒糟-牛粪堆肥复配瓜果类蔬菜育苗基质配方筛选[J]. 南京农业大学学报, 2017, 40(3):457-463. |
HAO Z X, HUANG D P, GU S H, et al. Screening of melon and fruit of vegetables grown substrate from different vinasse and cow dung composts mixtures[J]. Journal of Nanjing Agricultural University, 2017, 40(3):457-463.(in Chinese with English abstract) | |
[29] | 朱珠. 番茄夏季育苗基质筛选及水分调控研究[D]. 扬州: 扬州大学, 2018. |
ZHU Z. Research on screening of summer substrates of tomato seedling and water regulation[D]. Yangzhou: Yangzhou University, 2018. (in Chinese with English abstract) | |
[30] | 程立巧, 傅庆林, 金怡, 等. 不同基质对番茄根际微生物、酶活性及幼苗生长的影响[J]. 浙江农业学报, 2016, 28(6):973-978. |
CHENG L Q, FU Q L, JIN Y, et al. Influences of different substrates on tomato rhizospheric microbial communities, enzyme activities and seedling growth[J]. Acta Agriculturae Zhejiangensis, 2016, 28(6):973-978.(in Chinese with English abstract) | |
[31] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7):1141-1148. |
SHI J, LIU D Y, ZHANG F H. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7):1141-1148.(in Chinese with English abstract) | |
[32] |
FEGHHENABI F, HADI H, KHODAVERDILOO H, et al. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.)[J]. Agricultural Water Management, 2020, 231:106022.
DOI URL |
[33] | 张海滨, 孟海波, 沈玉君, 等. 好氧堆肥微生物研究进展[J]. 中国农业科技导报, 2017, 19(3):1-8. |
ZHANG H B, MENG H B, SHEN Y J, et al. Research progress on microbial aerobic composting[J]. Journal of Agricultural Science and Technology, 2017, 19(3):1-8.(in Chinese with English abstract) | |
[34] | 宋沙沙, 苟宇波, 何欣燕, 等. 改良剂对盐碱土的改良效应及垂柳生长的影响[J]. 北京林业大学学报, 2017, 39(5):89-97. |
SONG S S, GOU Y B, HE X Y, et al. Effects of modifier application on saline-alkali land amelioration and weeping willow growth[J]. Journal of Beijing Forestry University, 2017, 39(5):89-97.(in Chinese with English abstract) | |
[35] | 孙瑶, 张民, 陈海宁, 等. 铜基叶面肥及控释肥对辣椒生长发育和叶片保护酶等生理特性的影响[J]. 植物营养与肥料学报, 2014, 20(5):1221-1233. |
SUN Y, ZHANG M, CHEN H N, et al. Effects of copper based foliar fertilizer and controlled release fertilizer on growth and leaf protective enzyme activities of pepper[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5):1221-1233.(in Chinese with English abstract) | |
[36] | 徐云民. 茄子生长习性与环境条件[J]. 吉林农业, 2017(12):86. |
XU Y M. Growth habits and environmental conditions of eggplant[J]. Agriculture of Jilin, 2017(12):86.(in Chinese) | |
[37] | 郭勤卫, 章心惠, 张婷, 等. 育苗基质对辣椒幼苗生长的影响[J]. 浙江农业科学, 2020, 61(2):224-227. |
GUO Q W, ZHANG X H, ZHANG T, et al. Effect of seedling substrate on growth of pepper seedling[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(2):224-227.(in Chinese) | |
[38] | 贡金梅, 吴慧, 高杰. 4种硝酸盐对茄子种子萌发及根系的影响[J]. 新疆农业科学, 2014, 51(7):1292-1299. |
GONG J M, WU H, GAO J. Effects of 4 kinds of nitrates on eggplant seed germination and roots[J]. Xinjiang Agricultural Sciences, 2014, 51(7):1292-1299.(in Chinese with English abstract) | |
[39] | 秦爱丽, 郭泉水, 简尊吉, 等. 不同育苗基质对圃地崖柏出苗率和苗木生长的影响[J]. 林业科学, 2015, 51(9):9-17. |
QIN A L, GUO Q S, JIAN Z J, et al. Effects of different nursery substrates on germination rate and seedling growth of Thuja sutchuenensis[J]. Scientia Silvae Sinicae, 2015, 51(9):9-17.(in Chinese with English abstract) |
[1] | 程立巧1,傅庆林2,*,金怡1,吴云峰1. 不同基质对番茄根际微生物、酶活性及幼苗生长的影响[J]. 浙江农业学报, 2016, 28(6): 973-. |
[2] | 印利梅;礼茜;李红叶. 浙江省茄科蔬菜灰霉病菌对嘧霉胺的抗性[J]. , 2007, 19(2): 0-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||