浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2558-2565.DOI: 10.3969/j.issn.1004-1524.20231086
艾然1,2(), 何杰3, 林海忠3, 翁丽青4, 陈照明2, 马军伟2, 王强2,*(
)
收稿日期:
2023-09-11
出版日期:
2024-11-25
发布日期:
2024-11-27
作者简介:
艾然(1999—),男,安徽马鞍山人,硕士,主要从事耕地质量培育与提升研究。E-mail: 719054708@qq.com
通讯作者:
*王强,E-mail: qwang0571@126.com
基金资助:
AI Ran1,2(), HE Jie3, LIN Haizhong3, WENG Liqing4, CHEN Zhaoming2, MA Junwei2, WANG Qiang2,*(
)
Received:
2023-09-11
Online:
2024-11-25
Published:
2024-11-27
摘要:
为探究茭白种植年限对土壤有机碳(SOC)含量和结构特征的影响,以浙江余姚和黄岩两地不同种植年限的茭白田土壤(黄岩的种植年限为0、5、15、30 a,余姚的种植年限为1、5、15 a)为对象,采集0~20、>20~40 cm土层样品,测定土壤颗粒有机碳(POC)含量,并通过固态碳-13核磁共振技术(13C NMR)对SOC官能团丰度进行检测。结果表明:在黄岩试验点,0~20 cm茭白田的SOC含量随种植年限的增加而增加,但茭白种植年限对>20~40 cm土层的SOC含量无显著影响,与未种植茭白的农田相比,种植30 a茭白田的0~20 cm土层的SOC、POC含量分别显著(P<0.05)升高40.3%、86.4%,POC占SOC的比例显著增加12百分点,但土壤烷基碳比例显著降低5.96百分点,>20~40 cm土层的烷基碳比例显著下降9.53百分点,而芳香碳比例显著升高4.31百分点。在余姚试验点,各种植年限茭白田0~20、>20~40 cm土层的SOC官能团丰度和>20~40 cm土层的SOC、POC含量均无显著差异,但与种植1 a茭白的相比,种植5 a茭白田0~20 cm土层的SOC、 POC含量分别显著提高41.0%、87.1%,POC占SOC的比例显著增加10百分点。综上,茭白种植可以提高0~20 cm土层的SOC含量和POC含量,但随着种植年限的增加,土壤有机碳的稳定性减弱。
中图分类号:
艾然, 何杰, 林海忠, 翁丽青, 陈照明, 马军伟, 王强. 不同种植年限茭白田土壤的有机碳含量与结构特征[J]. 浙江农业学报, 2024, 36(11): 2558-2565.
AI Ran, HE Jie, LIN Haizhong, WENG Liqing, CHEN Zhaoming, MA Junwei, WANG Qiang. Soil organic carbon content and structural characteristics in water bamboo fields with different cultivation time[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2558-2565.
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 0 | 35.67±3.88 c | 12.81±1.14 b | 0.36±0.00 b |
5 | 46.26±2.32 ab | 21.24±1.14 a | 0.45±0.01 a | |
15 | 41.26±2.54 b | 14.93±1.00 b | 0.36±0.04 b | |
30 | 50.05±2.09 a | 23.88±1.80 a | 0.48±0.02 a | |
>20~40 | 0 | 29.51±5.67 a | 6.68±0.07 a | 0.25±0.05 a |
5 | 33.00±3.48 a | 8.20±4.91 a | 0.24±0.13 a | |
15 | 30.05±8.39 a | 6.55±0.00 a | 0.22±0.08 a | |
30 | 24.74±2.53 a | 3.59±1.18 a | 0.14±0.03 a |
表1 黄岩试验点土壤的有机碳含量与物理组分特征
Table 1 Characteristics of organic carbon content and physical components in Huangyan
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 0 | 35.67±3.88 c | 12.81±1.14 b | 0.36±0.00 b |
5 | 46.26±2.32 ab | 21.24±1.14 a | 0.45±0.01 a | |
15 | 41.26±2.54 b | 14.93±1.00 b | 0.36±0.04 b | |
30 | 50.05±2.09 a | 23.88±1.80 a | 0.48±0.02 a | |
>20~40 | 0 | 29.51±5.67 a | 6.68±0.07 a | 0.25±0.05 a |
5 | 33.00±3.48 a | 8.20±4.91 a | 0.24±0.13 a | |
15 | 30.05±8.39 a | 6.55±0.00 a | 0.22±0.08 a | |
30 | 24.74±2.53 a | 3.59±1.18 a | 0.14±0.03 a |
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 1 | 27.98±0.58 b | 6.88±0.58 b | 0.25±0.02 b |
5 | 39.46±4.25 a | 12.87±1.23 a | 0.35±0.01 a | |
15 | 33.50±2.87 ab | 11.74±0.50 a | 0.33±0.02 a | |
>20~40 | 1 | 28.03±2.22 a | 7.62±0.11 a | 0.26±0.00 a |
5 | 28.69±1.43 a | 6.92±1.71 a | 0.25±0.05 a | |
15 | 32.21±4.86 a | 8.84±0.00 a | 0.29±0.05 a |
表2 余姚试验点土壤的有机碳含量与物理组分特征
Table 2 Characteristics of organic carbon content and physical components in Yuyao
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 1 | 27.98±0.58 b | 6.88±0.58 b | 0.25±0.02 b |
5 | 39.46±4.25 a | 12.87±1.23 a | 0.35±0.01 a | |
15 | 33.50±2.87 ab | 11.74±0.50 a | 0.33±0.02 a | |
>20~40 | 1 | 28.03±2.22 a | 7.62±0.11 a | 0.26±0.00 a |
5 | 28.69±1.43 a | 6.92±1.71 a | 0.25±0.05 a | |
15 | 32.21±4.86 a | 8.84±0.00 a | 0.29±0.05 a |
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 39.23±1.81 a | 39.16±9.37 a | 11.52±2.50 a | 10.08±8.76 a | 1.03±0.21 a | 1.03±0.03 a |
5 | 38.38±0.91 a | 37.53±4.04 a | 9.74±1.07 a | 14.35±2.20 a | 1.03±0.14 a | 0.93±0.07 b | |
15 | 36.66±0.84 a | 37.79±1.27 a | 11.33±0.36 a | 14.22±0.88 a | 0.97±0.05 a | 0.92±0.02 b | |
30 | 33.27±3.53 b | 39.03±1.22 a | 12.49±1.93 a | 15.21±1.06 a | 0.85±0.11 a | 0.85±0.06 b | |
>20~40 | 0 | 43.38±4.87 a | 41.16±8.40 a | 6.88±2.43 b | 8.58±7.47 a | 1.10±0.35 a | 1.02±0.14 a |
5 | 35.00±5.16 b | 38.22±5.08 a | 11.79±1.71 a | 15.00±1.63 a | 0.94±0.26 a | 0.88±0.12 a | |
15 | 38.94±1.48 ab | 37.08±4.56 a | 9.80±0.42 a | 14.18±2.71 a | 1.06±0.16 a | 0.95±0.07 a | |
30 | 33.85±2.60 b | 42.12±3.02 a | 11.19±1.23 a | 12.85±1.62 a | 0.81±0.12 a | 0.82±0.05 a |
表3 黄岩试验点茭白田土壤的有机碳官能团比例
Table 3 Proportions of organic carbon functional groups in soils in Huangyan
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 39.23±1.81 a | 39.16±9.37 a | 11.52±2.50 a | 10.08±8.76 a | 1.03±0.21 a | 1.03±0.03 a |
5 | 38.38±0.91 a | 37.53±4.04 a | 9.74±1.07 a | 14.35±2.20 a | 1.03±0.14 a | 0.93±0.07 b | |
15 | 36.66±0.84 a | 37.79±1.27 a | 11.33±0.36 a | 14.22±0.88 a | 0.97±0.05 a | 0.92±0.02 b | |
30 | 33.27±3.53 b | 39.03±1.22 a | 12.49±1.93 a | 15.21±1.06 a | 0.85±0.11 a | 0.85±0.06 b | |
>20~40 | 0 | 43.38±4.87 a | 41.16±8.40 a | 6.88±2.43 b | 8.58±7.47 a | 1.10±0.35 a | 1.02±0.14 a |
5 | 35.00±5.16 b | 38.22±5.08 a | 11.79±1.71 a | 15.00±1.63 a | 0.94±0.26 a | 0.88±0.12 a | |
15 | 38.94±1.48 ab | 37.08±4.56 a | 9.80±0.42 a | 14.18±2.71 a | 1.06±0.16 a | 0.95±0.07 a | |
30 | 33.85±2.60 b | 42.12±3.02 a | 11.19±1.23 a | 12.85±1.62 a | 0.81±0.12 a | 0.82±0.05 a |
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 38.33±1.59 a | 31.22±4.64 a | 15.43±1.26 a | 15.01±5.18 a | 1.25±0.20 a | 1.16±0.05 a |
5 | 37.99±2.92 a | 31.15±2.09 a | 15.47±1.76 a | 15.38±1.03 a | 1.23±0.17 a | 1.15±0.09 a | |
15 | 41.78±5.16 a | 29.23±3.50 a | 14.75±1.67 a | 14.24±2.63 a | 1.46±0.34 a | 1.31±0.22 a | |
>20~40 | 0 | 38.40±4.60 a | 31.44±7.62 a | 13.47±0.15 a | 16.69±3.10 a | 1.29±0.40 a | 1.09±0.19 a |
5 | 41.44±9.20 a | 36.40±7.28 a | 12.06±6.08 a | 10.10±8.75 a | 1.15±0.25 a | 1.16±0.16 a | |
15 | 37.45±1.25 a | 34.39±2.15 a | 15.12±0.28 a | 13.04±2.49 a | 1.09±0.07 a | 1.11±0.05 a |
表4 余姚试验点茭白田土壤的有机碳官能团比例
Table 4 Proportions of organic carbon functional groups in soils in Yuyao
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 38.33±1.59 a | 31.22±4.64 a | 15.43±1.26 a | 15.01±5.18 a | 1.25±0.20 a | 1.16±0.05 a |
5 | 37.99±2.92 a | 31.15±2.09 a | 15.47±1.76 a | 15.38±1.03 a | 1.23±0.17 a | 1.15±0.09 a | |
15 | 41.78±5.16 a | 29.23±3.50 a | 14.75±1.67 a | 14.24±2.63 a | 1.46±0.34 a | 1.31±0.22 a | |
>20~40 | 0 | 38.40±4.60 a | 31.44±7.62 a | 13.47±0.15 a | 16.69±3.10 a | 1.29±0.40 a | 1.09±0.19 a |
5 | 41.44±9.20 a | 36.40±7.28 a | 12.06±6.08 a | 10.10±8.75 a | 1.15±0.25 a | 1.16±0.16 a | |
15 | 37.45±1.25 a | 34.39±2.15 a | 15.12±0.28 a | 13.04±2.49 a | 1.09±0.07 a | 1.11±0.05 a |
[1] | OECHAIYAPHUM K, ULLAH H, SHRESTHA R P, et al. Impact of long-term agricultural management practices on soil organic carbon and soil fertility of paddy fields in Northeastern Thailand[J]. Geoderma Regional, 2020, 22: e00307. |
[2] | WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162. |
[3] | LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. |
[4] | LAN X J, SHAN J, HUANG Y, et al. Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of Southern China[J]. Soil and Tillage Research, 2022, 221: 105395. |
[5] | AHN J H, CHOI M Y, KIM B Y, et al. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil[J]. Microbial Ecology, 2014, 68(2): 271-283. |
[6] | ZHAO Z Z, ZHAO Z Y, FU B, et al. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area[J]. Journal of Soils and Sediments, 2021, 21(2): 689-697. |
[7] | KAMRAN M, HUANG L, NIE J, et al. Effect of reduced mineral fertilization (NPK) combined with green manure on aggregate stability and soil organic carbon fractions in a fluvo-aquic paddy soil[J]. Soil and Tillage Research, 2021, 211: 105005. |
[8] | TANG H M, CHENG K K, SHI L H, et al. Effects of long-term organic matter application on soil carbon accumulation and nitrogen use efficiency in a double-cropping rice field[J]. Environmental Research, 2022, 213: 113700. |
[9] | 寿森炎, 姜芳, 陈可可, 等. 浙江设施茭白栽培技术综述与发展趋势[J]. 长江蔬菜, 2009(16): 102-103. |
SHOU S Y, JIANG F, CHEN K K, et al. Summarization and development orientation of Zizania latifolia Turcz. in Zhejiang in greenhouse[J]. Journal of Changjiang Vegetables, 2009(16): 102-103. (in Chinese) | |
[10] | CHENG H M, SHU K X, ZHU T Y, et al. Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields[J]. Journal of Cleaner Production, 2022, 349: 131487. |
[11] | 俞晓平, 李建荣, 施建苗, 等. 水生蔬菜茭白及其无害化生产技术[J]. 浙江农业学报, 2003, 15(3): 109-117. |
YU X P, LI J R, SHI J M, et al. The aquatic vegetable, Jiaobai (Zizania caduciflora L.) and its safe production in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2003, 15(3): 109-117. (in Chinese with English abstract) | |
[12] | TIAN J, LU S H, FAN M S, et al. Integrated management systems and N fertilization: effect on soil organic matter in rice-rapeseed rotation[J]. Plant and Soil, 2013, 372(1): 53-63. |
[13] | WU J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62(1): 29-34. |
[14] | QASWAR M, HUANG J, AHMED W, et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil[J]. Soil and Tillage Research, 2020, 198: 104569. |
[15] | LI S, ZHANG S R, PU Y L, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297. |
[16] | BENBI D K, BOPARAI A K, BRAR K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter[J]. Soil Biology and Biochemistry, 2014, 70: 183-192. |
[17] | SHARMA V, HUSSAIN S, SHARMA K R, et al. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems[J]. Geoderma, 2014, 232: 81-87. |
[18] | 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成:机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. |
ZHOU Z H, LIU L, HOU L. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. (in Chinese with English abstract) | |
[19] | 杭子清, 王国祥, 刘金娥, 等. 互花米草盐沼土壤有机碳库组分及结构特征[J]. 生态学报, 2014, 34(15): 4175-4182. |
HANG Z Q, WANG G X, LIU J E, et al. Characterization of soil organic carbon fractions at Spartina alterniflora saltmarsh in North Jiangsu[J]. Acta Ecologica Sinica, 2014, 34(15): 4175-4182. (in Chinese with English abstract) | |
[20] | WANG A N, ZHA T G, ZHANG Z Q. Variations in soil organic carbon storage and stability with vegetation restoration stages on the Loess Plateau of China[J]. CATENA, 2023, 228: 107142. |
[21] | 王学霞, 张磊, 梁丽娜, 等. 秸秆还田对麦玉系统土壤有机碳稳定性的影响[J]. 农业环境科学学报, 2020, 39(8): 1774-1782. |
WANG X X, ZHANG L, LIANG L N, et al. Effects of straw returning on the stability of soil organic carbon in wheat-maize rotation systems[J]. Journal of Agro-Environment Science, 2020, 39(8): 1774-1782. (in Chinese with English abstract) | |
[22] | 季淮. 洪泽湖河湖交汇区不同土地覆被/利用类型土壤有机碳分布特征及其影响因素[D]. 南京: 南京林业大学, 2021. |
JI H. Distribution characteristics and influencing factors of soil organic carbon in different cover/use types of wetland at the confluence of Hongze Lake and Huai River[D]. Nanjing: Nanjing Forestry University, 2021. (in Chinese with English abstract) | |
[23] | LI Z Q, ZHAO B Z, WANG Q Y, et al. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies[J]. PLoS One, 2015, 10(4): e0124359. |
[24] | BERNS A E, CONTE P. Effect of ramp size and sample spinning speed on CPMAS 13C NMR spectra of soil organic matter[J]. Organic Geochemistry, 2011, 42(8): 926-935. |
[25] | KNICKER H. Solid state CPMAS 13C and 15N NMR spectroscopy in organic geochemistry and how spin dynamics can either aggravate or improve spectra interpretation[J]. Organic Geochemistry, 2011, 42(8): 867-890. |
[26] | CHEN X F, LIU M, KUZYAKOV Y, et al. Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence[J]. Applied Soil Ecology, 2018, 130: 84-90. |
[27] | SIX J, ELLIOTT E, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. |
[28] | LAGANIÈRE J, BOČA A, MIEGROET H, et al. A tree species effect on soil that is consistent across the species’ range: the case of aspen and soil carbon in North America[J]. Forests, 2017, 8: 113. |
[29] | WANG H, HAGEDORN J, SVENDSEN A, et al. Variant of the Thermomyces lanuginosus lipase with improved kinetic stability: a candidate for enzyme replacement therapy[J]. Biophysical Chemistry, 2013, 172: 43-52. |
[30] | GUAN S, AN N, ZONG N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 116: 224-236. |
[31] | SINGH B, RENGEL Z. The role of crop residues in improving soil fertility[M]// MARSCHNER P, RENGEL Z. Nutrient cycling in terrestrial ecosystems. Berlin, Heidelberg: Springer, 2007: 183-214. |
[32] | NDUNG’U M, NGATIA L W, ONWONGA R N, et al. The influence of organic and inorganic nutrient inputs on soil organic carbon functional groups content and maize yields[J]. Heliyon, 2021, 7(8): e07881. |
[33] | SPACCINI R, MBAGWU J S C, CONTE P, et al. Changes of humic substances characteristics from forested to cultivated soils in Ethiopia[J]. Geoderma, 2006, 132(1/2): 9-19. |
[34] | GHOSH B N, MEENA V S, SINGH R J, et al. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas[J]. Ecological Indicators, 2019, 105: 415-424. |
[35] | 杨良觎. 长期连作茭白和秸秆全量还田对农田土壤质量的影响[D]. 杭州: 浙江大学, 2019. |
YANG L Y. Effects of long-term plantation of Zizania latifolia and straw total return on soil quality of farmland[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[36] | 李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326-6336. |
LI W, ZHENG Z C, LI T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326-6336. (in Chinese with English abstract) | |
[37] | HOBLEY E U, BALDOCK J, WILSON B. Environmental and human influences on organic carbon fractions down the soil profile[J]. Agriculture, Ecosystems & Environment, 2016, 223: 152-166. |
[38] | DAI W, GAO H, SHA Z M, et al. Changes in soil organic carbon fractions in response to wheat straw incorporation in a subtropical paddy field in China[J]. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 198-207. |
[39] | WANG H, GUAN D S, ZHANG R D, et al. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field[J]. Ecological Engineering, 2014, 70: 206-211. |
[40] | WANG X T, CHEN R R, JING Z W, et al. Root derived carbon transport extends the rhizosphere of rice compared to wheat[J]. Soil Biology and Biochemistry, 2018, 122: 211-219. |
[41] | GE T D, LUO Y, HE X H. Quantitative and mechanistic insights into the key process in the rhizodeposited carbon stabilization, transformation and utilization of carbon, nitrogen and phosphorus in paddy soil[J]. Plant and Soil, 2019, 445(1): 1-5. |
[42] | 徐颖菲, 姚玉才, 章明奎. 全年淹水种植茭白对水田土壤性态的影响[J]. 土壤通报, 2019, 50(1): 15-21. |
XU Y F, YAO Y C, ZHANG M K. Effects of Zizania latifolia plantation with the whole year water-logging on soil properties of paddy fields[J]. Chinese Journal of Soil Science, 2019, 50(1): 15-21. (in Chinese with English abstract) |
[1] | 徐君言, 裘高扬, 刘俊丽, 郭彬, 李华, 陈晓冬, 王鸢, 傅庆林. 蒙脱石、高岭石与玄武岩对土壤碳固存的影响[J]. 浙江农业学报, 2024, 36(8): 1867-1877. |
[2] | 郭威良, 吴剑, 张兴一龙, 吴可荆, 谢佳家, 冯海林. 茭白秆水解制备高价值呋喃平台化合物研究[J]. 浙江农业学报, 2024, 36(4): 870-880. |
[3] | 查贵超, 孙向阳, 李素艳, 于雷, 岳宗伟, 王晨晨, 魏宁娴, 徐浠婕. 北京市通州区不同绿地类型的土壤有机碳及其组分特征[J]. 浙江农业学报, 2023, 35(7): 1699-1708. |
[4] | 单英杰, 任白琳, 陈宇航, 丁志峰, 章明奎. 茭白田土壤磷库特征及其与种植年限的关系和流失风险[J]. 浙江农业学报, 2023, 35(11): 2645-2654. |
[5] | 简兴, 翟晓钰, 王喻, 蔡阳阳. 土地利用方式改变对湿地土壤总有机碳与可溶性有机碳的影响[J]. 浙江农业学报, 2020, 32(3): 475-482. |
[6] | 朱伟成, 郜海燕, 韩延超, 李大祥, 陈杭君. 不同预冷方式对茭白采后降温速度和贮藏品质的影响[J]. 浙江农业学报, 2020, 32(10): 1873-1879. |
[7] | 陶利波, 王建军, 王国会, 于双, 李惠惠, 许冬梅. 封育对宁夏荒漠草原土壤有机碳矿化的影响[J]. 浙江农业学报, 2017, 29(9): 1549-1554. |
[8] | 虞舟鲁, 邱乐丰, 林霖. 土地利用方式变化对农业土壤有机碳空间分布的影响[J]. 浙江农业学报, 2017, 29(5): 806-811. |
[9] | 季波, 李娜, 马璠, 蔡进军, 董立国, 许浩, 韩新生. 宁南典型退耕模式对土壤有机碳固存的影响[J]. 浙江农业学报, 2017, 29(3): 483-488. |
[10] | 蓝家程, 肖时珍, 林俊清, 沈艳. 土地利用方式对岩溶山地土壤轻组和重组有机碳的影响[J]. 浙江农业学报, 2017, 29(10): 1720-1725. |
[11] | 王连晓1,史正涛1,*,刘新有2,3,杨帆1. 西双版纳橡胶林土壤有机碳分布特征研究[J]. 浙江农业学报, 2016, 28(7): 1200-. |
[12] | 邵泱峰1,梅洪飞1,潘忠潮1,刘欢2,王超琦2. 玉米秸秆还田对土壤有机碳、微生物功能多样性及甘蓝产量的影响[J]. 浙江农业学报, 2016, 28(5): 838-. |
[13] | 罗书吉1,2,3,王钫2,3,陈文学1,王伟2,3,胡桂仙2,3,王强1,2,3,*. 离子色谱法测定茭白中总亚硫酸盐的应用研究[J]. 浙江农业学报, 2016, 28(5): 870-. |
[14] | 周锦连1,陈建明2,*,王来亮3,张珏锋2,马雅敏3,王斌4,钟海英2. 敌磺钠对单季茭白产量和效益的影响[J]. 浙江农业学报, 2016, 28(4): 624-. |
[15] | 陈贵1,赵国华2,张红梅1,沈亚强1,杨继锋3,冯四海4,陈小忠3,程旺大1,*. 沼液浇灌对茭白氮磷钾养分吸收利用特性的影响[J]. 浙江农业学报, 2016, 28(3): 474-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||