浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1686-1699.DOI: 10.3969/j.issn.1004-1524.2021.09.13
贾生强1,2(), 范惠珊1,2, 陈喜靖2, 喻曼2, 沈阿林2, 苏瑶2,*()
收稿日期:
2020-12-20
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
苏瑶
作者简介:
* 苏瑶,E-mail: stellasu@sina.com基金资助:
JIA Shengqiang1,2(), FAN Huishan1,2, CHEN Xijing2, YU Man2, SHEN Alin2, SU Yao2,*()
Received:
2020-12-20
Online:
2021-09-25
Published:
2021-10-09
Contact:
SU Yao
摘要:
采集连续5 a秸秆还田(SF)和不还田(CK)处理0~20、20~40、40~60、60~80、80~100 cm土层的土壤样品,对各层土壤不同有机碳、氮组分含量,以及反硝化细菌的丰度和种群组成进行分析。结果显示,SF处理0~40 cm土层的颗粒有机碳(POC)、20~60 cm土层的矿物结合态有机碳(MOC)和0~80 cm土层的全氮含量较CK处理分别显著(P<0.05)增加45.69%~142.75%、89.34%~272.68%和14.26%~90.34%,但0~40 cm土层的溶解性有机碳(DOC)和0~60 cm土层的微生物生物量碳(MBC)、硝态氮含量分别显著(P<0.05)减少68.89%~75.93%、35.58%~75.43%和12.91%~61.86%,其中,约63.81%的硝态氮损失发生在0~40 cm土层。相关性分析结果显示,土壤有机碳组分中的POC和MOC与土壤反硝化细菌的丰度显著(P<0.05)正相关,且影响其种群结构变化。SF处理0~60 cm土层nirS、nirK和nosZ基因拷贝数较CK处理增加2.5~6.7倍,并可有效促进unclassified_c_Betaproteobacteria(β-变形菌纲)、unclassified_f_Rhodocyclaceae(红环菌科)、unclassified_k_norank_d_Bacteria和unclassified_o_Burkholderiales(伯克氏菌目,属β-变形菌)的生长。综上,长期秸秆还田下,土壤反硝化细菌的生长及其种群结构变化主要受相对稳定的POC和MOC的驱动,引起的土壤硝态氮损失应在耕地肥力维系和提升,以及作物营养管理中予以必要考虑。
中图分类号:
贾生强, 范惠珊, 陈喜靖, 喻曼, 沈阿林, 苏瑶. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 2021, 33(9): 1686-1699.
JIA Shengqiang, FAN Huishan, CHEN Xijing, YU Man, SHEN Alin, SU Yao. Driving mechanism of soil denitrifying bacterial community by soil organic carbon after long-term of straw return[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1686-1699.
目的基因 Target gene | 引物 Primer | 引物序列 Primer sequence | 参考文献 Reference |
---|---|---|---|
nirK | F1aCu | ATC ATG GTSCTG CCG CG | Krishnani[ |
R3Cu | GCC TCG ATC AGR TTG TGG TT | ||
nirS | cd3aF | GTS AAC GTS AAG GAR ACS GG | Szukics等[ |
R3cdR | GAS TTC GGR TGS GTC TTG A | ||
nosZ | NosF2 | GGG CTB GGG CCR TTG CA | Li等[ |
NosR2 | GAA GCG RTC CTT SGA RAA CTT G |
表1 荧光实时定量PCR扩增引物
Table 1 Primers used in fluorescent real-time quantitative PCR amplification
目的基因 Target gene | 引物 Primer | 引物序列 Primer sequence | 参考文献 Reference |
---|---|---|---|
nirK | F1aCu | ATC ATG GTSCTG CCG CG | Krishnani[ |
R3Cu | GCC TCG ATC AGR TTG TGG TT | ||
nirS | cd3aF | GTS AAC GTS AAG GAR ACS GG | Szukics等[ |
R3cdR | GAS TTC GGR TGS GTC TTG A | ||
nosZ | NosF2 | GGG CTB GGG CCR TTG CA | Li等[ |
NosR2 | GAA GCG RTC CTT SGA RAA CTT G |
图1 秸秆还田(SF)和不还田(CK)处理不同土层的DOC、MBC、POC和MOC含量 柱右侧无相同小写字母的表示差异显著(P<0.05)。DOC,溶解性有机碳;MBC,微生物生物量碳;POC,颗粒有机碳;MOC,矿物结合态有机碳。下同。
Fig.1 DOC, MBC, POC and MOC contents in different soil layers under straw return (SF) and control (CK) Bars marked without the same letters indicated significant difference at P<0.05. DOC, Dissolved organic carbon; MBC, Microbial biomass organic carbon; POC, Particulate organic carbon; MOC, Mineral-assoiciated organic carbon. The same as below.
图2 秸秆还田(SF)和不还田(CK)处理不同土层的全氮、碱解氮、铵态氮和硝态氮含量 TN,全氮;AN,碱解氮; NH 4 +-N,铵态氮; NO 3 --N,硝态氮。下同。
Fig.2 Contents of total nitrogen, alkali-hydrolyzable nitrogen, ammoniacal nitrogen and nitrate nitrogen in different soil layers under straw return (SF) and control (CK) TN, Total nitrogen; AN, Alkali-hydrolyzable nitrogen; NH 4 +-N, Ammoniacal nitrogen; NO 3 --N, Nitrate nitrogen. The same as below.
图4 秸秆还田(SF)和不还田(CK)处理不同土层的nirS、nirK和nosZ基因拷贝数
Fig.4 Copy number of nirS, nirK and nosZ gene in different soil layers under straw return (SF) and control (CK)
基因 Gene | 土层深度 Soil depth/cm | DOC | MBC | MOC | POC | | | AN | TN |
---|---|---|---|---|---|---|---|---|---|
nirS | 0~20 | -0.979** | -0.980** | 0.386 | 0.915* | -0.978** | -0.879* | -0.835* | 0.942** |
20~40 | -0.968** | -0.974** | 0.971** | 0.982** | -0.623 | -0.979** | -0.960** | 0.991** | |
40~60 | -0.940** | -0.992** | 0.992** | 0.994** | 0.973** | -0.988** | -0.970** | 0.979** | |
nirK | 0~20 | -0.952** | -0.938** | 0.523 | 0.830* | -0.947** | -0.851* | -0.722 | 0.901* |
20~40 | -0.977** | -0.984** | 0.987** | 0.959** | -0.528 | -0.975** | -0.977** | 0.965** | |
40~60 | -0.966** | -0.972** | 0.980** | 0.944** | 0.956** | -0.981** | -0.977** | 0.989** | |
nosZ | 0~20 | -0.982** | -0.984** | 0.347 | 0.918 | -0.991** | -0.838* | -0.827* | 0.896* |
20~40 | -0.974** | -0.985** | 0.985** | 0.981** | -0.567 | -0.985** | -0.969** | 0.995** | |
40~60 | -0.941** | -0.979** | 0.985** | 0.955** | 0.953** | -0.979 | -0.969** | 0.985** |
表2 不同反硝化细菌功能基因拷贝数与土壤有机质、氮组分的相关性
Table 2 Correlation within gene copy number of denitrifying bacteria and contents of soil organic carbon and nitrogen components
基因 Gene | 土层深度 Soil depth/cm | DOC | MBC | MOC | POC | | | AN | TN |
---|---|---|---|---|---|---|---|---|---|
nirS | 0~20 | -0.979** | -0.980** | 0.386 | 0.915* | -0.978** | -0.879* | -0.835* | 0.942** |
20~40 | -0.968** | -0.974** | 0.971** | 0.982** | -0.623 | -0.979** | -0.960** | 0.991** | |
40~60 | -0.940** | -0.992** | 0.992** | 0.994** | 0.973** | -0.988** | -0.970** | 0.979** | |
nirK | 0~20 | -0.952** | -0.938** | 0.523 | 0.830* | -0.947** | -0.851* | -0.722 | 0.901* |
20~40 | -0.977** | -0.984** | 0.987** | 0.959** | -0.528 | -0.975** | -0.977** | 0.965** | |
40~60 | -0.966** | -0.972** | 0.980** | 0.944** | 0.956** | -0.981** | -0.977** | 0.989** | |
nosZ | 0~20 | -0.982** | -0.984** | 0.347 | 0.918 | -0.991** | -0.838* | -0.827* | 0.896* |
20~40 | -0.974** | -0.985** | 0.985** | 0.981** | -0.567 | -0.985** | -0.969** | 0.995** | |
40~60 | -0.941** | -0.979** | 0.985** | 0.955** | 0.953** | -0.979 | -0.969** | 0.985** |
处理 Treatment | 土层深度 Soil depth/cm | 覆盖度 Coverage/% | 多样性Diversity | 丰富度Richness | |||
---|---|---|---|---|---|---|---|
Shannon | Simpson | ACE | Chao | ||||
CK | 0~20 | 98.49 | 3.84±0.02 ab | 0.066±0.005 a | 563±7 ab | 560±8 c | |
20~40 | 98.47 | 3.80±0.09 b | 0.068±0.002 a | 553±10 b | 549±12 c | ||
40~60 | 99.29 | 3.95±0.14 ab | 0.038±0.001 c | 455±23 c | 456±13 d | ||
SF | 0~20 | 98.29 | 4.09±0.01 ab | 0.045±0.002 bc | 635±23 a | 616±2 b | |
20~40 | 98.38 | 4.09±0.06 ab | 0.060±0.001 ab | 640±16 a | 673±14 a | ||
40~60 | 98.67 | 4.19±0.04 a | 0.045±0.004 bc | 543±16 b | 544±7 c |
表3 nirS型反硝化细菌多样性指数
Table 3 Diversity index of nirS-type denitrifying bacterial community
处理 Treatment | 土层深度 Soil depth/cm | 覆盖度 Coverage/% | 多样性Diversity | 丰富度Richness | |||
---|---|---|---|---|---|---|---|
Shannon | Simpson | ACE | Chao | ||||
CK | 0~20 | 98.49 | 3.84±0.02 ab | 0.066±0.005 a | 563±7 ab | 560±8 c | |
20~40 | 98.47 | 3.80±0.09 b | 0.068±0.002 a | 553±10 b | 549±12 c | ||
40~60 | 99.29 | 3.95±0.14 ab | 0.038±0.001 c | 455±23 c | 456±13 d | ||
SF | 0~20 | 98.29 | 4.09±0.01 ab | 0.045±0.002 bc | 635±23 a | 616±2 b | |
20~40 | 98.38 | 4.09±0.06 ab | 0.060±0.001 ab | 640±16 a | 673±14 a | ||
40~60 | 98.67 | 4.19±0.04 a | 0.045±0.004 bc | 543±16 b | 544±7 c |
图5 不同处理0~60 cm土层nirS型反硝化细菌群落的主坐标分析结果 空心图标代表CK,实心图标代表SF,D1、D2、D3分别代表0~20、20~40、40~60 cm土层。下同。PC1,第1主成分;PC2,第2主成分。
Fig.5 Principal coordinate analysis of nirS-type denitrifying bacterial community in 0-60 cm soil layer under different treatments Hollow icons represented CK; solid icons represented SF. D1, D2 and D3 represented soil layers of 0-20, 20-40, 40-60 cm, respectively. The same as below. PC1, The 1st principle component; PC2, The 2nd principle component.
图6 不同处理0~60 cm土层nirS型反硝化细菌种群在属水平上的组成
Fig.6 Community composition of nirS-type denitrifying bacterial at genus level in 0-60 cm soil layer under different treatments
图7 0~60 cm土层不同处理间存在显著(P<0.05)差异的nirS型反硝化菌属
Fig.7 nirS-type denitrifying bacteria with significant (P<0.05) difference under different treatments in 0-60 cm soil layer
图8 影响nirS型反硝化细菌种群结构的冗余分析结果 RD1,主成分1;RD2,主成分2。
Fig.8 Redundancy analysis result of nirS-type denitrifying bacterial community structure RD1, The 1st principle component; RD2, The 2nd principle component.
[1] | 张奇, 陈粲, 陈效民, 等. 不同深度秸秆还田对黄棕壤氮素和微生物生物量碳氮的影响[J]. 水土保持通报, 2019, 39(2):56-61. |
ZHANG Q, CHEN C, CHEN X M, et al. Effects of straw returning to different soil depths on soil nitrogen and microbial biomass carbon and nitrogen in yellow brown soil[J]. Bulletin of Soil and Water Conservation, 2019, 39(2):56-61.(in Chinese with English abstract) | |
[2] | 陈云峰, 夏贤格, 杨利, 等. 秸秆还田是秸秆资源化利用的现实途径[J]. 中国土壤与肥料, 2020(6):299-307. |
CHEN Y F, XIA X G, YANG L, et al. Straw return is the realistic way of straw resource utilization[J]. Soil and Fertilizer Sciences in China, 2020(6):299-307.(in Chinese with English abstract) | |
[3] | 李新华, 郭洪海, 朱振林, 等. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报, 2016, 32(9):130-135. |
LI X H, GUO H H, ZHU Z L, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9):130-135.(in Chinese with English abstract) | |
[4] | 路文涛, 贾志宽, 张鹏, 等. 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J]. 农业环境科学学报, 2011, 30(3):522-528. |
LU W T, JIA Z K, ZHANG P, et al. Effects of straw returning on soil labile organic carbon and enzyme activity in semi-arid areas of southern Ningxia, China[J]. Journal of Agro-Environment Science, 2011, 30(3):522-528.(in Chinese with English abstract) | |
[5] | 慕平, 张恩和, 王汉宁, 等. 连续多年秸秆还田对玉米耕层土壤理化性状及微生物量的影响[J]. 水土保持学报, 2011, 25(5):81-85. |
MU P, ZHANG E H, WANG H N, et al. Effects of continuous returning straw to maize tilth soil on chemical character and microbial biomass[J]. Journal of Soil and Water Conservation, 2011, 25(5):81-85.(in Chinese with English abstract) | |
[6] |
JACINTHE P A, LAL R, KIMBLE J M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment[J]. Soil and Tillage Research, 2002, 67(2):147-157.
DOI URL |
[7] | 田慎重, 宁堂原, 王瑜, 等. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J]. 应用生态学报, 2010, 21(2):373-378. |
TIAN S Z, NING T Y, WANG Y, et al. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of Applied Ecology, 2010, 21(2):373-378.(in Chinese with English abstract) | |
[8] | 张国娟, 濮晓珍, 张鹏鹏, 等. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响[J]. 中国农业科学, 2017, 50(13):2624-2634. |
ZHANG G J, PU X Z, ZHANG P P, et al. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region[J]. Scientia Agricultura Sinica, 2017, 50(13):2624-2634.(in Chinese with English abstract) | |
[9] |
FENN M E, POTH M A, TERRY J D, et al. Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site[J]. Canadian Journal of Forest Research, 2005, 35(6):1464-1486.
DOI URL |
[10] | ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4):533-616. |
[11] |
DANDIE C E, WERTZ S, LECLAIR C L, et al. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones[J]. FEMS Microbiology Ecology, 2011, 77(1):69-82.
DOI URL |
[12] |
SUN R B, GUO X S, WANG D Z, et al. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle[J]. Applied Soil Ecology, 2015, 95:171-178.
DOI URL |
[13] |
CHEN Z, LUO X Q, HU R G, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial Ecology, 2010, 60(4):850-861.
DOI URL |
[14] |
PRIEMÉ A, BRAKER G, TIEDJE J M. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils[J]. Applied and Environmental Microbiology, 2002, 68(4):1893-1900.
DOI URL |
[15] |
YU Z H, LIU J J, LI Y S, et al. Impact of land use, fertilization and seasonal variation on the abundance and diversity of nirS-type denitrifying bacterial communities in a Mollisol in Northeast China[J]. European Journal of Soil Biology, 2018, 85:4-11.
DOI URL |
[16] | 尹昌, 范分良, 李兆君, 等. 长期施用有机和无机肥对黑土nirS型反硝化菌种群结构和丰度的影响[J]. 环境科学, 2012, 33(11):3967-3975. |
YIN C, FAN F L, LI Z J, et al. Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil[J]. Environmental Science, 2012, 33(11):3967-3975.(in Chinese with English abstract) | |
[17] |
YANG Y D, ZHAO J, JIANG Y, et al. Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil[J]. European Journal of Soil Biology, 2017, 82:1-9.
DOI URL |
[18] |
FAN F L, YIN C, TANG Y J, et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by13C-DNA-SIP[J]. Soil Biology and Biochemistry, 2014, 70:12-21.
DOI URL |
[19] |
SU Y, HE Z C, YANG Y H, et al. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon[J]. Scientific Reports, 2020, 10:5526.
DOI URL |
[20] | 倪进治, 徐建民, 谢正苗. 有机肥料施用后潮土中活性有机质组分的动态变化[J]. 农业环境科学学报, 2003, 22(4):416-419. |
NI J Z, XU J M, XIE Z M. Dynamic of active organic matter fractions in fluvio-aquic soil after application of organic fertilizers[J]. Journal of Agro-Environmental Science, 2003, 22(4):416-419.(in Chinese with English abstract) | |
[21] | 何振超. 小麦秸秆碳在低肥力土壤中的转化及其对土壤微生物群落结构的影响[D]. 杨凌: 西北农林科技大学, 2018. |
HE Z C. Transformation of wheat straw carbon in low fertility soil and its effect on soil microbial community structure[D]. Yangling: Northwest A & F University, 2018. (in Chinese with English abstract) | |
[22] | WANG N, LUO J L, JUHASZ A L, et al. Straw decreased N2O emissions from flooded paddy soils via altering denitrifying bacterial community compositions and soil organic carbon fractions[J]. FEMS Microbiology Ecology, 2020, 96(5): fiaa046. |
[23] | 韩锦泽. 玉米秸秆还田深度对土壤有机碳组分及酶活性的影响[D]. 哈尔滨: 东北农业大学, 2017. |
HAN J Z. Effects of maize straw returned depths on soil organic carbon fractions and enzyme activities[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract) | |
[24] | 王虎, 王旭东, 田宵鸿. 秸秆还田对土壤有机碳不同活性组分储量及分配的影响[J]. 应用生态学报, 2014, 25(12):3491-3498. |
WANG H, WANG X D, TIAN X H. Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3491-3498.(in Chinese with English abstract) | |
[25] |
LIANG B C, MACKENZIE A F, SCHNITZER M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1997, 26(2):88-94.
DOI URL |
[26] | 吴金水. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006. |
[27] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[28] | 张锡洲, 余海英, 王永东, 等. 不同形态氮肥对设施土壤速效养分的影响[J]. 西南农业学报, 2010, 23(4):1182-1187. |
ZHANG X Z, YU H Y, WANG Y D, et al. Effects of different nitrogen fertilizers on available nutrients concentrations of greenhouse soils[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(4):1182-1187.(in Chinese with English abstract) | |
[29] |
KRISHNANI K K. Detection and diversity of nitrifying and denitrifying functional genes in coastal aquaculture[J]. Aquaculture, 2010, 302(1/2):57-70.
DOI URL |
[30] |
SZUKICS U, ABELL G C J, HÖDL V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS Microbiology Ecology, 2010, 72(3):395-406.
DOI URL |
[31] |
LI H L, ZHANG Y, WANG T T, et al. Responses of soil denitrifying bacterial communities carrying nirS, nirK, and nosZ genes to revegetation of moving sand dunes[J]. Ecological Indicators, 2019, 107:105541.
DOI URL |
[32] |
HU X J, LIU J J, ZHU P, et al. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of northeast China[J]. Journal of Soils and Sediments, 2018, 18(5):2053-2062.
DOI URL |
[33] | FISH J A, CHAI B L, WANG Q, et al. FunGene: the functional gene pipeline and repository[J]. Frontiers in Microbiology, 2013, 4:291. |
[34] |
EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998.
DOI URL |
[35] | 吴玉红, 郝兴顺, 田霄鸿, 等. 秸秆还田对汉中盆地稻田土壤有机碳组分、碳储量及水稻产量的影响[J]. 水土保持学报, 2017, 31(4):325-331. |
WU Y H, HAO X S, TIAN X H, et al. Effect of straw returning on the contents of soil organic carbon fractions, carbon storage and crop yields of paddy field in Hanzhong basin[J]. Journal of Soil and Water Conservation, 2017, 31(4):325-331.(in Chinese with English abstract) | |
[36] | 王士超, 闫志浩, 王瑾瑜, 等. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响[J]. 中国农业科学, 2020, 53(4):782-794. |
WANG S C, YAN Z H, WANG J Y, et al. Nitrogen fertilizer and its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields[J]. Scientia Agricultura Sinica, 2020, 53(4):782-794.(in Chinese with English abstract) | |
[37] | 高洪军, 彭畅, 张秀芝, 等. 不同秸秆还田模式对黑钙土团聚体特征的影响[J]. 水土保持学报, 2019, 33(1):75-79. |
GAO H J, PENG C, ZHANG X Z, et al. Effects of different straw returning modes on characteristics of soil aggregates in chernozem soil[J]. Journal of Soil and Water Conservation, 2019, 33(1):75-79.(in Chinese with English abstract) | |
[38] | 尹云锋, 蔡祖聪. 利用δ13C方法研究添加玉米秸秆下红壤总有机碳和重组有机碳的分解速率[J]. 土壤学报, 2007, 44(6):1022-1027. |
YIN Y F, CAI Z C. Decomposition rates of organic carbon in whole soil and heavy fraction of red soil incorporated with maize stalks using carbon-13 natural abundance[J]. Acta Pedologica Sinica, 2007, 44(6):1022-1027.(in Chinese with English abstract) | |
[39] |
POLL C, MARHAN S, INGWERSEN J, et al. Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere[J]. Soil Biology and Biochemistry, 2008, 40(6):1306-1321.
DOI URL |
[40] | WANG Q J, CAO X, JIANG H, et al. Straw application and soil microbial biomass carbon change: a meta-analysis[J]. CLEAN: Soil, Air, Water, 2021, 49(2):2000386. |
[41] | 田慎重, 张玉凤, 边文范, 等. 深松和秸秆还田对旋耕农田土壤有机碳活性组分的影响[J]. 农业工程学报, 2020, 36(2):185-192. |
TIAN S Z, ZHANG Y F, BIAN W F, et al. Effects of subsoiling and straw return on soil labile organic carbon fractions in continuous rotary tillage cropland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2):185-192.(in Chinese with English abstract) | |
[42] | 马超, 周静, 刘满强, 等. 秸秆促腐还田对土壤养分及活性有机碳的影响[J]. 土壤学报, 2013, 50(5):915-921. |
MA C, ZHOU J, LIU M Q, et al. Effects of incorportion of pre-treated straws into field on soil nutrients and labile organic carbon in Shajiang black soil[J]. Acta Pedologica Sinica, 2013, 50(5):915-921.(in Chinese with English abstract) | |
[43] | 刘思佳, 关松, 张晋京, 等. 秸秆还田对黑土团聚体有机碳含量的影响: 基于多级团聚体结构的物理和化学保护作用[J]. 吉林农业大学学报, 2019, 41(1):61-70. |
LIU S J, GUAN S, ZHANG J J, et al. Effects of corn straw return on aggregate-associated organic carbon content in black soil: based on physical and chemical protection supplied by hierarchical aggregates[J]. Journal of Jilin Agricultural University, 2019, 41(1):61-70.(in Chinese with English abstract) | |
[44] | 李彬彬, 武兰芳. 秸秆还田条件下剖面土壤溶解性有机碳含量及其组分结构的变化[J]. 农业环境科学学报, 2019, 38(7):1567-1577. |
LI B B, WU L F. Concentration and components of dissolved organic carbon in soil profiles after crop residues were incorporated into the topsoil[J]. Journal of Agro-Environment Science, 2019, 38(7):1567-1577.(in Chinese with English abstract) | |
[45] | 翟明振, 胡恒宇, 宁堂原, 等. 盐碱地玉米产量及土壤硝态氮对深松耕作和秸秆还田的响应[J]. 植物营养与肥料学报, 2020, 26(1):64-73. |
ZHAI M Z, HU H Y, NING T Y, et al. Response of maize yield and soil nitrate to deep plowing and straw return in saline-alkali soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1):64-73.(in Chinese with English abstract) | |
[46] | 陈娜, 刘毅, 黎娟, 等. 长期施肥对稻田不同土层反硝化细菌丰度的影响[J]. 中国环境科学, 2019, 39(5):2154-2160. |
CHEN N, LIU Y, LI J, et al. Effects of long-term fertilization on the abundance of the key denitrifiers in profile of paddy soil profiles[J]. China Environmental Science, 2019, 39(5):2154-2160.(in Chinese with English abstract) | |
[47] |
PEI J B, LI H, LI S Y, et al. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level[J]. PLoS One, 2015, 10(3):e0120825.
DOI URL |
[48] |
BERNARD L, MOUGEL C, MARON P A, et al. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA-and RNA-SIP techniques[J]. Environmental Microbiology, 2007, 9(3):752-764.
DOI URL |
[49] | 杨艳华, 苏瑶, 何振超, 等. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J]. 应用生态学报, 2019, 30(2):668-676. |
YANG Y H, SU Y, HE Z C, et al. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: a review[J]. Chinese Journal of Applied Ecology, 2019, 30(2):668-676.(in Chinese with English abstract) | |
[50] | 王青霞, 陈喜靖, 喻曼, 等. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展[J]. 浙江农业学报, 2019, 31(2):333-342. |
WANG Q X, CHEN X J, YU M, et al. Research progress on effects of straw returning on nitrogen cycling microbes and functional genes in paddy soil[J]. Acta Agriculturae Zhejiangensis, 2019, 31(2):333-342.(in Chinese with English abstract) |
[1] | 刘根红, 薛银鑫, 张倩, 周佳瑞, 买小凤. 滴灌条件下不同耕深及秸秆还田量对玉米生长的影响[J]. 浙江农业学报, 2021, 33(1): 8-17. |
[2] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
[3] | 王青霞, 陈喜靖, 喻曼, 沈阿林. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展[J]. 浙江农业学报, 2019, 31(2): 333-342. |
[4] | 罗原骏, 蒲玉琳, 龙高飞, 叶春, 朱波. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389-1397. |
[5] | 胡心意, 傅庆林, 刘琛, 丁能飞, 林义成. 秸秆还田和耕作深度对稻田耕层土壤的影响[J]. 浙江农业学报, 2018, 30(7): 1202-1210. |
[6] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
[7] | 陈喜靖, 喻曼, 王强, 李华, 苏瑶, 高佳, 李国安, 李建强, 沈阿林. 浙江省稻田系统秸秆还田问题及对策[J]. 浙江农业学报, 2018, 30(10): 1765-1774. |
[8] | 敖金成1,罗华元2,张晓龙1,陈初2,毛春堂1,吕凯1,李卫保3,资文华1,*. 玉米秸秆还田方式对初烤烟叶品质及土壤肥力的影响[J]. 浙江农业学报, 2015, 27(8): 1456-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||