浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1710-1719.DOI: 10.3969/j.issn.1004-1524.2021.09.15
王灿1(), 付天岭2, 龚思同2, 娄飞1, 周凯3, 代良羽4, 刘静4, 林大松5, 何腾兵1,2,*(
)
收稿日期:
2021-01-09
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
何腾兵
作者简介:
* 何腾兵,E-mail: hetengbing@163.com基金资助:
WANG Can1(), FU Tianling2, GONG Sitong2, LOU Fei1, ZHOU Kai3, DAI Liangyu4, LIU Jing4, LIN Dasong5, HE Tengbing1,2,*(
)
Received:
2021-01-09
Online:
2021-09-25
Published:
2021-10-09
Contact:
HE Tengbing
摘要:
为优选适用于贵州喀斯特地区Cd污染农田水稻生产的叶面阻控剂,在贵州中部典型Cd超标稻田开展田间试验,于水稻分蘖期、抽穗期喷施不同叶面阻控剂作为处理(编号分别为SI、SE、GWY、FE、ZN),以不施叶面阻控剂的处理为对照(CK),在成熟期采集水稻植株样品,探讨不同叶面阻控剂对水稻各部位Cd迁移转化的影响。结果表明:与CK相比,喷施叶面阻控剂对土壤pH、有机质、Cd含量无显著影响。SE、GWY、ZN、SI处理下,水稻产量分别较CK显著(P<0.05)增加13.56%、5.77%、5.74%、7.30%。与CK相比,ZN处理下糙米镉含量降幅最大(56.5%),其次是SE、GWY处理,降幅分别为52.3%和39.4%。与CK相比:SE处理下,水稻茎节的Cd富集系数下降44.8%;ZN处理下,水稻穗轴、糙米中的Cd富集系数分别下降55.0%、58.0%;SI处理下,水稻叶的Cd富集系数提高133.7%。SE、SI处理下,枝梗-稻壳的Cd转移因子分别较CK降低65.8%、40.8%。综上,SE、GWY、ZN能提高水稻产量,降低糙米中的Cd含量,调节Cd在水稻植株各部位的富集与转运,可以用作保障黔中地区Cd污染耕地安全利用的水稻叶面阻控剂。
中图分类号:
王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719.
WANG Can, FU Tianling, GONG Sitong, LOU Fei, ZHOU Kai, DAI Liangyu, LIU Jing, LIN Dasong, HE Tengbing. Effects of foliar control agents on cadmium enrichment characteristics of rice in karst area in central Guizhou[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1710-1719.
处理 Treatment | pH | 有机质 Organic matter/(g·kg-1) | Cd/(mg·kg-1) | Zn(mg·kg-1) | Fe/(g·kg-1) | Si/(g·kg-1) |
---|---|---|---|---|---|---|
CK | 6.52±0.45 | 49.93±0.23 ab | 0.76±0.02 | 140.30±2.08 b | 15.31±0.17 c | 25.88±0.82 |
SE | 6.37±0.20 | 48.15±0.59 ab | 0.75±0.05 | 139.47±1.15 b | 15.76±0.14 bc | 24.98±0.37 |
GWY | 6.35±0.18 | 48.20±1.79 ab | 0.76±0.01 | 157.78±3.38 a | 16.68±0.39 b | 23.92±0.69 |
SI | 6.38±0.26 | 52.20±6.34 a | 0.73±0.05 | 149.03±3.75 ab | 15.62±0.08 bc | 25.32±0.20 |
ZN | 6.28±0.09 | 49.50±0.35 ab | 0.78±0.04 | 146.36±3.08 b | 15.54±0.40 bc | 23.27±0.55 |
FE | 6.32±0.08 | 45.70±3.16 b | 0.81±0.04 | 159.28±1.85 a | 18.11±0.38 a | 25.35±0.26 |
表1 不同处理下土壤pH值和有机质、Cd、Si、Zn、Fe含量变化
Table 1 Changes of soil pH, and contents of organic matter and Cd, Si, Zn, Fe under different treatments
处理 Treatment | pH | 有机质 Organic matter/(g·kg-1) | Cd/(mg·kg-1) | Zn(mg·kg-1) | Fe/(g·kg-1) | Si/(g·kg-1) |
---|---|---|---|---|---|---|
CK | 6.52±0.45 | 49.93±0.23 ab | 0.76±0.02 | 140.30±2.08 b | 15.31±0.17 c | 25.88±0.82 |
SE | 6.37±0.20 | 48.15±0.59 ab | 0.75±0.05 | 139.47±1.15 b | 15.76±0.14 bc | 24.98±0.37 |
GWY | 6.35±0.18 | 48.20±1.79 ab | 0.76±0.01 | 157.78±3.38 a | 16.68±0.39 b | 23.92±0.69 |
SI | 6.38±0.26 | 52.20±6.34 a | 0.73±0.05 | 149.03±3.75 ab | 15.62±0.08 bc | 25.32±0.20 |
ZN | 6.28±0.09 | 49.50±0.35 ab | 0.78±0.04 | 146.36±3.08 b | 15.54±0.40 bc | 23.27±0.55 |
FE | 6.32±0.08 | 45.70±3.16 b | 0.81±0.04 | 159.28±1.85 a | 18.11±0.38 a | 25.35±0.26 |
图1 不同处理的水稻产量 柱上无相同小写字母的表示处理间差异显著(P<0.05)。下同。
Fig.1 Rice yields under different treatments Bars marked without the same lowercase letters indicate significant difference at P<0.05. The same as below.
图2 不同处理下水稻各部位Cd分布热图 每一行对应1个处理,每一列对应于1个水稻部位,色度表示Cd含量高低,图中数值为3个重复的平均值±标准误,同列数字后无相同小写字母的表示不同处理下水稻同一部位的Cd含量差异显著(P<0.05)。
Fig.2 Heat map of Cd distribution in various parts of rice plants under different treatments The rows reflect treatments. The columns reflect different parts of rice plant. The color indicates the level of Cd content.The data are mean ± standard error of three replicates. Data marked without the same lowercase letters indicate significant difference of Cd content in the same part of rice plants under different treatments at P<0.05.
处理 Treatment | 根 Root | 茎 Stem | 茎节 Stem node | 叶 Leaf | 穗轴 Cob | 枝梗 Branch | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|---|---|
CK | 3.340 ±0.284 | 3.144 ±0.497 | 14.686 ±3.117 ab | 0.715 ±0.109 b | 2.959 ±0.267 ab | 1.137 ±0.160 | 0.351 ±0.038 | 0.671 ±0.030 ab |
SE | 2.987 ±0.394 | 2.675 ±0.797 | 8.111 ±2.006 b | 0.799 ±0.242 ab | 3.564 ±1.345 ab | 0.645 ±0.340 | 0.158 ±0.075 | 0.339 ±0.165 ab |
GWY | 3.815 ±0.228 | 2.968 ±0.378 | 12.590 ±0.852 ab | 0.830 ±0.198 ab | 2.386 ±1.147 ab | 1.027 ±0.306 | 0.205 ±0.043 | 0.408 ±0.107 ab |
SI | 4.903 ±0.586 | 4.390 ±0.455 | 18.929 ±3.440 a | 1.671 ±0.219 a | 5.103 ±0.468 a | 1.261 ±0.439 | 0.365 ±0.065 | 0.735 ±0.099 a |
ZN | 4.466 ±0.140 | 2.887 ±0.315 | 11.584 ±2.562 ab | 0.556 ±0.126 b | 1.332 ±0.309 b | 0.706 ±0.431 | 0.120 ±0.013 | 0.282 ±0.039 b |
FE | 4.507 ±0.861 | 4.477 ±1.401 | 13.299 ±2.211 ab | 1.394 ±0.486 ab | 4.387 ±0.990 ab | 1.331 ±0.487 | 0.333 ±0.128 | 0.598 ±0.199 ab |
表2 不同处理下水稻各部位的Cd富集系数
Table 2 Cd enrichment coefficient in various parts of rice plants under different treatments
处理 Treatment | 根 Root | 茎 Stem | 茎节 Stem node | 叶 Leaf | 穗轴 Cob | 枝梗 Branch | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|---|---|
CK | 3.340 ±0.284 | 3.144 ±0.497 | 14.686 ±3.117 ab | 0.715 ±0.109 b | 2.959 ±0.267 ab | 1.137 ±0.160 | 0.351 ±0.038 | 0.671 ±0.030 ab |
SE | 2.987 ±0.394 | 2.675 ±0.797 | 8.111 ±2.006 b | 0.799 ±0.242 ab | 3.564 ±1.345 ab | 0.645 ±0.340 | 0.158 ±0.075 | 0.339 ±0.165 ab |
GWY | 3.815 ±0.228 | 2.968 ±0.378 | 12.590 ±0.852 ab | 0.830 ±0.198 ab | 2.386 ±1.147 ab | 1.027 ±0.306 | 0.205 ±0.043 | 0.408 ±0.107 ab |
SI | 4.903 ±0.586 | 4.390 ±0.455 | 18.929 ±3.440 a | 1.671 ±0.219 a | 5.103 ±0.468 a | 1.261 ±0.439 | 0.365 ±0.065 | 0.735 ±0.099 a |
ZN | 4.466 ±0.140 | 2.887 ±0.315 | 11.584 ±2.562 ab | 0.556 ±0.126 b | 1.332 ±0.309 b | 0.706 ±0.431 | 0.120 ±0.013 | 0.282 ±0.039 b |
FE | 4.507 ±0.861 | 4.477 ±1.401 | 13.299 ±2.211 ab | 1.394 ±0.486 ab | 4.387 ±0.990 ab | 1.331 ±0.487 | 0.333 ±0.128 | 0.598 ±0.199 ab |
处理 Treatment | 根—茎 Root-stem | 茎—茎节 Stem-stem node | 茎节—叶 Stem node-leaf | 叶—穗轴 Leaf-cob | 穗轴—枝梗 Cob-branch | 枝梗—稻壳 Brunch-rice husk | 稻壳—糙米 Rice husk-brown rice |
---|---|---|---|---|---|---|---|
CK | 0.930±0.060 | 4.792±0.795 | 0.050±0.002 b | 1.595±0.017 a | 0.384±0.031 ab | 0.120±0.009 a | 1.939±0.121 |
SE | 0.863±0.117 | 3.157±0.435 | 0.105±0.024 a | 0.754±0.172 b | 0.162±0.021 b | 0.041±0.005 b | 2.187±0.168 |
GWY | 0.772±0.046 | 4.313±0.236 | 0.064±0.010 ab | 1.187±0.131 ab | 0.517±0.113 a | 0.117±0.028 a | 1.988±0.262 |
SI | 0.899±0.017 | 4.233±0.298 | 0.090±0.005 ab | 0.748±0.167 b | 0.236±0.049 ab | 0.071±0.006 ab | 2.039±0.076 |
ZN | 0.643±0.044 | 4.065±0.669 | 0.050±0.010 b | 1.119±0.378 ab | 0.451±0.148 ab | 0.095±0.009 ab | 2.378±0.309 |
FE | 0.947±0.101 | 3.284±0.429 | 0.099±0.015 ab | 0.943±0.015 ab | 0.301±0.054 ab | 0.075±0.014 ab | 1.865±0.079 |
表3 不同处理下水稻各部位的Cd转移因子
Table 3 Cd translocation coefficient in various parts of rice under different treatments
处理 Treatment | 根—茎 Root-stem | 茎—茎节 Stem-stem node | 茎节—叶 Stem node-leaf | 叶—穗轴 Leaf-cob | 穗轴—枝梗 Cob-branch | 枝梗—稻壳 Brunch-rice husk | 稻壳—糙米 Rice husk-brown rice |
---|---|---|---|---|---|---|---|
CK | 0.930±0.060 | 4.792±0.795 | 0.050±0.002 b | 1.595±0.017 a | 0.384±0.031 ab | 0.120±0.009 a | 1.939±0.121 |
SE | 0.863±0.117 | 3.157±0.435 | 0.105±0.024 a | 0.754±0.172 b | 0.162±0.021 b | 0.041±0.005 b | 2.187±0.168 |
GWY | 0.772±0.046 | 4.313±0.236 | 0.064±0.010 ab | 1.187±0.131 ab | 0.517±0.113 a | 0.117±0.028 a | 1.988±0.262 |
SI | 0.899±0.017 | 4.233±0.298 | 0.090±0.005 ab | 0.748±0.167 b | 0.236±0.049 ab | 0.071±0.006 ab | 2.039±0.076 |
ZN | 0.643±0.044 | 4.065±0.669 | 0.050±0.010 b | 1.119±0.378 ab | 0.451±0.148 ab | 0.095±0.009 ab | 2.378±0.309 |
FE | 0.947±0.101 | 3.284±0.429 | 0.099±0.015 ab | 0.943±0.015 ab | 0.301±0.054 ab | 0.075±0.014 ab | 1.865±0.079 |
处理 Treatment | Zn/(mg·kg-1) | Fe/(mg·kg-1) | Si/(g·kg-1) |
---|---|---|---|
CK | 22.300±0.478 ab | 11.687±0.210 a | 2.685±0.087 b |
SE | 23.273±0.702 ab | 9.220±0.244 cd | 3.036±0.059 ab |
GWY | 23.670±0.881 ab | 9.973±0.250 bc | 3.129±0.175 a |
SI | 19.587±0.745 b | 8.703±0.175 d | 2.699±0.101 b |
ZN | 23.337±1.811 ab | 8.827±0.154 d | 2.987±0.040 ab |
FE | 25.893±0.904 a | 10.600±0.352 b | 2.854±0.063 ab |
表4 不同处理下水稻糙米Zn、Fe、Si含量
Table 4 Zn, Fe and Si content in brown rice under different treatments
处理 Treatment | Zn/(mg·kg-1) | Fe/(mg·kg-1) | Si/(g·kg-1) |
---|---|---|---|
CK | 22.300±0.478 ab | 11.687±0.210 a | 2.685±0.087 b |
SE | 23.273±0.702 ab | 9.220±0.244 cd | 3.036±0.059 ab |
GWY | 23.670±0.881 ab | 9.973±0.250 bc | 3.129±0.175 a |
SI | 19.587±0.745 b | 8.703±0.175 d | 2.699±0.101 b |
ZN | 23.337±1.811 ab | 8.827±0.154 d | 2.987±0.040 ab |
FE | 25.893±0.904 a | 10.600±0.352 b | 2.854±0.063 ab |
[1] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692.(in Chinese with English abstract) | |
[2] | 于焕云, 崔江虎, 乔江涛, 等. 稻田镉砷污染阻控原理与技术应用[J]. 农业环境科学学报, 2018, 37(7):1418-1426. |
YU H Y, CUI J H, QIAO J T, et al. Principle and technique of arsenic and cadmium pollution control in paddy field[J]. Journal of Agro-Environment Science, 2018, 37(7):1418-1426.(in Chinese with English abstract) | |
[3] | 汪鹏, 王静, 陈宏坪, 等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37(7):1409-1417. |
WANG P, WANG J, CHEN H P, et al. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 2018, 37(7):1409-1417.(in Chinese with English abstract) | |
[4] | 邓思涵, 陈聪颖, 严冬, 等. 水稻重金属污染及其阻控技术研究[J]. 中国稻米, 2019, 25(4):27-30. |
DENG S H, CHEN C Y, YAN D, et al. Study on heavy metal pollution in rice and its control techniques[J]. China Rice, 2019, 25(4):27-30.(in Chinese with English abstract) | |
[5] | 张烁, 陆仲烟, 唐琦, 等. 水稻叶面调理剂的降Cd效果及其对营养元素转运的影响[J]. 农业环境科学学报, 2018, 37(11):2507-2513. |
ZHANG S, LU Z Y, TANG Q, et al. Effects of foliar modulators on cadmium accumulation and transport of nutrient elements in rice[J]. Journal of Agro-Environment Science, 2018, 37(11):2507-2513.(in Chinese with English abstract) | |
[6] |
GAO M, ZHOU J, LIU H L, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Science of the Total Environment, 2018, 631/632:1100-1108.
DOI URL |
[7] |
LIU J H, HOU H, ZHAO L, et al. Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P[J]. Science of the Total Environment, 2019, 690:321-328.
DOI URL |
[8] | 龙思斯, 宋正国, 雷鸣, 等. 不同阻控剂阻控重度Cd污染区水稻富集Cd的效果[J]. 中国稻米, 2017, 23(3):30-34. |
LONG S S, SONG Z G, LEI M, et al. Effects of different inhibitor on reducing cadmium content of rice[J]. China Rice, 2017, 23(3):30-34.(in Chinese with English abstract) | |
[9] |
WANG C R, RONG H, ZHANG X B, et al. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead[J]. Chemosphere, 2020, 251:126347.
DOI URL |
[10] |
CHEN X W, WU L, LUO N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice[J]. Geoderma, 2019, 337:749-757.
DOI URL |
[11] |
CUI J H, LIU T X, LI F B, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects[J]. Environmental Pollution, 2017, 228:363-369.
DOI URL |
[12] |
LIAN J P, ZHAO L F, WU J N, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.)[J]. Chemosphere, 2020, 239:124794.
DOI URL |
[13] |
YANG J Y, CHEN X, LU W C, et al. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition[J]. Chemosphere, 2020, 258:127135.
DOI URL |
[14] |
WANG Y F, ZHANG K, LU L, et al. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants[J]. Environmental Pollution, 2020, 265:114772.
DOI URL |
[15] | 韩潇潇, 任兴华, 王培培, 等. 叶面喷施锌离子对水稻各器官镉积累特性的影响[J]. 农业环境科学学报, 2019, 38(8):1809-1817. |
HAN X X, REN X H, WANG P P, et al. Effects of foliar application with zinc on the characteristics of cadmium accumulation in organs of rice plants[J]. Journal of Agro-Environment Science, 2019, 38(8):1809-1817.(in Chinese with English abstract) | |
[16] | 刘利杉. 有机水溶肥料对水稻生长及镉吸收的影响与机理探讨[D]. 长沙: 湖南农业大学, 2017. |
LIU L S. Effects and mechanism of organic water-soluble fertilizer on rice growth and the uptake of Cd in rice[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
[17] | 刘永贤, 潘丽萍, 黄雁飞, 等. 外源喷施硒与硅对水稻籽粒镉累积的影响[J]. 西南农业学报, 2017, 30(7):1588-1592. |
LIU Y X, PAN L P, HUANG Y F, et al. Effects of selenium or silicon foliar fertilizer on cadmium accumulation in rice[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7):1588-1592.(in Chinese with English abstract) | |
[18] | 章明奎, 倪中应, 沈倩. 农作物重金属污染的生理阻控研究进展[J]. 环境污染与防治, 2017, 39(1):96-101. |
ZHANG M K, NI Z Y, SHEN Q. Research progress on physiological control of heavy metal pollution in crops[J]. Environmental Pollution & Control, 2017, 39(1):96-101.(in Chinese with English abstract) | |
[19] | 邓思涵, 龙九妹, 陈聪颖, 等. 叶面肥阻控水稻富集镉的研究进展[J]. 中国农学通报, 2020, 36(1):1-5. |
DENG S H, LONG J M, CHEN C Y, et al. Foliar fertilizers mitigate cadmium accumulation in rice: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(1):1-5.(in Chinese with English abstract) | |
[20] | 朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004. |
[21] | 任明强, 赵宾, 赵国宣, 等. 贵州茶叶品质与地质环境的关系[J]. 贵州农业科学, 2011, 39(2):30-33. |
REN M Q, ZHAO B, ZHAO G X, et al. Correlation between tea quality and geological environment in Guizhou[J]. Guizhou Agricultural Sciences, 2011, 39(2):30-33.(in Chinese with English abstract) | |
[22] |
YAO W S, XIE X J, ZHAO P Z, et al. Global scale geochemical mapping program: contributions from China[J]. Journal of Geochemical Exploration, 2014, 139:9-20.
DOI URL |
[23] | 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5):1538-1544. |
LUO H, LIU X M, WANG S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5):1538-1544.(in Chinese with English abstract) | |
[24] |
BASHIR A, RIZWAN M, ALI S, et al. Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress[J]. Environmental Science and Pollution Research International, 2018, 25(21):20691-20699.
DOI URL |
[25] |
RIZWAN M, ALI S, HUSSAIN A, et al. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment[J]. Chemosphere, 2017, 187:35-42.
DOI URL |
[26] | 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012: 38-84. |
[27] | 杨寒雯, 刘秀明, 刘方, 等. 喀斯特高镉地质背景区水稻镉的富集、转运特征与机理[J]. 地球与环境, 2021, 49(1):18-24. |
YANG H W, LIU X M, LIU F, et al. Translocation and accumulation of cadmium in rice in a karst area with high geochemical background and its mechanism[J]. Earth and Environment, 2021, 49(1):18-24. (in Chinese with English abstract) | |
[28] |
SOURI M K. Aminochelate fertilizers: the new approach to the old problem: a review[J]. Open Agriculture, 2016, 1(1):118-123.
DOI URL |
[29] | 彭鸥, 刘玉玲, 铁柏清, 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应[J]. 生态学杂志, 2019, 38(4):1049-1056. |
PENG O, LIU Y L, TIE B Q, et al. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress[J]. Chinese Journal of Ecology, 2019, 38(4):1049-1056.(in Chinese with English abstract) | |
[30] |
WU Z C, LIU S, ZHAO J, et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental and Experimental Botany, 2017, 133:1-11.
DOI URL |
[31] |
HUANG Q Q, XU Y M, LIU Y Y, et al. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(31):31175-31182.
DOI URL |
[32] |
YUAN K, WANG C R, ZHANG C B, et al. Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland[J]. Environmental Pollution, 2020, 262:114236.
DOI URL |
[33] | 郭勇军, 杜建军, 伍志波, 等. 一种抑制水稻重金属镉吸收和富集的水溶肥料及制备方法: CN106810382B[P]. 2017-06-09. |
[34] | 佛山市铁人环保科技有限公司. 一种降镉叶面硅肥及其制备方法和应用: 201610978176[P]. 2018-06-26. |
[35] |
URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice (New York), 2012, 5(1):5.
DOI URL |
[36] | 谷建诚, 郭彬, 林义成, 等. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6):963-970. |
GU J C, GUO B, LIN Y C, et al. Effects of iron plaque in root surface on cadmium uptake of rice[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6):963-970.(in Chinese with English abstract) | |
[37] | 田茂苑. 贵州喀斯特地区不同水稻土镉污染风险格局划分[D]. 贵阳: 贵州大学, 2019. |
TIAN M Y. Classification of cadmium pollution risk patterns of different paddy soils in Karst area of Guizhou[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
[38] | 任明强, 张家德, 卢正艳, 等. 贵州喀斯特与非喀斯特农业生态地质环境质量对比研究[J]. 中国岩溶, 2009, 28(4):397-401. |
REN M Q, ZHANG J D, LU Z Y, et al. Contrastive studies on agro-ecological geology environment quality between Karst and non-Karst area in Guizhou[J]. Carsologica Sinica, 2009, 28(4):397-401.(in Chinese with English abstract) |
[1] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
[2] | 朱芸, 郭彬, 林义成, 傅庆林, 刘琛, 李凝玉, 李华. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响[J]. 浙江农业学报, 2021, 33(5): 885-892. |
[3] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[4] | 厉宝仙, 王保君, 怀燕, 沈亚强, 张红梅, 程旺大. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
[5] | 刘俊, 朱德泉, 于从羊, 薛康, 张顺, 廖娟. 舀勺型孔轮式水稻精量排种器设计与试验[J]. 浙江农业学报, 2021, 33(4): 739-752. |
[6] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[7] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[8] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[9] | 夏文建, 秦文婧, 刘佳, 陈晓芬, 张丽芳, 曹卫东, 徐昌旭, 陈静蕊. 长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J]. 浙江农业学报, 2020, 32(5): 878-885. |
[10] | 邵文奇, 钟平, 董玉兵, 孙春梅, 纪力, 庄春, 陈川, 章安康. 托盘育苗中光温资源差异及其对水稻秧苗素质的影响[J]. 浙江农业学报, 2020, 32(2): 191-199. |
[11] | 杨红云, 罗建军, 孙爱珍, 万颖, 易文龙. 基于图像特征的水稻叶片全氮含量估测模型研究[J]. 浙江农业学报, 2020, 32(12): 2232-2243. |
[12] | 张馨月, 李友发, 刘江宁, 富昊伟. 利用广亲和基因S5-n的功能标记鉴定特殊配组类型杂交种纯度研究[J]. 浙江农业学报, 2020, 32(1): 15-19. |
[13] | 邴静静, 高红梅. 基于SWOT分析的天津市优质稻米产业发展研究--以"小站稻"为例[J]. 浙江农业学报, 2019, 31(8): 1217-1223. |
[14] | 潘俊峰, 钟旭华, 黄农荣, 刘彦卓, 田卡, 梁开明, 彭碧琳, 傅友强, 胡香玉. 不同栽培模式对华南双季晚稻产量和氮肥利用率的影响[J]. 浙江农业学报, 2019, 31(6): 857-868. |
[15] | 何海燕, 柴荣耀, 邱海萍, 毛雪琴, 王艳丽, 孙国仓. 五个抗稻瘟病基因在浙江省水稻品种中的分布和抗性评价[J]. 浙江农业学报, 2019, 31(6): 922-929. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||