浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1913-1920.DOI: 10.3969/j.issn.1004-1524.2021.10.15
收稿日期:
2021-03-12
出版日期:
2021-10-25
发布日期:
2021-11-02
通讯作者:
韩睿
作者简介:
韩睿,E-mail: hanrui11473@163.com基金资助:
MENG Yan(), LIU Li, LI Yi, CHEN Laisheng, DU Zhongping, HAN Rui*(
)
Received:
2021-03-12
Online:
2021-10-25
Published:
2021-11-02
Contact:
HAN Rui
摘要:
为实现辣椒秸秆等农业废弃物的资源化利用,通过批式厌氧发酵试验,分别研究了经不同体积分数(2%、4%、6%、8%)的H2SO4和不同质量分数(2%、4%、6%、8%)的Ca(OH)2预处理的辣椒秸秆与羊粪混合厌氧发酵的产甲烷特性。结果表明,随着预处理中Ca(OH)2质量分数的升高,辣椒秸秆与羊粪混合厌氧发酵的甲烷产率升高,经8%Ca(OH)2预处理的甲烷产率最高(188.56 mL·g-1),显著(P<0.05)高于其他处理,较对照提高了61.26%。但随着预处理中H2SO4体积分数的升高,辣椒秸秆与羊粪混合厌氧发酵的甲烷产率降低,且显著(P<0.05)低于对照。利用修正的冈珀茨(Gompertz)模型能较好地拟合各处理的产甲烷过程,其中,经Ca(OH)2预处理的最大甲烷产率(Vm)值较大,说明Ca(OH)2预处理辣椒秸秆能有效提高其与羊粪混合发酵的水解速率。酸、碱预处理均对辣椒秸秆木质纤维素有一定的降解作用,其中,Ca(OH)2预处理的降解效果更好。
中图分类号:
孟艳, 柳丽, 李屹, 陈来生, 杜中平, 韩睿. 酸碱预处理辣椒秸秆与羊粪混合厌氧发酵特性[J]. 浙江农业学报, 2021, 33(10): 1913-1920.
MENG Yan, LIU Li, LI Yi, CHEN Laisheng, DU Zhongping, HAN Rui. Effect of acid and alkali pretreatment on anaerobic co-digestion characteristics of pepper straw and sheep manure[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1913-1920.
物料 Material | pH值 pH value | 总固体 TS/% | 挥发性固体 VS/% | 总碳 TC/% | 总氮 TN/% |
---|---|---|---|---|---|
羊粪Sheep manure | 7.81±0.13 | 45.78±4.98 | 32.59±2.24 | 34.14±0.15 | 2.15±0.31 |
辣椒秸秆Pepper stalk | — | 93.80±0.28 | 90.83±0.33 | 38.79±0.21 | 1.95±0.28 |
接种污泥Inoculum sludge | 7.52±0.05 | 11.09±1.28 | 8.35±0.27 | 13.77±0.56 | 1.51±0.42 |
表1 试验材料的基本特性
Table 1 Characteristics of test materials
物料 Material | pH值 pH value | 总固体 TS/% | 挥发性固体 VS/% | 总碳 TC/% | 总氮 TN/% |
---|---|---|---|---|---|
羊粪Sheep manure | 7.81±0.13 | 45.78±4.98 | 32.59±2.24 | 34.14±0.15 | 2.15±0.31 |
辣椒秸秆Pepper stalk | — | 93.80±0.28 | 90.83±0.33 | 38.79±0.21 | 1.95±0.28 |
接种污泥Inoculum sludge | 7.52±0.05 | 11.09±1.28 | 8.35±0.27 | 13.77±0.56 | 1.51±0.42 |
处理 Treatment | 辣椒秸秆 Pepper stalk/g | 羊粪 Sheep manure/g | 接种污泥 Inoculum sludge/g | 去离子水 Deionised water/mL |
---|---|---|---|---|
CK | 4.40 | 9.61 | 281.11 | 104.88 |
S1 | 4.26 | 9.31 | 283.84 | 102.59 |
S2 | 4.27 | 9.32 | 281.61 | 104.80 |
S3 | 4.24 | 9.27 | 284.15 | 102.34 |
S4 | 4.24 | 9.24 | 284.39 | 102.13 |
J1 | 4.31 | 9.41 | 283.05 | 103.23 |
J2 | 4.26 | 9.30 | 279.56 | 106.88 |
J3 | 4.28 | 9.35 | 283.59 | 102.78 |
J4 | 4.23 | 9.25 | 284.32 | 102.20 |
表2 辣椒秸秆、羊粪、接种污泥及去离子水添加量
Table 2 Added pepper stalk, sheep manure, inoculum and deionised water
处理 Treatment | 辣椒秸秆 Pepper stalk/g | 羊粪 Sheep manure/g | 接种污泥 Inoculum sludge/g | 去离子水 Deionised water/mL |
---|---|---|---|---|
CK | 4.40 | 9.61 | 281.11 | 104.88 |
S1 | 4.26 | 9.31 | 283.84 | 102.59 |
S2 | 4.27 | 9.32 | 281.61 | 104.80 |
S3 | 4.24 | 9.27 | 284.15 | 102.34 |
S4 | 4.24 | 9.24 | 284.39 | 102.13 |
J1 | 4.31 | 9.41 | 283.05 | 103.23 |
J2 | 4.26 | 9.30 | 279.56 | 106.88 |
J3 | 4.28 | 9.35 | 283.59 | 102.78 |
J4 | 4.23 | 9.25 | 284.32 | 102.20 |
图2 不同处理的甲烷产率 柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.2 Methane yield under different treatments Bars marked without the same letters indicated significant difference within treatments.
处理 Treatment | 实际甲烷产率 Actual methane yield/(mL·g-1) | Vm/(mL·g-1) | Rm/(mL·g-1) | R2 |
---|---|---|---|---|
CK | 116.93 | 114.89 | 8.93 | 0.986 |
S1 | 109.62 | 106.61 | 6.31 | 0.991 |
S2 | 106.31 | 102.95 | 7.66 | 0.990 |
S3 | 78.03 | 76.29 | 4.83 | 0.984 |
S4 | 77.31 | 75.20 | 4.34 | 0.981 |
J1 | 132.29 | 126.27 | 9.67 | 0.982 |
J2 | 147.20 | 140.72 | 9.95 | 0.984 |
J3 | 157.21 | 151.72 | 20.76 | 0.991 |
J4 | 188.56 | 181.02 | 19.76 | 0.992 |
表3 不同处理下甲烷产率的拟合结果
Table 3 Fitting parameters of methane yield under different treatments
处理 Treatment | 实际甲烷产率 Actual methane yield/(mL·g-1) | Vm/(mL·g-1) | Rm/(mL·g-1) | R2 |
---|---|---|---|---|
CK | 116.93 | 114.89 | 8.93 | 0.986 |
S1 | 109.62 | 106.61 | 6.31 | 0.991 |
S2 | 106.31 | 102.95 | 7.66 | 0.990 |
S3 | 78.03 | 76.29 | 4.83 | 0.984 |
S4 | 77.31 | 75.20 | 4.34 | 0.981 |
J1 | 132.29 | 126.27 | 9.67 | 0.982 |
J2 | 147.20 | 140.72 | 9.95 | 0.984 |
J3 | 157.21 | 151.72 | 20.76 | 0.991 |
J4 | 188.56 | 181.02 | 19.76 | 0.992 |
图6 混合厌氧发酵过程中各处理挥发性脂肪酸含量与总碱度比值的变化情况 VFAs,挥发性脂肪酸;TAC,总碱度。
Fig.6 Change of ratio of volatile fatty acids contents to total alkalinity during anaerobic co-digestion under differnt treatments VFAs, Volatile fatty acids; TAC, Total alkalinity.
处理 Treatment | 木质素 Lignin/% | 纤维素 Cellulose/% | 半纤维素 Semi-cellulose/% |
---|---|---|---|
CK | 14.01±1.42 a | 37.94±2.11 a | 23.26±1.43 a |
S1 | 13.89±0.84 a | 24.14±1.32 d | 19.08±0.62 c |
S2 | 12.33±0.73 b | 25.56±1.34 c | 19.75±0.76 bc |
S3 | 12.97±0.81 b | 21.13±1.52 e | 13.90±1.12 f |
S4 | 12.70±0.62 b | 27.10±2.45 b | 15.20±1.40 e |
J1 | 9.53±0.45 c | 12.08±0.77 h | 18.20±0.42 d |
J2 | 8.84±0.56 d | 9.85±0.65 i | 17.81±0.12 d |
J3 | 8.74±0.65 d | 13.89±0.63 g | 17.87±0.52 d |
J4 | 7.04±0.44 e | 14.46±1.22 f | 20.14±1.03 b |
表4 不同处理辣椒秸秆木质纤维素含量
Table 4 Lignocellulose content of pepper straw under different treatments
处理 Treatment | 木质素 Lignin/% | 纤维素 Cellulose/% | 半纤维素 Semi-cellulose/% |
---|---|---|---|
CK | 14.01±1.42 a | 37.94±2.11 a | 23.26±1.43 a |
S1 | 13.89±0.84 a | 24.14±1.32 d | 19.08±0.62 c |
S2 | 12.33±0.73 b | 25.56±1.34 c | 19.75±0.76 bc |
S3 | 12.97±0.81 b | 21.13±1.52 e | 13.90±1.12 f |
S4 | 12.70±0.62 b | 27.10±2.45 b | 15.20±1.40 e |
J1 | 9.53±0.45 c | 12.08±0.77 h | 18.20±0.42 d |
J2 | 8.84±0.56 d | 9.85±0.65 i | 17.81±0.12 d |
J3 | 8.74±0.65 d | 13.89±0.63 g | 17.87±0.52 d |
J4 | 7.04±0.44 e | 14.46±1.22 f | 20.14±1.03 b |
[1] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9):1715-1726. |
ZOU X X, MA Y Q, DAI X Z, et al. Spread and industry development of pepper in China[J]. Acta Horticulturae Sinica, 2020, 47(9):1715-1726.(in Chinese with English abstract) | |
[2] | 叶英林, 陈娟, 张西露, 等. 国内辣椒秸秆废弃物资源化利用研究进展[J]. 长江蔬菜, 2020(24):48-52. |
YE Y L, CHEN J, ZHANG X L, et al. Status and prospects of pepper straw waste utilization in China[J]. Journal of Changjiang Vegetables, 2020(24):48-52.(in Chinese with English abstract) | |
[3] | 刘瀚扬, 杨雪, 孙越鸿, 等. 羊粪无害化处理技术研究进展[J]. 当代畜牧, 2018(33):47-49. |
LIU H Y, YANG X, SUN Y H, et al. Research advance on harmless treatment technology of sheep/goat manure[J]. Contemporary Animal Husbandry, 2018(33):47-49.(in Chinese with English abstract) | |
[4] | MLAIK N, SAYADI S, MNASRI N, et al. Dry mesophilic anaerobic co-digestion of vegetable wastes with animal manures using leach bed reactor[J]. Biomass Conversion and Biorefinery, 2021[2021-03-12]. https://doi.org/10.1007/s13399-020-01165-3 |
[5] | NOOR R S, AHMED A, ABBAS I, et al. Enhanced biomethane production by 2-stage anaerobic co-digestion of animal manure with pretreated organic waste[J]. Biomass Conversion and Biorefinery, 2021[2021-03-12]. https://doi.org/10.1007/s13399-020-01210-1 |
[6] | ZHANG W Z, XIAO B Y, ZHANG K, et al. Effects of mixing ratios on anaerobic co-digestion of swine manure and rice straw: methane production and kinetics[J]. Biomass Conversion and Biorefinery, 2021[2021-03-12]. https://doi.org/10.1007/s13399-020-01211-0 |
[7] |
CHEN H, HUANG R, WU J, et al. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure[J]. Bioresource Technology, 2021, 320:124303.
DOI URL |
[8] |
THOMPSON T M, YOUNG B R, BAROUTIAN S. Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery[J]. Fuel, 2020, 279:118527.
DOI URL |
[9] | 毕金华, 陈广银, 陈乐, 等. 辣椒秸秆不同部位化学组分及厌氧发酵产沼气潜力[J]. 中国环境科学, 2016, 36(7):2073-2078. |
BI J H, CHEN G Y, CHEN L, et al. Chemical composition of different parts of chili stalks and their biogas production potentials during anaerobic fermentation[J]. China Environmental Science, 2016, 36(7):2073-2078.(in Chinese with English abstract) | |
[10] | 江皓, 吴凡, 于蕾, 等. 黄贮玉米秸秆在全混流、竖向推流、折流板竖向推流反应器中的厌氧发酵特性[J]. 化工进展, 2020, 39(8):3256-3262. |
JIANG H, WU F, YU L, et al. Characteristics of anaerobic fermentation in CSTR, VPF and BVPF for yellow storage of corn straw[J]. Chemical Industry and Engineering Progress, 2020, 39(8):3256-3262. (in Chinese with English abstract) | |
[11] | 李轶, 宫兴隆, 郭敬阳, 等. 不同预处理玉米秸秆对猪粪厌氧发酵重金属镉钝化效果[J]. 农业工程学报, 2020, 36(11):254-260. |
LI Y, GONG X L, GUO J Y, et al. Effects of various pretreated maize stovers on the passivation of cadmium by anaerobic fermentation of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11):254-260.(in Chinese with English abstract) | |
[12] |
&ŞENOL H. Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells[J]. Environmental Science and Pollution Research, 2021, 28(17):21661-21673.
DOI URL |
[13] |
YU Q, CUI S F, SUN C, et al. Synergistic effects of anaerobic co-digestion of pretreated corn stover with chicken manure and its kinetics[J]. Applied Biochemistry and Biotechnology, 2021, 193(2):515-532.
DOI URL |
[14] |
WANG D L, AI P, YU L, et al. Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation[J]. Biosystems Engineering, 2015, 132:47-55.
DOI URL |
[15] |
CHEN Y D, YANG H F, ZOU H J, et al. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge[J]. Journal of Cleaner Production, 2020, 277:123998.
DOI URL |
[16] |
CHEN X X, ZHAI R, SHI K Q, et al. Mixing alkali pretreated and acid pretreated biomass for cellulosic ethanol production featuring reduced chemical use and decreased inhibitory effect[J]. Industrial Crops and Products, 2018, 124:719-725.
DOI URL |
[17] |
DAI B L, GUO X J, YUAN D H, et al. Comparison of different pretreatments of rice straw substrate to improve biogas production[J]. Waste and Biomass Valorization, 2018, 9(9):1503-1512.
DOI URL |
[18] | 詹晓燕, 刘臣辉, 范海燕, 等. 水体中氨氮测定方法的比较:纳氏试剂光度法、靛酚蓝比色法[J]. 环境科学与管理, 2010, 35(11):132-134. |
ZHAN X Y, LIU C H, FAN H Y, et al. Comparison between two N-ammoniacal measurements in water: Napierian reagent colorimetric method and indophenol-blue colorimetric method[J]. Environmental Science and Management, 2010, 35(11):132-134. (in Chinese with English abstract) | |
[19] | 谢海婷. 氯离子对厌氧处理废水中蒸馏法测定VFA的影响[D]. 郑州:郑州大学, 2017. |
XIE H T. Influnces of chlorides on VFA distillation determination in anaerobic reaction[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese with English abstract) | |
[20] | 李超, 刘刚金, 刘静溪, 等. 基于产甲烷潜力和基质降解动力学的沼气发酵物料评估[J]. 农业工程学报, 2015, 31(24):262-268. |
LI C, LIU G J, LIU J X, et al. Organic substrates evaluation based on biochemical methane potential and degradation kinetic[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24):262-268.(in Chinese with English abstract) | |
[21] |
KAFLE G K, DE CHEN L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models[J]. Waste Management, 2016, 48:492-502.
DOI URL |
[22] |
MANCINI G, PAPIRIO S, LENS P N L, et al. Increased biogas production from wheat straw by chemical pretreatments[J]. Renewable Energy, 2018, 119:608-614.
DOI URL |
[23] | 张敏娜. 预处理对稻秆厌氧发酵产气特性的影响研究[D]. 西安: 陕西科技大学, 2018. |
ZHANG M N. Effect of pretreatment on anaerobic fermentation characteristics of rice straw[D]. Xi’an: Shaanxi University of Science & Technology, 2018. (in Chinese with English abstract) | |
[24] | 谢欣欣, 周俊, 吴美容, 等. 酸碱预处理对芦蒿秸秆厌氧发酵的影响[J]. 化工学报, 2014, 65(5):1883-1887. |
XIE X X, ZHOU J, WU M R, et al. Effect of acid and alkali pretreatment on anaerobic fermentation of Artemisia selengensis straw[J]. CIESC Journal, 2014, 65(5):1883-1887.(in Chinese with English abstract) | |
[25] | 章红, 黎少杰. 酸洗、堆沤预处理方法对秸秆厌氧发酵产气量的影响[J]. 现代盐化工, 2020, 47(2):57-58. |
ZHANG H, LI S J. Effect of acid pickling and retting pretreatment on gas production of straw anaerobic fermentation[J]. Modern Salt and Chemical Industry, 2020, 47(2):57-58.(in Chinese with English abstract) | |
[26] | VARSHA S S V, SOOMRO A F, BAIG Z T. et al. Methane production from anaerobic mono-and co-digestion of kitchen waste and sewage sludge: synergy study on cumulative methane production and biodegradability[J/OL]. Biomass Conversion and Biorefinery, 2020[2021-03-12]. http://dx.doi.org/10.1007/s13399-020-00884-x . |
[27] |
SUN C, XIE Y, HOU F, et al. Enhancement on methane production and anaerobic digestion stability via co-digestion of microwave-Ca(OH)2 pretreated sugarcane rind slurry and kitchen waste[J]. Journal of Cleaner Production, 2020, 264:121731.
DOI URL |
[28] |
LI Y B, PARK S Y, ZHU J Y. Solid-state anaerobic digestion for methane production from organic waste[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1):821-826.
DOI URL |
[29] | 桂伦, 陈莎莎, 黄振侠, 等. 进料浓度对猪粪混合稻秆厌氧产甲烷特性的影响[J]. 农业资源与环境学报, 2021, 38(2):305-316. |
GUI L, CHEN S S, HUANG Z X, et al. Effects of feedstock concentration on methane-producing performance of anaerobic co-digestion of pig manure and rice straw[J]. Journal of Agricultural Resources and Environment, 2021, 38(2):305-316.(in Chinese with English abstract) | |
[30] |
YU Q, SUN C, LIU R H, et al. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: the effect of biochar addition and urea pretreatment[J]. Bioresource Technology, 2021, 319:124197.
DOI URL |
[31] |
WANG X J, LU X G, LI F, et al. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition[J]. PLoS One, 2014, 9(5):e97265.
DOI URL |
[32] | 田玉菲, 杨莉, 周鸣人, 等. 玉米芯与鸡粪混合发酵提高甲烷发酵性能[J]. 化工进展, 2019, 38(6):2898-2904. |
TIAN Y F, YANG L, ZHOU M R, et al. Research on performance improvement of biomethane via codigestion of corncob and fowl dung[J]. Chemical Industry and Engineering Progress, 2019, 38(6):2898-2904.(in Chinese with English abstract) | |
[33] |
ZHAO H W, VIRARAGHAVAN T. Analysis of the performance of an anaerobic digestion system at the Regina wastewater treatment plant[J]. Bioresource Technology, 2004, 95(3):301-307.
DOI URL |
[34] |
CALLAGHAN F J, WASE D A J, THAYANITHY K, et al. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure[J]. Biomass and Bioenergy, 2002, 22(1):71-77.
DOI URL |
[35] | 王禹霄飞, 孙云博, 曲威. 温和湿热条件下碱预处理对玉米秸秆厌氧发酵的影响[J]. 江苏农业科学, 2020, 48(5):236-243. |
WANG Y X F, SUN Y B, QU W. Effect of alkali pretreament on anaerobic fermentation of corn straw under mild and hydrothermal conditions[J]. Jiangsu Agricultural Sciences, 2020, 48(5):236-243.(in Chinese) |
[1] | 米松华1,黄祖辉2,*,朱奇彪1,黄河啸1,李宝值1 . 稻田温室气体减排成本收益分析[J]. 浙江农业学报, 2016, 28(4): 707-. |
[2] | 邵美红;孙加焱;阮关海;*. 稻田温室气体排放与减排研究综述[J]. , 2011, 23(1): 181-187. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 949
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||