浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2546-2557.DOI: 10.3969/j.issn.1004-1524.20240294
唐丽a,b,c(), 李林枫a,b,c, 崔宝丰a,b,c, 刘振亚a,b,c, 李亚鹏a,b,c, 张王斌a,b,c,*(
)
收稿日期:
2024-03-29
出版日期:
2024-11-25
发布日期:
2024-11-27
作者简介:
唐丽(1993—),女,四川德阳人,硕士研究生,研究方向为植物病理学。E-mail:susuzaizai@163.com
通讯作者:
*张王斌,E-mail:zwbzky@163.com
基金资助:
TANG Lia,b,c(), LI Linfenga,b,c, CUI Baofenga,b,c, LIU Zhenyaa,b,c, LI Yapenga,b,c, ZHANG Wangbina,b,c,*(
)
Received:
2024-03-29
Online:
2024-11-25
Published:
2024-11-27
摘要:
腐烂病是一种主要发生于库尔勒香梨树皮内的严重病害,该研究通过高通量测序方法,对库尔勒香梨树皮内生菌的组成结构和多样性及影响因子进行研究,旨在探明库尔勒香梨树皮内生菌动态变化及受腐烂病和营养元素的影响。结果表明,库尔勒香梨内生细菌分布于67个门555个属,真菌分布于9个门405个属。在属水平,细菌优势菌为大肠埃希菌(Escherichia)、醋酸杆菌属(Acetobacter)、链霉菌属(Streptomyces)、盐水球菌属(Salinicoccus),真菌优势菌为条锈菌属(Puccinia)、球囊霉属(Rhizophagus)、根霉属(Rhizopus)。库尔勒香梨树皮内生菌受腐烂病和营养元素显著影响。营养元素氮、磷、钾与部分内生菌存在不同程度的相关性,树皮内生真菌与氮、钾元素相关性更大。库尔勒香梨树皮内生菌的功能主要被注释到新陈代谢(metabolism)、有机系统(organic system)、环境信息加工(environmental information processing)3大通路,发病树皮的3大通路丰度高于健康树皮。该研究明确了新疆库尔勒香梨树皮内生菌群落结构与多样性,患腐烂病与健康树皮有一定的差异,内生菌与营养元素间存在相互作用,树皮中存在一定的有益微生物和可供开发利用的有益功能菌群,用于库尔勒香梨腐烂病的生物防治、促进果业发展。
中图分类号:
唐丽, 李林枫, 崔宝丰, 刘振亚, 李亚鹏, 张王斌. 库尔勒香梨树皮内生菌结构多样性与影响因子分析[J]. 浙江农业学报, 2024, 36(11): 2546-2557.
TANG Li, LI Linfeng, CUI Baofeng, LIU Zhenya, LI Yapeng, ZHANG Wangbin. Structural diversity and influencing factors of endophytes in the bark of Korla pear[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2546-2557.
样本 Sample | 插入大小 Insert size/bp | 原始数据 Raw data | 有效数据 Clean data | 质量分数Q20 Clean Q20/% | 质量分数Q30 Clean Q30/% | GC含量 GC content/% | 有效性 Effective/% |
---|---|---|---|---|---|---|---|
KP0 | 350 | 6 665.52 | 6 660.34 | 96.66 | 91.06 | 38.20 | 99.92 |
KP1 | 350 | 6 106.29 | 6 101.78 | 96.53 | 90.81 | 37.78 | 99.93 |
KP2 | 350 | 6 514.40 | 6 510.31 | 96.92 | 91.60 | 37.81 | 99.94 |
KP3 | 350 | 6 661.18 | 6 656.69 | 96.52 | 90.78 | 38.14 | 99.93 |
KP4 | 350 | 6 440.61 | 6 434.68 | 96.33 | 90.42 | 38.51 | 99.91 |
JH0 | 350 | 6 624.55 | 6 618.93 | 96.27 | 90.72 | 39.66 | 99.92 |
JD1 | 350 | 6 872.69 | 6 864.09 | 97.31 | 92.61 | 43.51 | 99.88 |
JH1 | 350 | 6 885.70 | 6 876.14 | 97.44 | 93.12 | 40.30 | 99.86 |
表1 库尔勒香梨树皮内生菌宏基因组测序数据
Table 1 Data of endophytic microbes of Korla pear bark by metagenomic sequencing
样本 Sample | 插入大小 Insert size/bp | 原始数据 Raw data | 有效数据 Clean data | 质量分数Q20 Clean Q20/% | 质量分数Q30 Clean Q30/% | GC含量 GC content/% | 有效性 Effective/% |
---|---|---|---|---|---|---|---|
KP0 | 350 | 6 665.52 | 6 660.34 | 96.66 | 91.06 | 38.20 | 99.92 |
KP1 | 350 | 6 106.29 | 6 101.78 | 96.53 | 90.81 | 37.78 | 99.93 |
KP2 | 350 | 6 514.40 | 6 510.31 | 96.92 | 91.60 | 37.81 | 99.94 |
KP3 | 350 | 6 661.18 | 6 656.69 | 96.52 | 90.78 | 38.14 | 99.93 |
KP4 | 350 | 6 440.61 | 6 434.68 | 96.33 | 90.42 | 38.51 | 99.91 |
JH0 | 350 | 6 624.55 | 6 618.93 | 96.27 | 90.72 | 39.66 | 99.92 |
JD1 | 350 | 6 872.69 | 6 864.09 | 97.31 | 92.61 | 43.51 | 99.88 |
JH1 | 350 | 6 885.70 | 6 876.14 | 97.44 | 93.12 | 40.30 | 99.86 |
图1 库尔勒香梨门水平群落相对丰度柱形图(前10) KP0、KP1、KP2、KP3、KP4、KP5为同一果园的库尔勒香梨健康树皮,下同。
Fig.1 The histogram of phylum in Korla pear(Top10) KP0, KP1, KP2, KP3, KP4, KP5 are the healthy bark of Korla pear in the same orchard. The same as below.
样本 Sample | 种类 Observed species | 香农指数 Shannon | 辛普森指数 Simpson | Chao指数 Chao1 | 样本覆盖度 Goods coverage |
---|---|---|---|---|---|
JH0 | 955 | 5.42 | 0.94 | 963.75 | 0.99 |
JH1 | 1 160 | 5.53 | 0.95 | 1 163.50 | 0.99 |
JD1 | 1 107 | 4.53 | 0.89 | 1 110.47 | 0.99 |
表2 库尔勒香梨树皮内生菌α多样性分析
Table 2 Analysis of Alpha diversity of endophytes in the bark of Korla pear
样本 Sample | 种类 Observed species | 香农指数 Shannon | 辛普森指数 Simpson | Chao指数 Chao1 | 样本覆盖度 Goods coverage |
---|---|---|---|---|---|
JH0 | 955 | 5.42 | 0.94 | 963.75 | 0.99 |
JH1 | 1 160 | 5.53 | 0.95 | 1 163.50 | 0.99 |
JD1 | 1 107 | 4.53 | 0.89 | 1 110.47 | 0.99 |
图4 库尔勒香梨病健树皮内生菌门水平群落相对丰度柱形图(前10) JH0,完全健康无明显病害的库尔勒香梨树皮;JD1,有明显腐烂病发生的库尔勒香梨发病部位树皮;JH1,有明显腐烂病发生的库尔勒香梨健康部位树皮。下同。
Fig.4 Histogram of relative abundance of endophytes in diseased and healthy bark of Korla pear at phyla level (Top10) JH0, completely healthy Korla pear bark without obvious disease; JD1, Bark of diseased part of Korla pear with obvious Valsa canker; JH1, Bark from healthy parts of Korla pear with obvious canker. The same as below.
图5 库尔勒香梨病健树皮内生菌属水平群落相对丰度柱形图(前10)
Fig.5 Histogram of relative abundance of endophytes in diseased and healthy bark of Korla pear at genus level (Top10)
图6 属水平相对丰度聚类热图 Heatmap 纵向聚类表示不同样本微生物丰度的聚类情况,横向聚类表示某一物种在不同样本中丰度的聚类情况。
Fig.6 Generic horizontal relative abundance clustering heat map Heatmap vertical clustering indicates the clustering of microbial abundance in different samples, while horizontal clustering indicates the clustering of the abundance of a certain species in different samples.
图7 基于Bray-Curtis距离的聚类树 图左侧是Bray-Curtis距离聚类树结构;右侧为各层是各样品在第一层级上的功能相对丰度分布。
Fig.7 Clustering tree based on Bray-Curtis distance On the left side of the figure is the Bray-Curtis distance clustering tree structure; The layer on the right is the functional relative abundance distribution of each sample at the first level.
样本 Sample | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 钾含量 Potassium content |
---|---|---|---|
KP0 | 1.12 a | 0.05 a | 0.20 a |
KP1 | 1.22 a | 0.05 a | 0.19 a |
KP2 | 1.19 a | 0.04 a | 0.20 a |
KP3 | 1.18 a | 0.03 a | 0.18 a |
KP4 | 1.11 a | 0.03 a | 0.20 a |
表3 健康库尔勒香梨树皮氮磷钾含量分析
Table 3 Analysis of nitrogen, phosphorus and potassium in bark of healthy Korla pear %
样本 Sample | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 钾含量 Potassium content |
---|---|---|---|
KP0 | 1.12 a | 0.05 a | 0.20 a |
KP1 | 1.22 a | 0.05 a | 0.19 a |
KP2 | 1.19 a | 0.04 a | 0.20 a |
KP3 | 1.18 a | 0.03 a | 0.18 a |
KP4 | 1.11 a | 0.03 a | 0.20 a |
样本 Sample | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 钾含量 Potassium content |
---|---|---|---|
JH0 | 0.93 a | 0.05 a | 0.52 a |
JH1 | 1.01 a | 0.05 a | 0.62 a |
JD1 | 0.71 b | 0.06 a | 0.31 b |
表4 库尔勒香梨病健树皮氮磷钾含量分析
Table 4 Analysis of nitrogen, phosphorus and potassium content in diseased and healthy bark of Korla pear %
样本 Sample | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 钾含量 Potassium content |
---|---|---|---|
JH0 | 0.93 a | 0.05 a | 0.52 a |
JH1 | 1.01 a | 0.05 a | 0.62 a |
JD1 | 0.71 b | 0.06 a | 0.31 b |
图8 基于OTU水平的RDA分析 A,相对丰度Top10内生细菌的RDA分析;B,相对丰度Top10内生真菌的RDA分析。
Fig.8 RDA analysis based on OTU level A, RDA analysis of endophytic bacteria with Top10 relative abundance; B, RDA analysis of endophytic fungi with Top10 relative abundance.
[20] | ZHANG Q, QIAN S Y. Progress in research on alkaloids and pharmacological activities from Streptomyces[J]. Natural Product Research and Development, 2019, 31(8): 1461-1473. (in Chinese with English abstract) |
[21] | 贺赛雅, 袁加升, 周星海, 等. 生防链霉菌菌株S16鉴定和防蔬菜根肿病的潜力评价[J]. 植物病理学报, 2024, 54(2): 410-418. |
HE S Y, YUAN J S, ZHOU X H, et al. Identification of Streptomyces strain S16 and evaluating its biocontrol potential against Plasmodiophora brassicae[J]. Acta Phytopathologica Sinica, 2024, 54(2): 410-418. (in Chinese with English abstract) | |
[22] | 欧阳建鑫, 李伟, 操瑜. 藏南谷地湿地植物丛枝菌根真菌群落结构随海拔变化的驱动因素初探[J]. 植物科学学报, 2024, 42(1): 34-42. |
OUYANG J X, LI W, CAO Y. Preliminary study on factors driving arbuscular mycorrhizal fungi diversity with elevation in the South-Tibet River Basin[J]. Plant Science Journal, 2024, 42(1): 34-42. (in Chinese with English abstract) | |
[23] | 田方, 陈锡, 钟理, 等. 丛枝菌根真菌对白刺花苗期抗旱酶系及生理特性的影响[J]. 西北农业学报, 2022, 31(12): 1625-1634. |
[1] | ANCHEEVA E, DALETOS G, PROKSCH P. Bioactive secondary metabolites from endophytic fungi[J]. Current Medicinal Chemistry, 2020, 27(11): 1836-1854. |
[2] | 杨镇, 曹君. 植物内生菌及其次级代谢产物的研究进展[J]. 微生物学杂志, 2016, 36(4): 1-6. |
[23] | TIAN F, CHEN X, ZHONG L, et al. Effect of arbuscular mycorrhizal fungi on eenzyme system and biochemical indexes of drought resistance in Sophora davidii[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(12): 1625-1634. (in Chinese with English abstract) |
[24] | REN F, DONG W, YAN D H. Endophytic bacterial communities of Jingbai Pear trees in North China analyzed with Illumina sequencing of 16S rDNA[J]. Archives of Microbiology, 2019, 201(2): 199-208. |
[2] | YANG Z, CAO J. Research progress of endophytic fungi and their secondary metabolites[J]. Journal of Microbiology, 2016, 36(4): 1-6. (in Chinese with English abstract) |
[3] | RUDGERS J A, FISCHER S, CLAY K. Managing plant symbiosis: fungal endophyte genotype alters plant community composition[J]. Journal of Applied Ecology, 2010, 47(2): 468-477. |
[25] | SHEN S Y, FULTHORPE R. Seasonal variation of bacterial endophytes in urban trees[J]. Frontiers in Microbiology, 2015, 6: 427. |
[26] | SANTHANAM R, LUU V T, WEINHOLD A, et al. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 5013-5020. |
[4] | TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. |
[5] | BERENDSEN R L, VISMANS G, YU K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal, 2018, 12: 1496-1507. |
[6] | JONES P, GARCIA B J, FURCHES A, et al. Plant host-associated mechanisms for microbial selection[J]. Frontiers in Plant Science, 2019, 10: 862. |
[7] | RAJANIEMI T K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses[J]. Journal of Ecology, 2002, 90(2): 316-324. |
[8] | DICKSON T L, FOSTER B L. Fertilization decreases plant biodiversity even when light is not limiting[J]. Ecology Letters, 2011, 14(4): 380-388. |
[9] | 宋博, 艾米都拉·克尤木, 朱晓锋, 等. 库尔勒香梨腐烂病发生及防治药剂筛选[J]. 新疆农业科学, 2020, 57(8): 1527-1534. |
SONG B, AIMIDULA K, ZHU X F, et al. Occurrence of fragrant pear Valsa canker in Korla and its fungicide screening[J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1527-1534. (in Chinese with English abstract) | |
[10] | 邓力, 唐冰沣, 黄文政, 等. 一株白木香不同组织内生菌的分离鉴定与多样性分析[J]. 安徽农业科学, 2023, 51(20): 6-10, 18. |
DENG L, TANG B F, HUANG W Z, et al. Isolation, identification and diversity analysis of endophytic bacteria in different tissues of Aquilaria sinensis[J]. Journal of Anhui Agricultural Sciences, 2023, 51(20): 6-10, 18. (in Chinese with English abstract) | |
[11] | 乔梦吉, 陈柏旭, 符韵林. 5种楠木木材DNA的提取与条形码鉴定[J]. 西南林业大学学报(自然科学), 2019, 39(3): 141-148. |
QIAO M J, CHEN B X, FU Y L. DNA extraction and DNA barcoding identification of 5 wood species of Phoebe spp. and Machilus spp[J]. Journal of Southwest Forestry University(Natural Sciences), 2019, 39(3): 141-148. (in Chinese with English abstract) | |
[12] | 赵玲云, 范东颖, 李燕芳, 等. 枝干树皮宏基因组DNA的提取[J]. 生物技术通报, 2016, 32(1): 74-79. |
ZHAO L Y, FAN D Y, LI Y F, et al. The extraction of metagenom DNA in branch bark[J]. Biotechnology Bulletin, 2016, 32(1): 74-79. (in Chinese with English abstract) | |
[13] | 鲍士旦. 土壤农化分析[M}. 北京: 中国农业出版社,1981:29. |
[14] | GOYAL S, SINGH P, SENGUPTA S, et al. DNA-Aptamer-based qPCR using Light-Up dyes for the detection of nucleic acids[J]. ACS Omega, 2023, 8(49):47277-47282. |
[15] | 程欢, 张东华, 张俊忠, 等. 苹果砧木T337不同组织内生菌群落及其功能预测[J]. 江苏农业科学, 2022, 50(14): 144-154. |
CHENG H, ZHANG D H, ZHANG J Z, et al. Endophytic microbial community analysis and function prediction in different tissue parts of apple rootstock T337[J]. Jiangsu Agricultural Sciences, 2022, 50(14): 144-154. (in Chinese with English abstract) | |
[16] | PAN J Y, DONG Q L, WEN H B, et al. Composition and diversity of endophytic rhizosphere microbiota in apple tree with different ages[J]. Molecular Biotechnology, 2023: 31. |
[17] | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1-7. |
CHI J L, HAO M, WANG Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 2021, 41(1): 1-7. (in Chinese with English abstract) | |
[18] | 郭振华, 陈立红. 阿尔山不同时期落叶松根际土壤固氮菌的多样性研究[J]. 西北植物学报, 2019, 39(4): 729-739. |
GUO Z H, CHEN L H. Community structure and diversity of culturable nitrogen fixing bacteria from Larix gmelinii rhizosphere soil at different stages in Arxan[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(4): 729-739. (in Chinese with English abstract) | |
[19] | KUMAR P, DUBEY S K A R. Diversity of bacilli from disease suppressive soil and their role in plant growth promotion and yield enhancement[J]. New York Science Journal, 2012, 5(1): 90-111. |
[20] | 张权, 钱声艳. 链霉菌来源生物碱及药理活性研究进展[J]. 天然产物研究与开发, 2019, 31(8): 1461-1473. |
[27] | 贺璐, 马杰, 傅淋, 等. 卷丹百合根腐病植株与健康植株根际土壤真菌群落结构差异[J]. 西南农业学报, 2023, 36(11): 2419-2425. |
HE L, MA J, FU L, et al. Differences on rhizosphere soil fungal community structure between root rot plants and healthy plants of Lilium lancifolium[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2419-2425. (in Chinese with English abstract) | |
[28] | 陈晓芳, 张翔宇, 柳敏, 等. 根腐病半夏内生菌群及其土壤微生物群落分析[J]. 中药材, 2023, 46(10): 2399-2407. |
CHEN X F, ZHANG X Y, LIU M, et al. Analysis of endophytic flora and soil microbial community of pinellia root rot[J]. Journal of Chinese Medicinal Materials, 2023, 46(10): 2399-2407. (in Chinese) | |
[29] | WANG X L, WEI J L, HUANG L L, et al. Re-evaluation of pathogens causing Valsa canker on apple in China[J]. Mycologia, 2011, 103(2): 317-324. |
[30] | LIU Y J, SHI G X, MAO L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. The New Phytologist, 2012, 194(2): 523-535. |
[31] | LI T, ZHOU Y Q, YANG F, et al. Impact of environmental factors on the diversity of nitrogen-removal bacteria in wetlands in the sanmenxia reservoir of the yellow river[J]. Journal of Soils and Sediments, 2023, 23(1): 512-525. |
[1] | 闫鸿媛, 俞浙萍, 张淑文, 倪晓鹏, 李向男, 梁森苗. 杨梅肉葱病发生与营养元素关联分析[J]. 浙江农业学报, 2024, 36(7): 1626-1633. |
[2] | 赵慧君, 姚东瑞, 孙林鹤, 崔键, 常雅军, 曹建军. 水芹对畜禽养殖废水中9种元素的累积能力及其生物修复潜力[J]. 浙江农业学报, 2021, 33(8): 1477-1488. |
[3] | 杨蕾, 张云贵, 杨海健, 李勋兰, 洪林. 不同青苔发病程度下柑橘叶片营养及叶际生物特征分析[J]. 浙江农业学报, 2020, 32(4): 632-643. |
[4] | 杨万风, 刘艳, 陆辰晨, 邵沛泽, 谌运清, 赵文军. 双重PCR方法检测检疫性细菌洋葱腐烂病菌和菊基腐病菌[J]. 浙江农业学报, 2018, 30(3): 426-431. |
[5] | 吴阳春, 任海英, 戚行江, 郑锡良, 梁森苗. 云南新产区杨梅枝枯的病原菌鉴定及土壤营养元素分析[J]. 浙江农业学报, 2017, 29(2): 270-276. |
[6] | 邓振山, 魏婷婷, 苏瑞, 高飞, 刘玉珍, 陈邦凯, 莫达锐, 何茜, 许红霞. 一株具有抑菌活性的酸枣内生菌的分离[J]. 浙江农业学报, 2017, 29(12): 2068-2076. |
[7] | 张天志1,郑伟尉1,邵晓岚2,张岚岚1,*,肖金平3,谢鸣3. 采前钙处理对猕猴桃果实和叶片营养元素含量的影响[J]. 浙江农业学报, 2014, 26(4): 966-. |
[8] | 龚娜;杨镇;王娜;李学龙;肖军;陈珣;杨涛*. 植物内生菌次生代谢产物影响大豆主要性状的灰色关联度分析[J]. , 2013, 25(5): 0-937. |
[9] | 姜楠;汪小福;徐俊锋;黄志宏;周育;*. 转Bt基因对水稻内生原核微生物定殖数量效应分析[J]. , 2012, 24(5): 0-874. |
[10] | 王一恒;崔俊明;袁波;时向东*. 雪茄外包皮烟叶干物质及矿质营养元素的积累[J]. , 2011, 23(4): 0-684. |
[11] | 徐红星;吕仲贤;俞晓平;张传溪. 植物内生菌在害虫治理中的应用[J]. , 2006, 18(5): 0-396. |
[12] | 俞晓平;陈列忠;申屠旭萍 . 植物内生菌及其代谢物在生物农药创制中的应用[J]. , 2006, 18(5): 0-293. |
[13] | 楼兵干;楼晓明;杨合同. 郁金香种球腐烂病的病原鉴定[J]. , 2003, 15(5): 0-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||