浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2172-2181.DOI: 10.3969/j.issn.1004-1524.2022.10.11
梁倩蓉(), 郑天伦, 陈小明, 朱凝瑜, 郑晓叶, 何润真, 曹飞飞, 薛辉利, 丁雪燕(
)
收稿日期:
2022-02-06
出版日期:
2022-10-25
发布日期:
2022-10-26
通讯作者:
丁雪燕
作者简介:
*丁雪燕,E-mail: dingxy_sc@sina.com基金资助:
LIANG Qianrong(), ZHENG Tianlun, CHEN Xiaoming, ZHU Ningyu, ZHENG Xiaoye, HE Runzhen, CAO Feifei, XUE Huili, DING Xueyan(
)
Received:
2022-02-06
Online:
2022-10-25
Published:
2022-10-26
Contact:
DING Xueyan
摘要:
为评估蝇蛆蛋白对提高中华鳖免疫代谢的作用效果,设置2个中华鳖饲料组,分别含有质量分数5%和10%蝇蛆蛋白,以投喂常规饲料为对照。投喂3个月后,统计鳖存活率并测量体增重,测定血清中碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPX)、过氧化氢酶(CAT)、溶菌酶(LZM)等指标,并利用转录组测序技术比较不同组中华鳖的基因表达谱。结果表明,添加蝇蛆蛋白组中华鳖较常规饲料组的养殖存活率和平均体增重率均有所升高,血清指标中除了GPX活性降低,其他5种酶活性均升高。转录组测序比较显示,添加蝇蛆蛋白组与常规饲料组间、不同添加量组间均存在显著差异表达基因。KEGG通路富集分析提示,蝇蛆蛋白添加组和常规饲料组差异基因均主要富集于吞噬体、补体与凝血级联两种免疫通路;此外,10%添加组和5%添加组、10%添加组和常规饲料组的差异基因富集于细胞因子-细胞因子受体相互作用,丙氨酸、天冬氨酸和谷氨酸代谢,维生素消化与吸收等免疫和代谢通路。综上表明,饲料中添加蝇蛆蛋白具有增强中华鳖免疫和代谢活性的作用,以添加10%效果最佳,其潜在作用机理与吞噬体,补体和凝血级联,细胞因子-细胞因子受体相互作用,丙氨酸、天冬氨酸和谷氨酸代谢和维生素消化与吸收等通路密切相关。研究结果可对蝇蛆蛋白作为中华鳖饲料添加剂的有效性评价提供参考。
中图分类号:
梁倩蓉, 郑天伦, 陈小明, 朱凝瑜, 郑晓叶, 何润真, 曹飞飞, 薛辉利, 丁雪燕. 饲料中添加蝇蛆蛋白对中华鳖肝和血清免疫代谢应答的影响[J]. 浙江农业学报, 2022, 34(10): 2172-2181.
LIANG Qianrong, ZHENG Tianlun, CHEN Xiaoming, ZHU Ningyu, ZHENG Xiaoye, HE Runzhen, CAO Feifei, XUE Huili, DING Xueyan. Effects of feeding with maggot protein added dietaries on immune and metabolic responses in liver and serum of soft-shelled turtles Pelodiscus sinensis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2172-2181.
引物名称 Primer name | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 退火温度 Annealing temperature/℃ |
---|---|---|---|
PsMHCI | ATCCTGCGGAGCCTGGTG | TTTGTGATGGCCTGCTGATT | 62 |
PsMHCII | AGACGACTGAGCCTACCG | AAAGAGGGTGGTAAGTGTTG | 53 |
PsTLR2 | ATCCCTCCGCATCCTCA | GACTGAGGGCTTCTACGG | 58 |
PsATP6AP1 | GTGGACCTGACGCCCTTGA | TGAACATGGTGGACTGGAC | 60 |
PsRab5 | TCAGCGGCAAGCAAGTCC | GCATTCTGTGGTTCACTCTTTGG | 62 |
PsC3 | ATGTACCTGCCCATCACGC | GCGTTCCCATGCAAGTGTC | 62 |
PsC7 | TCAGATTCGTAGAAGAACAATAGCA | TCCACCAAAACTTGCAGTATGTATA | 60 |
PsF9 | ATTTGGAGAATAGTGACGGAGTAGG | GGCTGGCGTTATAGGTGGG | 61 |
PsMASP2 | CCACTCCATTGACAACACCCTC | GCGGTTCGCCGTCAATCA | 63 |
Psfibrinogen α | TTCAAAACTCTGCCTCAAACTCA | TCTTCCCTCCCTGAACCTTG | 60 |
PsIL1R1 | ATTACTGGACAACCACCGATTT | CTTGTTCCAATTATGAAACCACTT | 59 |
PsTNFRSF6B | AACAGCACCCAGGAGCCA | GTTCAGCAGCACTTTGACCAG | 60 |
PsTNFRSF14 | TCTCCACTGTCTGCCTCCCT | GCTTCTGTCATCCTTTGCTCTT | 60 |
PsASNS | ACAACAGAGGAGGAATAGAGCAAA | TCAGAGCAGACACCCAGGAAC | 60 |
PsTCN1 | GCAAATAACTCCACCATCAACC | CGCTGAGGTAATACTTCTTTTGG | 59 |
Psβ-actin | GAGACCTGACAGACTACCT | AGGATGATGAAGCAGCAGT | 58 |
表1 qRT-PCR引物
Table 1 Primers used for real-time quantitative PCR
引物名称 Primer name | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 退火温度 Annealing temperature/℃ |
---|---|---|---|
PsMHCI | ATCCTGCGGAGCCTGGTG | TTTGTGATGGCCTGCTGATT | 62 |
PsMHCII | AGACGACTGAGCCTACCG | AAAGAGGGTGGTAAGTGTTG | 53 |
PsTLR2 | ATCCCTCCGCATCCTCA | GACTGAGGGCTTCTACGG | 58 |
PsATP6AP1 | GTGGACCTGACGCCCTTGA | TGAACATGGTGGACTGGAC | 60 |
PsRab5 | TCAGCGGCAAGCAAGTCC | GCATTCTGTGGTTCACTCTTTGG | 62 |
PsC3 | ATGTACCTGCCCATCACGC | GCGTTCCCATGCAAGTGTC | 62 |
PsC7 | TCAGATTCGTAGAAGAACAATAGCA | TCCACCAAAACTTGCAGTATGTATA | 60 |
PsF9 | ATTTGGAGAATAGTGACGGAGTAGG | GGCTGGCGTTATAGGTGGG | 61 |
PsMASP2 | CCACTCCATTGACAACACCCTC | GCGGTTCGCCGTCAATCA | 63 |
Psfibrinogen α | TTCAAAACTCTGCCTCAAACTCA | TCTTCCCTCCCTGAACCTTG | 60 |
PsIL1R1 | ATTACTGGACAACCACCGATTT | CTTGTTCCAATTATGAAACCACTT | 59 |
PsTNFRSF6B | AACAGCACCCAGGAGCCA | GTTCAGCAGCACTTTGACCAG | 60 |
PsTNFRSF14 | TCTCCACTGTCTGCCTCCCT | GCTTCTGTCATCCTTTGCTCTT | 60 |
PsASNS | ACAACAGAGGAGGAATAGAGCAAA | TCAGAGCAGACACCCAGGAAC | 60 |
PsTCN1 | GCAAATAACTCCACCATCAACC | CGCTGAGGTAATACTTCTTTTGG | 59 |
Psβ-actin | GAGACCTGACAGACTACCT | AGGATGATGAAGCAGCAGT | 58 |
图1 投喂蝇蛆蛋白添加饲料对中华鳖养殖存活率、平均体增重率的影响 G1,常规饲料组;G2,5%蝇蛆蛋白添加饲料组;G3,10%蝇蛆蛋白添加饲料组。柱上无相同小写字母表示差异显著(P<0.05)。
Fig.1 Effects of feeding with maggot protein added dietaries on cultivated survival and average body weight gain ratios of Pelodiscus sinensis G1, Normal fodder feed group; G2, 5% maggot additive fodder feed group; G3,10% maggot additive fodder feed group. Data marked without the same lowercase letter indicated significant differences at P<0.05.
组别 Groups | 碱性磷酸酶 Alkline phosphatase/ (U·L-1) | 酸性磷酸酶 Acid phosphatase/ (U·L-1) | 超氧化物歧化酶 Superoxide dismutase/ (U·mL-1) | 谷胱甘肽过氧化物酶 Glutathion peroxidase/ (U·mL-1) | 过氧化氢酶 Catalase/ (U·mL-1) | 溶菌酶 Lysozyme/ (U·mL-1) |
---|---|---|---|---|---|---|
G1 | 45.91±1.36 c | 8.21±0.78 c | 227.8±3.97 b | 128.39±1.28 a | 1.56±0.12 c | 263.84±25.33 b |
G2 | 58.83±2.28 b | 32.91±1.00 b | 233.4±3.53 b | 117.81±1.04 b | 2.82±0.09 b | 276.41±12.57 b |
G3 | 72.61±1.21 a | 36.98±1.57 a | 246.6±2.45 a | 106.11±1.11 c | 3.91±0.07 a | 361.03±29.53 a |
表2 投喂蝇蛆蛋白添加饲料对中华鳖血清生化指标的影响
Table 2 Effects of feeding with maggot protein added dietaries on serum immune enzyme activities of Pelodiscus sinensis
组别 Groups | 碱性磷酸酶 Alkline phosphatase/ (U·L-1) | 酸性磷酸酶 Acid phosphatase/ (U·L-1) | 超氧化物歧化酶 Superoxide dismutase/ (U·mL-1) | 谷胱甘肽过氧化物酶 Glutathion peroxidase/ (U·mL-1) | 过氧化氢酶 Catalase/ (U·mL-1) | 溶菌酶 Lysozyme/ (U·mL-1) |
---|---|---|---|---|---|---|
G1 | 45.91±1.36 c | 8.21±0.78 c | 227.8±3.97 b | 128.39±1.28 a | 1.56±0.12 c | 263.84±25.33 b |
G2 | 58.83±2.28 b | 32.91±1.00 b | 233.4±3.53 b | 117.81±1.04 b | 2.82±0.09 b | 276.41±12.57 b |
G3 | 72.61±1.21 a | 36.98±1.57 a | 246.6±2.45 a | 106.11±1.11 c | 3.91±0.07 a | 361.03±29.53 a |
比较组 Compared groups | 生物学过程 Biological Process | 细胞组分 Cellular Component | 分子功能 Molecular Function |
---|---|---|---|
G2 vs G1 | 氧化还原过程,RNA聚合酶Ⅱ启动子的转录正调控,生物学过程 Oxidation-reduction process, positive regulation of transcription from RNA polymerase Ⅱ promoter, biological_process | 细胞质,膜整合构件,细胞核 Cytoplasm, integral component of membrane, nucleus | poly(A)结合,ATP结合, 蛋白质结合 Poly (A) binding, ATP binding, protein binding |
G3 vs G1 | 氧化还原过程,RNA聚合酶Ⅱ启动子的转录正调控,生物学过程 Oxidation-reduction process, positive regulation of transcription from RNA polymerase Ⅱ promoter, biological_process | 细胞质,细胞外泌体,膜整合构件 Cytoplasm, extracellular exosome, integral component of membrane | ATP结合,poly(A)结合,锌离子结合 ATP binding, poly (A)binding, zinc ion binding |
G3 vs G2 | 氧化还原过程, 免疫应答, 蛋白水解 Oxidation-reduction process, immune response, proteolysis | 膜整合构件,细胞质,细胞外泌体 Integral component of membrane, cytoplasm, extracellular exosome | ATP结合,锌离子结合,金属离子结合 ATP binding, zinc ion binding, metal ion binding |
表3 差异基因GO功能分类
Table 3 Display of top three terms in GO classification of differentially expressed genes
比较组 Compared groups | 生物学过程 Biological Process | 细胞组分 Cellular Component | 分子功能 Molecular Function |
---|---|---|---|
G2 vs G1 | 氧化还原过程,RNA聚合酶Ⅱ启动子的转录正调控,生物学过程 Oxidation-reduction process, positive regulation of transcription from RNA polymerase Ⅱ promoter, biological_process | 细胞质,膜整合构件,细胞核 Cytoplasm, integral component of membrane, nucleus | poly(A)结合,ATP结合, 蛋白质结合 Poly (A) binding, ATP binding, protein binding |
G3 vs G1 | 氧化还原过程,RNA聚合酶Ⅱ启动子的转录正调控,生物学过程 Oxidation-reduction process, positive regulation of transcription from RNA polymerase Ⅱ promoter, biological_process | 细胞质,细胞外泌体,膜整合构件 Cytoplasm, extracellular exosome, integral component of membrane | ATP结合,poly(A)结合,锌离子结合 ATP binding, poly (A)binding, zinc ion binding |
G3 vs G2 | 氧化还原过程, 免疫应答, 蛋白水解 Oxidation-reduction process, immune response, proteolysis | 膜整合构件,细胞质,细胞外泌体 Integral component of membrane, cytoplasm, extracellular exosome | ATP结合,锌离子结合,金属离子结合 ATP binding, zinc ion binding, metal ion binding |
图3 差异表达基因KEGG通路富集散点图 A,G1和G2比较;B,G1和G3比较;C,G2和G3比较。下同。
Fig.3 Scatterplot of enriched KEGG pathways for differentially expressed genes A, G1 vs G2; B, G1vs G3; C, G2 vs G3. The same as below.
[1] | 华颖, 邵庆均. 中华鳖营养与饲料研究进展[J]. 饲料工业, 2011, 32(16): 18-22. |
HUA Y, SHAO Q J. Research progress on nutrition and feed of Pelodiscus sinensis[J]. Feed Industry, 2011, 32(16): 18-22. (in Chinese) | |
[2] | 王刚, 朱站英, 华雪铭, 等. 中华鳖饲料中鱼粉替代研究进展[J]. 科学养鱼, 2016(12): 68-70. |
WANG G, ZHU Z Y, HUA X M, et al. Research progress of fish meal substitution in diet of Pelodiscus sinensis[J]. Scientific Fish Farming, 2016(12): 68-70. (in Chinese) | |
[3] | 张号杰, 郭爱红, 秦江帆, 等. 昆虫蛋白的营养价值及其在动物生产中的应用[J]. 中国饲料, 2015(3): 28-30. |
ZHANG H J, GUO A H, QIN J F, et al. Nutritional values of insects protein and its application in animal production[J]. China Feed, 2015(3): 28-30. (in Chinese with English abstract) | |
[4] | 陈继发. 蝇蛆的营养特性及其在畜禽生产中的应用研究进展[J]. 动物营养学报, 2020, 32(4): 1484-1490. |
CHEN J F. Nutritional characteristic of fly maggot and its application in livestock and poultry production[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1484-1490. (in Chinese with English abstract) | |
[5] | 李华, 李立军, 黄卫, 等. 蝇蛆粉在水产饲料中的应用研究[J]. 饲料工业, 2014, 35(21): 70-73. |
LI H, LI L J, HUANG W, et al. Study advance on maggot meal in aquatic feed[J]. Feed Industry, 2014, 35(21): 70-73. (in Chinese with English abstract) | |
[6] | HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdisciplinary Reviews RNA, 2017, 8(1): e1364. |
[7] |
MUTZ K O, HEILKENBRINKER A, LÖNNE M, et al. Transcriptome analysis using next-generation sequencing[J]. Current Opinion in Biotechnology, 2013, 24(1): 22-30.
DOI URL |
[8] |
LI S H, ZHANG X J, SUN Z, et al. Transcriptome analysis on Chinese shrimp Fenneropenaeus chinensis during WSSV acute infection[J]. PLoS One, 2013, 8(3): e58627.
DOI URL |
[9] |
QI Z T, ZHANG Q H, WANG Z S, et al. Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): immune modulation in response to Aeromonas hydrophila infection[J]. Veterinary Immunology and Immunopathology, 2016, 169: 85-95.
DOI URL |
[10] | WANG Y D, ZHANG H, LU Y A, et al. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with spring viremia of carp virus (SVCV)[J]. Fish & Shellfish Immunology, 2017, 69: 35-45. |
[11] | WANG Q, LI J, GUO H M. Transcriptome analysis and discovery of genes involved in immune pathways in Solen strictus(Gould, 1861) under Vibrio anguillarum[J]. Fish & Shellfish Immunology, 2019, 88: 237-243. |
[12] | XU J H, ZHAO J, LI Y Q, et al. Evaluation of differentially expressed immune-related genes in intestine of Pelodiscus sinensis after intragastric challenge with lipopolysaccharide based on transcriptome analysis[J]. Fish & Shellfish Immunology, 2016, 56: 417-426. |
[13] |
ZHANG H Q, XU X J, HE Z Y, et al. De novo transcriptome analysis reveals insights into different mechanisms of growth and immunity in a Chinese soft-shelled turtle hybrid and the parental varieties[J]. Gene, 2017, 605: 54-62.
DOI PMID |
[14] |
ZHANG W Y, NIU C J, CHEN B J, et al. Digital Gene Expression Profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles[J]. Cryobiology, 2018, 81: 43-56.
DOI URL |
[15] | LYU S J, YUAN X M, ZHANG H Q, et al. Transcriptome profiling analysis of lung tissue of Chinese soft-shell turtle infected by Trionyx sinensis Hemorrhagic Syndrome Virus[J]. Fish & Shellfish Immunology, 2020, 98: 653-660. |
[16] | MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10. |
[17] |
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652.
DOI PMID |
[18] |
BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60.
DOI PMID |
[19] |
PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nature Methods, 2017, 14(4): 417-419.
DOI PMID |
[20] |
MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq[J]. Nature Methods, 2008, 5(7): 621-628.
DOI PMID |
[21] |
ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2009, 26(1): 139-140.
DOI URL |
[22] | 何中央, 周凡, 张海琪, 等. 蝇蛆蛋白粉在中华鳖日本品系饲料中应用效果初探[J]. 中国饲料, 2013(3): 30-32. |
HE Z Y, ZHOU F, ZHANG H Q, et al. Primary evaluation of the dietary fish meal replaced by housefly maggot meal in Pelodiscus sinensis Japanese strain[J]. China Feed, 2013(3): 30-32. (in Chinese with English abstract) | |
[23] | 张海琪, 周凡, 王卫平, 等. 蝇蛆蛋白粉替代鱼粉对中华鳖日本品系生长、肌肉品质、免疫及抗氧化指标的影响[J]. 浙江农业学报, 2013, 25(2): 225-229. |
ZHANG H Q, ZHOU F, WANG W P, et al. Effects of housefly maggot meal instead of fish meal on growth performance, textural mechanical properties, serum parameters in Pelodiscus sinensis Japanese strain[J]. Acta Agriculturae Zhejiangensis, 2013, 25(2): 225-229. (in Chinese with English abstract) | |
[24] | 程逍妹, 黄启成, 王方海, 等. 蝇蛆蛋白对中华鳖血清生化指标及非特异性免疫功能的影响[J]. 水产科学, 2017, 36(6): 768-772. |
CHENG X M, HUANG Q C, WANG F H, et al. Effects of dietary housefly maggot protein on serum biochemical indices and nonspecific immunity in soft shelled turtle Trionyx sinensis[J]. Fisheries Science, 2017, 36(6): 768-772. (in Chinese with English abstract) | |
[25] | 程逍妹, 黄启成, 王方海, 等. 蝇蛆蛋白对中华鳖生长性能及营养品质的影响[J]. 水产科学, 2018, 37(1): 51-58. |
CHENG X M, HUANG Q C, WANG F H, et al. Effects of dietary housefly protein on growth performance and nutritional quality of soft shelled turtle Trionyx sinensis[J]. Fisheries Science, 2018, 37(1): 51-58. (in Chinese with English abstract) | |
[26] | 史东杰, 梁拥军, 孙砚胜, 等. 蝇蛆粉替代鱼粉对罗非鱼生长、肌肉组成和肝脏非特异性免疫指标的影响[J]. 水产科技情报, 2015, 42(6): 319-323. |
SHI D J, LIANG Y J, SUN Y S, et al. Effects of replacement of fish meal with maggot meal on growth, muscle composition and liver nonspecific immune indices of tilapia[J]. Fisheries Science & Technology Information, 2015, 42(6): 319-323. (in Chinese) | |
[27] | 张海涛, 李云龙, 陈永亮, 等. 新型蝇蛆蛋白饲料替代鱼粉对泥鳅生长性能和非特异性免疫力的影响[J]. 中国饲料, 2021(2): 74-77. |
ZHANG H T, LI Y L, CHEN Y L, et al. Effects of new fly maggot protein feed replacing fish meal on growth performance and nonspecific immunity of Misgurnus anguillicaudatus[J]. China Feed, 2021(2): 74-77. (in Chinese with English abstract) | |
[28] | AHLENSTIEL G. 肝脏是一个免疫器官[J]. 齐慧慧, 译. 肝脏, 2008, 13(1): 55. |
AHLENSTIEL G. Liver is an immune organ[J]. Chinese Hepatology, 2008, 13(1): 55. (in Chinese) | |
[29] | 郭琼林, 贾伟章. 中华鳖造血和免疫器官的个体发育[J]. 动物学报, 2003, 49(2): 238-247. |
GUO Q L, JIA W Z. Ontogeny of hemopoietic and immune organs in the Chinese soft-shelled turtle (Trionyx sinensis)[J]. Acta Zoologica Sinica, 2003, 49(2): 238-247. (in Chinese with English abstract) | |
[30] |
VAN OSS C J. Phagocytosis: an overview[J]. Methods in Enzymology, 1986, 132: 3-15.
PMID |
[31] |
STUART L M, EZEKOWITZ R A B. Phagocytosis: elegant complexity[J]. Immunity, 2005, 22(5): 539-550.
PMID |
[32] |
PAUWELS A M, TROST M, BEYAERT R, et al. Patterns, receptors, and signals: regulation of phagosome maturation[J]. Trends in Immunology, 2017, 38(6): 407-422.
DOI URL |
[33] | 康跃, 梁权, 方维焕, 等. 中华鳖TLR2部分序列的克隆及其组织表达差异分析[J]. 中国兽医科学, 2012, 42(9): 958-964. |
KANG Y, LIANG Q, FANG W H, et al. Cloning of Toll-like receptor 2 partial cDNA sequence of Chinese soft-shelled turtle (Pelodiscus sinensis) and its expression profile in different tissues[J]. Chinese Veterinary Science, 2012, 42(9): 958-964. (in Chinese with English abstract) | |
[34] |
ROCK K L, REITS E, NEEFJES J. Present yourself! by MHC class I and MHC class II molecules[J]. Trends in Immunology, 2016, 37(11): 724-737.
DOI PMID |
[35] |
TROUW L A, DAHA M R. Role of complement in innate immunity and host defense[J]. Immunology Letters, 2011, 138(1): 35-37.
DOI PMID |
[36] | YIN F, GAO Q X, TANG B J, et al. Transcriptome and analysis on the complement and coagulation cascades pathway of large yellow croaker (Larimichthys crocea) to ciliate ectoparasite Cryptocaryon irritans infection[J]. Fish & Shellfish Immunology, 2016, 50: 127-141. |
[37] | LI S W, ZHANG Y, CAO Y S, et al. Trancriptome profiles of Amur sturgeon spleen in response to Yersinia ruckeri infection[J]. Fish & Shellfish Immunology, 2017, 70: 451-460. |
[38] | DIAO J, LIU H J, HU F W, et al. Transcriptome analysis of immune response in fat greenling (Hexagrammos otakii) against Vibrio harveyi infection[J]. Fish & Shellfish Immunology, 2019, 84: 937-947. |
[39] | O’SHEA J J, GADINA M, SIEGEL R M. Cytokines and cytokine receptors[M]// Clinical Immunology. Amsterdam: Elsevier, 2019: 127-155. |
[40] |
COLLETTE Y, GILLES A, PONTAROTTI P, et al. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system[J]. Trends in Immunology, 2003, 24(7): 387-394.
PMID |
[41] |
MANTOVANI A, DINARELLO C A, MOLGORA M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795.
DOI PMID |
[42] | 陈师师, 薛静, 何中央, 等. 2种不同品系中华鳖的营养成分分析与比较[J]. 食品科学, 2015, 36(18): 114-119. |
CHEN S S, XUE J, HE Z Y, et al. Comparison and quality evaluation of nutritional components of two different strains of Trionyx sinensis[J]. Food Science, 2015, 36(18): 114-119. (in Chinese with English abstract) | |
[43] | 聂月美. 饲料维生素C对中华鳖免疫、抗应激和体组成的影响[D]. 杭州: 浙江大学, 2006. |
NIE Y M. Effects of dietary vitamin C on immunity, antistress and proximate compositions of Chinese soft-shelled turtle[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract) |
[1] | 王水涛, 何盛盛, 江玲丽, 高有领. 中华鳖胚胎肝成纤维细胞的原代培养及其聚肌苷酸胞苷酸(Poly I:C)刺激模型构建[J]. 浙江农业学报, 2022, 34(1): 60-69. |
[2] | 杨生海, 刘西兰, 张勇. 利用加权基因共表达网络分析牛口蹄疫病毒感染通路变化[J]. 浙江农业学报, 2021, 33(9): 1617-1624. |
[3] | 葛金涛, 王江英, 赵文静, 邵小斌, 朱朋波, 汤雪燕, 孙明伟, 刘兴满. 魏可葡萄气生根发育的转录组分析[J]. 浙江农业学报, 2020, 32(9): 1645-1655. |
[4] | 黄莉萍, 安莉丽, 李芳, 杨成年, 李虹, 吕光俊, 向枭, 孙翰昌, 翟旭亮, 朱成科. 中华鳖弗氏柠檬酸杆菌的鉴定及病理组织观察[J]. 浙江农业学报, 2020, 32(7): 1176-1186. |
[5] | 卢祎, 高有领, 王水涛, 何盛盛. MicroRNA-499对中华鳖脂类代谢相关基因表达的影响[J]. 浙江农业学报, 2020, 32(5): 798-803. |
[6] | 朱凝瑜, 郑晓叶, 曹飞飞, 李杨阳, 郑天伦. 鳖源嗜水气单胞菌的耐药性研究[J]. 浙江农业学报, 2017, 29(9): 1445-1450. |
[7] | 沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 浙江农业学报, 2017, 29(2): 177-185. |
[8] | 杨敏, 黄巧, 陈良标. 南极鱼Ⅲ型抗冻基因真核表达质粒的构建及其细胞表达[J]. 浙江农业学报, 2016, 28(11): 1862-1866. |
[9] | 郑天伦,张海琪. 中华鳖腐皮病的病原鉴定与药敏研究[J]. 浙江农业学报, 2015, 27(1): 32-. |
[10] | 周凡1,王亚琴2,林玲3,马文君1,丁雪燕1,*,何丰1,薛辉利1. 饲料蛋白水平对中华鳖稚鳖生长和消化酶活性的影响 [J]. 浙江农业学报, 2014, 26(6): 1442-. |
[11] | 朱凝瑜,贝亦江,郑天伦,孔蕾,陈健舜. 中华鳖肠道及其养殖水体菌群比较 [J]. 浙江农业学报, 2014, 26(5): 1176-. |
[12] | 周凡;林玲;何丰;*;丁雪燕;薛辉利;徐勇斌. 恩诺沙星注射对中华鳖肝脏Ⅰ相、Ⅱ相酶活性的影响[J]. , 2013, 25(6): 0-1233. |
[13] | 张海琪;周凡;王卫平;许晓军;张建人;何中央;* . 蝇蛆蛋白粉替代鱼粉对中华鳖日本品系生长、肌肉品质、免疫及抗氧化指标的影响[J]. , 2013, 25(2): 0-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||