[1] |
VLAMAKIS H, CHAI Y R, BEAUREGARD P, et al. Sticking together: building a biofilm the Bacillus subtilis way[J]. Nature Reviews Microbiology, 2013, 11(3): 157-168.
DOI
URL
|
[2] |
XIA W Y, LI N Y, SHAN H J, et al. Gallium porphyrin and gallium nitrate reduce the high vancomycin tolerance of MRSA biofilms by promoting extracellular DNA-dependent biofilm dispersion[J]. ACS Infectious Diseases, 2021, 7(8): 2565-2582.
DOI
URL
|
[3] |
FEY P D, OLSON M E. Current concepts in biofilm formation of Staphylococcus epidermidis[J]. Future Microbiology, 2010, 5(6): 917-933.
DOI
URL
|
[4] |
SAUER K. The genomics and proteomics of biofilm formation[J]. Genome Biology, 2003, 4(6): 219.
|
[5] |
VELMOUROUGANE K, PRASANNA R, SAXENA A K. Agriculturally important microbial biofilms: present status and future prospects[J]. Journal of Basic Microbiology, 2017, 57(7): 548-573.
DOI
URL
|
[6] |
ZHU M L, WANG Y H, DAI Y, et al. Effects of different culture conditions on the biofilm formation of Bacillus pumilus HR10[J]. Current Microbiology, 2020, 77(8): 1405-1411.
DOI
URL
|
[7] |
WU L N, LIU Y G, DONG P C, et al. Beef-based medium influences biofilm formation of Escherichia coli O157: H7 isolated from beef processing plants[J]. Journal of Food Protection, 2021, 84(6): 1060-1068.
DOI
URL
|
[8] |
吴静, 李伟, 冯静静, 等. 不同培养条件对枯草芽胞杆菌BS168-ΔsinR生物膜形成及维生素K2产量的影响[J]. 食品与发酵工业, 2021, 47(14): 23-30.
|
|
WU J, LI W, FENG J J, et al. Effect of different cultivated conditions on biofilm formation and menaquinone synthesis of Bacillus subtilis BS168-ΔsinR[J]. Food and Fermentation Industries, 2021, 47(14): 23-30. (in Chinese with English abstract)
|
[9] |
HUANG N, PU X M, ZHANG J X, et al. In vitro formation of Dickeyazeae MS1 biofilm[J]. Current Microbiology, 2019, 76(1): 100-107.
DOI
URL
|
[10] |
ZHOU G, LI L J, SHI Q S, et al. Efficacy of metal ions and isothiazolones in inhibiting Enterobacter cloacae BF-17 biofilm formation[J]. Canadian Journal of Microbiology, 2014, 60(1): 5-14.
DOI
URL
|
[11] |
ILIADIS I, DASKALOPOULOU A, SIMÕES M, et al. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions[J]. Food Research International, 2018, 107: 10-18.
DOI
URL
|
[12] |
BENEDUZI A, AMBROSINI A, PASSAGLIA L M P. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology, 2012, 35(4 (suppl)): 1044-1051.
DOI
URL
|
[13] |
XU Z H, XIE J Y, ZHANG H H, et al. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ[J]. Phytopathology, 2019, 109(1): 36-43.
DOI
URL
|
[14] |
刘泽平, 王志刚, 徐伟慧, 等. 水稻根际促生菌的筛选鉴定及促生能力分析[J]. 农业资源与环境学报, 2018, 35(2): 119-125.
|
|
LIU Z P, WANG Z G, XU W H, et al. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 119-125. (in Chinese with English abstract)
|
[15] |
王恒煦, 刘泽平, 王志刚, 等. 3株芽孢杆菌在水稻根际定殖促生及其在土壤中的存活[J]. 生态与农村环境学报, 2019, 35(7): 892-899.
|
|
WANG H X, LIU Z P, WANG Z G, et al. Colonization and growth promotion of three Bacillus strains in rice rhizosphere and their survival in soil[J]. Journal of Ecology and Rural Environment, 2019, 35(7): 892-899. (in Chinese with English abstract)
|
[16] |
LIU H, WANG Z G, XU W H, et al. Bacillus pumilus LZP02 promotes rice root growth by improving carbohydrate metabolism and phenylpropanoid biosynthesis[J]. Molecular Plant-Microbe Interactions, 2020, 33(10): 1222-1231.
DOI
URL
|
[17] |
OLEŃSKA E, MAŁEK W, WÓJCIK M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review[J]. Science of the Total Environment, 2020, 743: 140682.
|
[18] |
VIVES-PERIS V, DE OLLAS C, GÓMEZ-CADENAS A, et al. Root exudates: from plant to rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39(1): 3-17.
DOI
URL
|
[19] |
SPERANZA B, CORBO M R, SINIGAGLIA M. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation[J]. Journal of Food Science, 2011, 76(1): M12-M16.
|
[20] |
GRUMBEIN S, OPITZ M, LIELEG O. Selected metal ions protect Bacillus subtilis biofilms from erosion[J]. Metallomics, 2014, 6(8): 1441-1450.
DOI
URL
|
[21] |
RINAUDI L, FUJISHIGE N A, HIRSCH A M, et al. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation[J]. Research in Microbiology, 2006, 157(9): 867-875.
DOI
URL
|
[22] |
WANG H R, PALMER J, FLINT S. Function of pYV plasmid on biofilm formation of Yersinia enterocolitica ERL032123 in the presence of Ca2[J]. Journal of Food Protection, 2019, 82(10): 1683-1687.
DOI
URL
|
[23] |
张颖. Ca2+、Mg2+强化Pesudomonoas stutzeri XL-2生物膜形成的机理研究[D]. 重庆: 重庆大学, 2019.
|
|
ZHANG Y. Mechanisms of Ca2+ and Mg2+ for the enhancement of biofilm formation by Pesudomonoas stutzeri XL-2[D]. Chongqing: Chongqing University, 2019. (in Chinese with English abstract)
|
[24] |
CHENG Z Y, JIANG X, CUI Z, et al. The characteristic of electrode of degradation of bio-electrochemical system based on in situ ultrasonic monitoring: biofilm and ion precipitation[J]. Science of the Total Environment, 2021, 789: 147987.
|
[25] |
RATH H, SAPPA P K, HOFFMANN T, et al. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis[J]. Environmental Microbiology, 2020, 22(8): 3266-3286.
DOI
URL
|
[26] |
LIN C S, TSAI Y H, CHANG C J, et al. An iron detection system determines bacterial swarming initiation and biofilm formation[J]. Scientific Reports, 2016, 6: 36747.
|
[27] |
XU Z H, MANDIC-MULEC I, ZHANG H H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a btr-mediated FeuABC-dependent pathway[J]. Cell Reports, 2019, 29(5): 1192-1202.
DOI
URL
|
[28] |
SHAFEEQ S, PANNANUSORN S, ELSHARABASY Y, et al. Impact of manganese on biofilm formation and cell morphology of Candida parapsilosis clinical isolates with different biofilm forming abilities[J]. FEMS Yeast Research, 2019, 19(6): foz057.
|
[29] |
MHATRE E, TROSZOK A, GALLEGOS-MONTERROSA R, et al. The impact of manganese on biofilm development of Bacillus subtilis[J]. Microbiology (Reading, England), 2016, 162(8): 1468-1478.
DOI
URL
|