浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 814-823.DOI: 10.3969/j.issn.1004-1524.2022.04.18
收稿日期:
2020-10-23
出版日期:
2022-04-25
发布日期:
2022-04-28
通讯作者:
孙松林
作者简介:
*孙松林,E-mail: hnndssl@163.com基金资助:
PENG Caiwang(), ZHOU Ting, SUN Songlin(
), XIE Yelin, WEI Yuan
Received:
2020-10-23
Online:
2022-04-25
Published:
2022-04-28
Contact:
SUN Songlin
摘要:
为解决黑水虻在畜禽粪便处理后续分离环节中应用筛分机械作业难、缺乏准确离散元仿真模型等问题,以黑水虻为研究对象,基于EDEM仿真软件模拟,选取系统中“Hertz-Mindlin with JKR”接触模型,以堆积角为评价指标,对黑水虻离散元仿真模型参数标定进行研究。首先,通过Plackett-Burman试验筛选对黑水虻堆积有显著影响的3个参数项(黑水虻剪切模量、黑水虻间静摩擦系数、黑水虻间滚动摩擦系数);然后,结合抽板法堆积物理试验,利用最陡爬坡试验确定显著性参数的最优区域;最后,进一步以堆积角为响应值,基于二次回归正交旋转组合试验得到堆积角与显著性参数的二阶回归模型,并以实际堆积角为目标,针对显著性参数进行寻优,确定EDEM仿真试验中黑水虻的最佳接触参数,得到最佳组合:黑水虻剪切模量8.67 MPa、黑水虻间静摩擦系数0.43、黑水虻间滚动摩擦系数0.32。运用最佳参数组合进行仿真分析,得到堆积角的均值为35.84°,与物理试验测得堆积角34.66°的相对误差为3.40%。研究结果表明,使用该方法对黑水虻离散元仿真参数的标定具有可行性,为基于EDEM软件设计与研究黑水虻筛分机械提供有效物料特性数据基础。
中图分类号:
彭才望, 周婷, 孙松林, 谢烨林, 魏源. 基于堆积试验的黑水虻离散元仿真参数标定与分析[J]. 浙江农业学报, 2022, 34(4): 814-823.
PENG Caiwang, ZHOU Ting, SUN Songlin, XIE Yelin, WEI Yuan. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 814-823.
图2 箱体抽板法试验 1,底板;2,黑水虻幼虫;3,挡板;4,箱体;5,底座板。
Fig.2 Test of box side plate lifting method 1, Bottom plate; 2, Black soldier fly larva; 3, Baffle; 4, Box; 5, Base plate.
参数Parameters | 数值Values |
---|---|
黑水虻泊松比 X1 Poisson’s ratio of black soldier fly | 0.20~0.40a |
黑水虻密度X2 Density of black soldier fly/(kg·m-3) | 320~380a |
黑水虻剪切模量 X3 Shear modulus of black soldier fly/MPa | 8~14a |
不锈钢泊松比 Poisson’s ratio of steel | 0.30b |
不锈钢密度 Density of steel/(kg·m-3) | 7860b |
不锈钢剪切模量 Shear modulus of steel/Pa | 7.90×1010b |
黑水虻间碰撞恢复系数 X4 Black soldier fly restitution coefficient | 0.10~0.30a |
黑水虻间静摩擦系数 X5 Black soldier fly static friction coefficient | 0.40~0.60a |
黑水虻间滚动摩擦系数 X6 Black soldier fly rolling friction coefficient | 0.30~0.50a |
黑水虻-不锈钢碰撞恢复系数 X7 Black soldier fly-steel restitution coefficient | 0.20~0.40a |
黑水虻-不锈钢静摩擦系数 X8 Black soldier fly-steel static friction coefficient | 0.50~0.70a |
黑水虻-不锈钢滚动摩擦系数 X9 Black soldier fly-steel rolling friction coefficient | 0.35~0.55a |
黑水虻表面能 X10 Black soldier fly surface energy/(J·m-2) | 0.05~0.65a |
表1 仿真参数设置
Table 1 Setting of simulation parameters
参数Parameters | 数值Values |
---|---|
黑水虻泊松比 X1 Poisson’s ratio of black soldier fly | 0.20~0.40a |
黑水虻密度X2 Density of black soldier fly/(kg·m-3) | 320~380a |
黑水虻剪切模量 X3 Shear modulus of black soldier fly/MPa | 8~14a |
不锈钢泊松比 Poisson’s ratio of steel | 0.30b |
不锈钢密度 Density of steel/(kg·m-3) | 7860b |
不锈钢剪切模量 Shear modulus of steel/Pa | 7.90×1010b |
黑水虻间碰撞恢复系数 X4 Black soldier fly restitution coefficient | 0.10~0.30a |
黑水虻间静摩擦系数 X5 Black soldier fly static friction coefficient | 0.40~0.60a |
黑水虻间滚动摩擦系数 X6 Black soldier fly rolling friction coefficient | 0.30~0.50a |
黑水虻-不锈钢碰撞恢复系数 X7 Black soldier fly-steel restitution coefficient | 0.20~0.40a |
黑水虻-不锈钢静摩擦系数 X8 Black soldier fly-steel static friction coefficient | 0.50~0.70a |
黑水虻-不锈钢滚动摩擦系数 X9 Black soldier fly-steel rolling friction coefficient | 0.35~0.55a |
黑水虻表面能 X10 Black soldier fly surface energy/(J·m-2) | 0.05~0.65a |
序号 No. | 参数Parameters | 堆积角 Repose angle/(°) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | ||
1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 45.25 |
2 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 54.02 |
3 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 43.02 |
4 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 45.41 |
5 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 53.65 |
6 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 37.70 |
7 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 40.74 |
8 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 38.54 |
9 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 39.48 |
10 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 38.89 |
11 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 39.94 |
12 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 38.19 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.58 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.02 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.15 |
表2 试验设计及结果
Table 2 Design and results of Plackett-Burman test
序号 No. | 参数Parameters | 堆积角 Repose angle/(°) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | ||
1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 45.25 |
2 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 54.02 |
3 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 43.02 |
4 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 45.41 |
5 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 53.65 |
6 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 37.70 |
7 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 40.74 |
8 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 38.54 |
9 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 39.48 |
10 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 38.89 |
11 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 39.94 |
12 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 38.19 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.58 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.02 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.15 |
参数 Parameters | 标准化效应 Stdized effects | 均方和 Sum of mean squares | 贡献度/% Contribution degree | P值 P value |
---|---|---|---|---|
X1 | -3.48 | 36.37 | 10.08 | 0.052 9 |
X2 | 1.39 | 5.81 | 1.61 | 0.337 8 |
X3 | 3.86 | 44.74 | 12.39 | 0.039 2 |
X4 | -2.40 | 17.30 | 4.79 | 0.133 7 |
X5 | 7.20 | 155.45 | 43.07 | 0.004 9 |
X6 | 4.92 | 72.67 | 20.13 | 0.018 3 |
X7 | 0.98 | 2.91 | 0.81 | 0.484 3 |
X8 | 0.94 | 2.68 | 0.74 | 0.501 1 |
X9 | -0.90 | 2.42 | 0.67 | 0.521 3 |
X10 | -0.57 | 0.97 | 0.27 | 0.679 8 |
表3 试验结果方差分析
Table 3 Variance analysis of Plackett-Burman test results
参数 Parameters | 标准化效应 Stdized effects | 均方和 Sum of mean squares | 贡献度/% Contribution degree | P值 P value |
---|---|---|---|---|
X1 | -3.48 | 36.37 | 10.08 | 0.052 9 |
X2 | 1.39 | 5.81 | 1.61 | 0.337 8 |
X3 | 3.86 | 44.74 | 12.39 | 0.039 2 |
X4 | -2.40 | 17.30 | 4.79 | 0.133 7 |
X5 | 7.20 | 155.45 | 43.07 | 0.004 9 |
X6 | 4.92 | 72.67 | 20.13 | 0.018 3 |
X7 | 0.98 | 2.91 | 0.81 | 0.484 3 |
X8 | 0.94 | 2.68 | 0.74 | 0.501 1 |
X9 | -0.90 | 2.42 | 0.67 | 0.521 3 |
X10 | -0.57 | 0.97 | 0.27 | 0.679 8 |
序号 No. | 参数 Parameters | 堆积角 Repose angle/(°) | 相对误差 Relative error/% | ||
---|---|---|---|---|---|
X3/MPa | X5 | X6 | |||
1 | 7.0 | 0.35 | 0.25 | 31.73 | 8.4 |
2 | 8.5 | 0.40 | 0.30 | 34.54 | 0.3 |
3 | 10 | 0.45 | 0.35 | 37.44 | 8.0 |
4 | 11.5 | 0.50 | 0.40 | 40.06 | 15.6 |
5 | 13.0 | 0.55 | 0.45 | 43.46 | 25.4 |
6 | 14.5 | 0.60 | 0.50 | 45.47 | 31.2 |
表4 最陡爬坡试验设计及结果
Table 4 Design and results of steepest climbing test
序号 No. | 参数 Parameters | 堆积角 Repose angle/(°) | 相对误差 Relative error/% | ||
---|---|---|---|---|---|
X3/MPa | X5 | X6 | |||
1 | 7.0 | 0.35 | 0.25 | 31.73 | 8.4 |
2 | 8.5 | 0.40 | 0.30 | 34.54 | 0.3 |
3 | 10 | 0.45 | 0.35 | 37.44 | 8.0 |
4 | 11.5 | 0.50 | 0.40 | 40.06 | 15.6 |
5 | 13.0 | 0.55 | 0.45 | 43.46 | 25.4 |
6 | 14.5 | 0.60 | 0.50 | 45.47 | 31.2 |
水平 Level | 因素Factor | ||
---|---|---|---|
X3/MPa | X5 | X6 | |
-1.682 | 6.0 | 0.32 | 0.22 |
-1 | 7.0 | 0.35 | 0.25 |
0 | 8.5 | 0.40 | 0.30 |
1 | 10.0 | 0.45 | 0.35 |
1.682 | 11.0 | 0.48 | 0.38 |
表5 仿真因素试验编码
Table 5 Experiment factors and codes
水平 Level | 因素Factor | ||
---|---|---|---|
X3/MPa | X5 | X6 | |
-1.682 | 6.0 | 0.32 | 0.22 |
-1 | 7.0 | 0.35 | 0.25 |
0 | 8.5 | 0.40 | 0.30 |
1 | 10.0 | 0.45 | 0.35 |
1.682 | 11.0 | 0.48 | 0.38 |
序号 No. | x3 | x5 | x6 | 堆积角 Repose angle/(°) |
---|---|---|---|---|
1 | -1 | -1 | -1 | 31.56 |
2 | 1 | -1 | -1 | 32.27 |
3 | -1 | 1 | -1 | 35.55 |
4 | 1 | 1 | -1 | 35.13 |
5 | -1 | -1 | 1 | 31.40 |
6 | 1 | -1 | 1 | 33.91 |
7 | -1 | 1 | 1 | 36.25 |
8 | 1 | 1 | 1 | 37.50 |
9 | -1.682 | 0 | 0 | 33.38 |
10 | 1.682 | 0 | 0 | 34.95 |
11 | 0 | -1.682 | 0 | 30.45 |
12 | 0 | 1.682 | 0 | 36.95 |
13 | 0 | 0 | -1.682 | 34.27 |
14 | 0 | 0 | 1.682 | 35.05 |
15 | 0 | 0 | 0 | 33.84 |
16 | 0 | 0 | 0 | 33.11 |
17 | 0 | 0 | 0 | 33.52 |
18 | 0 | 0 | 0 | 32.83 |
19 | 0 | 0 | 0 | 32.34 |
20 | 0 | 0 | 0 | 32.63 |
表6 试验方案与结果
Table 6 Experiment scheme and results
序号 No. | x3 | x5 | x6 | 堆积角 Repose angle/(°) |
---|---|---|---|---|
1 | -1 | -1 | -1 | 31.56 |
2 | 1 | -1 | -1 | 32.27 |
3 | -1 | 1 | -1 | 35.55 |
4 | 1 | 1 | -1 | 35.13 |
5 | -1 | -1 | 1 | 31.40 |
6 | 1 | -1 | 1 | 33.91 |
7 | -1 | 1 | 1 | 36.25 |
8 | 1 | 1 | 1 | 37.50 |
9 | -1.682 | 0 | 0 | 33.38 |
10 | 1.682 | 0 | 0 | 34.95 |
11 | 0 | -1.682 | 0 | 30.45 |
12 | 0 | 1.682 | 0 | 36.95 |
13 | 0 | 0 | -1.682 | 34.27 |
14 | 0 | 0 | 1.682 | 35.05 |
15 | 0 | 0 | 0 | 33.84 |
16 | 0 | 0 | 0 | 33.11 |
17 | 0 | 0 | 0 | 33.52 |
18 | 0 | 0 | 0 | 32.83 |
19 | 0 | 0 | 0 | 32.34 |
20 | 0 | 0 | 0 | 32.63 |
方差来源 Soruce of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | P值 P value |
---|---|---|---|---|
模型Model | 65.07 | 9 | 7.23 | <0.000 1 |
x3 | 3.28 | 1 | 3.28 | 0.002 2 |
x5 | 50.35 | 1 | 50.35 | <0.000 1 |
x6 | 2.52 | 1 | 2.52 | 0.005 1 |
x3x5 | 0.71 | 1 | 0.71 | 0.086 0 |
x3x6 | 1.51 | 1 | 1.51 | 0.020 0 |
x5x6 | 0.32 | 1 | 0.32 | 0.233 9 |
| 2.15 | 1 | 2.15 | 0.008 0 |
| 0.71 | 1 | 0.71 | 0.087 2 |
| 4.54 | 1 | 4.54 | 0.000 7 |
残差Residual | 1.97 | 10 | 0.20 | |
失拟Lack of fit | 0.39 | 5 | 0.078 | 0.923 7 |
纯误差Pure error | 1.58 | 5 | 0.32 | |
总和Sum | 67.04 | 19 |
表7 回归方程方差分析
Table 7 Variance analysis of regression equation
方差来源 Soruce of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | P值 P value |
---|---|---|---|---|
模型Model | 65.07 | 9 | 7.23 | <0.000 1 |
x3 | 3.28 | 1 | 3.28 | 0.002 2 |
x5 | 50.35 | 1 | 50.35 | <0.000 1 |
x6 | 2.52 | 1 | 2.52 | 0.005 1 |
x3x5 | 0.71 | 1 | 0.71 | 0.086 0 |
x3x6 | 1.51 | 1 | 1.51 | 0.020 0 |
x5x6 | 0.32 | 1 | 0.32 | 0.233 9 |
| 2.15 | 1 | 2.15 | 0.008 0 |
| 0.71 | 1 | 0.71 | 0.087 2 |
| 4.54 | 1 | 4.54 | 0.000 7 |
残差Residual | 1.97 | 10 | 0.20 | |
失拟Lack of fit | 0.39 | 5 | 0.078 | 0.923 7 |
纯误差Pure error | 1.58 | 5 | 0.32 | |
总和Sum | 67.04 | 19 |
图7 黑水虻剪切模量与黑水虻间滚动摩擦系数交互作用
Fig.7 The interaction between the shear modulus of black soldier fly and the rolling friction coefficient of black soldier fly
[1] | 周晶, 青平. 规模化养殖对中国生猪粪便污染的影响研究[J]. 环境污染与防治, 2017, 39(8): 920-924. |
ZHOU J, QING P. Study on impact of scaled breeding on pig manure pollution in China[J]. Environmental Pollution & Control, 2017, 39(8): 920-924. (in Chinese with English abstract) | |
[2] | 王天琪, 章萍, 周文斌. 养猪废水中氮磷及重金属的处理方法[J]. 家畜生态学报, 2013, 34(11): 85-88. |
WANG T Q, ZHANG P, ZHOU W B. Treatments of nitrogen, phosphorus and heavy metals in swine wastewater[J]. Journal of Domestic Animal Ecology, 2013, 34(11): 85-88. (in Chinese with English abstract) | |
[3] | 喻国辉, 陈燕红, 喻子牛, 等. 黑水虻幼虫和预蛹的饲料价值研究进展[J]. 昆虫知识, 2009, 46(1): 41-45. |
YU G H, CHEN Y H, YU Z N, et al. Research progression on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff[J]. Chinese Bulletin of Entomology, 2009, 46(1): 41-45. (in Chinese with English abstract) | |
[4] | 柴志强, 王付彬, 郭明昉, 等. 水虻科昆虫及其资源化利用研究[J]. 广东农业科学, 2012, 39(10): 182-185. |
CHAI Z Q, WANG F B, GUO M F, et al. Research of Stratiomyidae and its utilization[J]. Guangdong Agricultural Sciences, 2012, 39(10): 182-185. (in Chinese with English abstract) | |
[5] | 陈杰, 邝哲师, 肖明, 等. 畜禽粪便处理的优质昆虫黑水虻[J]. 安徽农业科学, 2014, 42(24): 8180-8182. |
CHEN J, KUANG Z S, XIAO M, et al. High quality insect for animal manure treatment: Hermetia illucens[J]. Journal of Anhui Agricultural Sciences, 2014, 42(24): 8180-8182. (in Chinese with English abstract) | |
[6] | 马加康, 郭浩然, 王立新. 新鲜鸭粪对黑水虻幼虫生长发育及粪便转化率的影响[J]. 安徽科技学院学报, 2016, 30(1): 12-18. |
MA J K, GUO H R, WANG L X. The influences of the fresh duck manure to blackwater fly larvae growth and rate of waste conversion[J]. Journal of Anhui Science and Technology University, 2016, 30(1): 12-18. (in Chinese with English abstract) | |
[7] | 王小波, 李景龙, 尚东维, 等. Cu2+、Zn2+、Cd2+对黑水虻幼虫生长的影响及在虫体和虫粪的积累[J]. 环境昆虫学报, 2019, 41(2): 387-393. |
WANG X B, LI J L, SHANG D W, et al. Effect of Cu2+, Zn2+, Cd2+ on the growth of Hermetia illucens larvae and accumulation in larvae and feces[J]. Journal of Environmental Entomology, 2019, 41(2): 387-393. (in Chinese with English abstract) | |
[8] | 徐齐云, 龙镜池, 叶明强, 等. 黑水虻幼虫的发育速率及食物转化率研究[J]. 环境昆虫学报, 2014, 36(4): 561-564. |
XU Q Y, LONG J C, YE M Q, et al. Development rate and food conversion efficiency of black soldier fly, Hermetia illucens[J]. Journal of Environmental Entomology, 2014, 36(4): 561-564. (in Chinese with English abstract) | |
[9] |
XIAO X W, TAN Y Q, ZHANG H, et al. Experimental and DEM studies on the particle mixing performance in rotating drums: effect of area ratio[J]. Powder Technology, 2017, 314: 182-194.
DOI URL |
[10] | GHAZAVI M, HOSSEINI M, MOLLANOURI M. A comparison between angle of repose and friction angle of sand[C]// The 12th International Conference for International Association for Computer Methods and Advances in Geomechanics (IACMAG), 2008. |
[11] | FRIEDMAN S P, ROBINSON D A. Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media[J]. Water Resources Research, 2002, 38(11): 18-1-18-11. |
[12] | FIELKE J M, UCGUL M, SAUNDERS C. Discrete element modeling of soil-implement interaction considering soil plasticity, cohesion and adhesion[C]// American Society of Agricultural and Biological Engineers, 2013. |
[13] | 徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展[J]. 力学进展, 2003,(2): 251-260. |
XU Y, SUN Q C, ZHANG L, et al. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics, 2003,(2): 251-260. (in Chinese with English abstract) | |
[14] | 王泳嘉, 邢纪波. 离散单元法同拉格朗日元法及其在岩土力学中的应用[J]. 岩土力学, 1995, 16(2): 1-14. |
WANG Y J, XING J B. Discrete element method and Lagrangian element method and their applications in geomechanics[J]. Rock and Soil Mechanics, 1995, 16(2): 1-14. (in Chinese with English abstract) | |
[15] | 于建群, 付宏, 李红, 等. 离散元法及其在农业机械工作部件研究与设计中的应用[J]. 农业工程学报, 2005, 21(5): 1-6. |
YU J Q, FU H, LI H, et al. Application of discrete element method to research and design of working parts of agricultural machines[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(5): 1-6. (in Chinese with English abstract) | |
[16] | 马帅, 徐丽明, 袁全春, 等. 葡萄藤防寒土与清土部件相互作用的离散元仿真参数标定[J]. 农业工程学报, 2020, 36(1): 40-49. |
MA S, XU L M, YUAN Q C, et al. Calibration of discrete element simulation parameters of grapevine antifreezing soil and its interaction with soil-cleaning components[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 40-49. (in Chinese with English abstract) | |
[17] | 邢洁洁, 张锐, 吴鹏, 等. 海南热区砖红壤颗粒离散元仿真模型参数标定[J]. 农业工程学报, 2020, 36(5): 158-166. |
XING J J, ZHANG R, WU P, et al. Parameter calibration of discrete element simulation model for latosol particles in hot areas of Hainan Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 158-166. (in Chinese with English abstract) | |
[18] | 袁全春, 徐丽明, 邢洁洁, 等. 机施有机肥散体颗粒离散元模型参数标定[J]. 农业工程学报, 2018, 34(18): 21-27. |
YUAN Q C, XU L M, XING J J, et al. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 21-27. (in Chinese with English abstract) | |
[19] | 廖宜涛, 廖庆喜, 周宇, 等. 饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J]. 农业机械学报, 2020, 51(6): 73-82. |
LIAO Y T, LIAO Q X, ZHOU Y, et al. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 73-82. (in Chinese with English abstract) | |
[20] |
LENAERTS B, AERTSEN T, TIJSKENS E, et al. Simulation of grain-straw separation by Discrete Element Modeling with bendable straw particles[J]. Computers and Electronics in Agriculture, 2014, 101: 24-33.
DOI URL |
[21] | 王国强, 郝万军, 王继新. 离散单元法及其在EDEM上的实践[M]. 西安: 西北工业大学出版社, 2010. |
[22] | 林嘉聪, 罗帅, 袁巧霞, 等. 不同含水率蚯蚓粪颗粒物料流动性研究[J]. 农业工程学报, 2019, 35(9): 221-227. |
LIN J C, LUO S, YUAN Q X, et al. Flow properties of vermicompost particle with different moisture contents[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 221-227. (in Chinese with English abstract) | |
[23] | 徐莉. 3-DOF蛆料分离多维振动筛筛分特性影响因素的分析与试验[D]. 镇江: 江苏大学, 2019. |
XU L. Analysis and tests of screening characteristics influencing factors of 3-DOF multi-dimensional vibrating screen for fly maggots and sputum[D]. Zhenjiang: Jiangsu University, 2019. (in Chinese with English abstract) | |
[24] | 蔡静. 基于DEM的蛆粪混合物动力学与多维振动筛的优化设计[D]. 镇江: 江苏大学, 2018. |
CAI J. Dynamics of maggots and manure based on DEM and optimal design of the multi-dimensional sieving machine[D]. Zhenjiang: Jiangsu University, 2018. (in Chinese with English abstract) | |
[25] | 汪志焕. 蝇蛆处理畜禽粪便中蛆料分离多维振动筛的设计[D]. 镇江: 江苏大学, 2016. |
WANG Z H. Design of the multidimensional maggots sieving machine among maggots handling livestock excrements[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract) | |
[26] | 黄友良, 欧玲利. 黑水虻资源化利用研究[J]. 中国资源综合利用, 2019, 37(7): 48-50. |
HUANG Y L, OU L L. Study on the resource utilization of Tabanus nigra[J]. China Resources Comprehensive Utilization, 2019, 37(7): 48-50. (in Chinese with English abstract) | |
[27] | 吕丰喆. 蝇蛆对粪中养分的转化及蝇蛆对粪中养分利用率的研究[D]. 沈阳: 沈阳农业大学, 2016. |
LÜ F Z. Study of maggot on nutrient transformation and manure on nutrient utilization[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract) | |
[28] | 张锐, 韩佃雷, 吉巧丽, 等. 离散元模拟中沙土参数标定方法研究[J]. 农业机械学报, 2017, 48(3): 49-56. |
ZHANG R, HAN D L, JI Q L, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56. (in Chinese with English abstract) | |
[29] | 刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135. |
LIU W Z, HE J, LI H W, et al. Calibration of simulation parameters for potato minituber based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 125-135. (in Chinese with English abstract) | |
[30] | 石林榕, 赵武云, 孙伟. 基于离散元的西北旱区农田土壤颗粒接触模型和参数标定[J]. 农业工程学报, 2017, 33(21): 181-187. |
SHI L R, ZHAO W Y, SUN W. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 181-187. (in Chinese with English abstract) | |
[31] | 胡国明. 颗粒系统的离散元素法分析仿真: 离散元素法的工业应用与EDEM软件简介[M]. 武汉: 武汉理工大学出版社, 2010. |
[1] | 秦伟, 于英杰, 赖庆辉, 占才学, 袁海阔, 张海军. 导苗管式三七种苗栽植机构参数优化试验[J]. 浙江农业学报, 2022, 34(3): 614-625. |
[2] | 袁越锦, 洪晨, 徐英英, 王栋, 张曼, 荆雪松. 组合干燥方式下胡萝卜真空脉动蒸汽烫漂工艺优化[J]. 浙江农业学报, 2022, 34(1): 163-172. |
[3] | 秦宽, 梁小龙, 曹成茂, 方梁菲, 吴正敏, 葛俊. 茶园节能型开沟刀设计与试验[J]. 浙江农业学报, 2021, 33(7): 1320-1328. |
[4] | 王锋, 张锋伟, 戴飞, 张陆海, 赵伟, 杨小平. 双层平筛式半夏收获机设计与试验[J]. 浙江农业学报, 2021, 33(10): 1946-1955. |
[5] | 李为宁, 柏宣丙, 李兵. 滚筒式茶叶提香机结构参数优化[J]. 浙江农业学报, 2020, 32(2): 348-358. |
[6] | 范坚强;周彬;宋纪真;王金华;*;陈义强;王永泽. 片烟黑曲霉菌株产纤维素酶的条件优化及酶的分离纯化[J]. , 2012, 24(6): 0-1128. |
[7] | 李梦琴;王跃;徐艳艳;周洪禄;刘延奇. 响应曲面法优化小麦麸皮超高压改性条件[J]. , 2011, 23(3): 0-603. |
[8] | 董江涛*;李燕;徐慧强;蒋橙华. 响应曲面法优化微波辅助提取柿叶总黄酮的工艺[J]. , 2010, 22(4): 0-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||