浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2645-2654.DOI: 10.3969/j.issn.1004-1524.20221683
单英杰1(), 任白琳2, 陈宇航2, 丁志峰2, 章明奎2,*(
)
收稿日期:
2022-11-25
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
单英杰(1968—),女,浙江绍兴人,学士,推广研究员,主要从事耕地质量建设与水肥技术推广。E-mail:syjhz@126.com
通讯作者:
* 章明奎,E-mail: mkzhang@zju.edu.cn
基金资助:
SHAN Yingjie1(), REN Bailin2, CHEN Yuhang2, DING Zhifeng2, ZHANG Mingkui2,*(
)
Received:
2022-11-25
Online:
2023-11-25
Published:
2023-12-04
摘要:
对浙江省典型茭白种植区表层(0~20 cm)土壤中的磷素丰缺状况和磷库特征进行调查,分析茭白种植年限与土壤磷积累的关系。结果表明:样本茭白田土壤的全磷和有效磷(Olsen-P)含量平均值分别为876.73、63.30 mg·kg-1,土壤磷积累明显,有效磷水平达丰富级别的占比高达81.05%。样本土壤的磷素以无机磷为主,平均占比达到79.91%,水提取态无机磷(H2O-Pi)、NaHCO3提取态无机磷(NaHCO3-Pi)、NaOH提取态无机磷(NaOH-Pi)、HCl提取态无机磷(HCl-Pi)、NaHCO3提取态有机磷(NaHCO3-Po)、NaOH提取态有机磷(NaOH-Po)和残余态磷的平均含量分别为16.16、122.06、213.03、103.22、22.18、158.52、241.86 mg·kg-1。除残余态磷和HCl-Pi外,其他形态磷的含量均随茭白种植年限的增加而增加。土壤磷吸持饱和度随茭白种植年限延长逐渐增加,土壤磷素随种植年限延长呈向下迁移的特点。当样本土壤的有效磷含量大于60 mg·kg-1时,土壤磷素淋失风险增加,约48.37%的样本土壤处于磷高淋失风险状态。
中图分类号:
单英杰, 任白琳, 陈宇航, 丁志峰, 章明奎. 茭白田土壤磷库特征及其与种植年限的关系和流失风险[J]. 浙江农业学报, 2023, 35(11): 2645-2654.
SHAN Yingjie, REN Bailin, CHEN Yuhang, DING Zhifeng, ZHANG Mingkui. Status of soil phosphorus pools in Zizania latifolia field and their relationships with plantation years and leaching risk[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2645-2654.
磷形态 Phosphorus form | 范围 Range | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|
H2O-Pi | 0.43~2.65 | 1.66 | 0.57 |
NaHCO3-Pi | 0.87~25.32 | 13.29 | 4.22 |
NaOH-Pi | 3.26~44.56 | 21.08 | 9.21 |
HCl-Pi | 1.05~30.45 | 12.47 | 6.63 |
NaHCO3-Po | 0.59~5.97 | 2.56 | 1.07 |
NaOH-Po | 3.81~31.98 | 17.53 | 5.39 |
R-P | 10.28~73.35 | 31.41 | 11.45 |
O-P | 5.59~35.75 | 20.09 | 5.72 |
表1 表层(0~20 cm)土样中不同形态磷的组成
Table 1 Composition of different forms of phosphorus in the surface soils (0-20 cm) %
磷形态 Phosphorus form | 范围 Range | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|
H2O-Pi | 0.43~2.65 | 1.66 | 0.57 |
NaHCO3-Pi | 0.87~25.32 | 13.29 | 4.22 |
NaOH-Pi | 3.26~44.56 | 21.08 | 9.21 |
HCl-Pi | 1.05~30.45 | 12.47 | 6.63 |
NaHCO3-Po | 0.59~5.97 | 2.56 | 1.07 |
NaOH-Po | 3.81~31.98 | 17.53 | 5.39 |
R-P | 10.28~73.35 | 31.41 | 11.45 |
O-P | 5.59~35.75 | 20.09 | 5.72 |
种植年限 | OM/(g·kg-1) | pH值pH value | TP/(g·kg-1) | Olsen-P/(mg·kg-1) | CaCl2-P/(mg·kg-1) |
---|---|---|---|---|---|
Plantation years/a | |||||
0(CK) | 25.45±7.79 bc | 5.59±0.55 ab | 522±146 d | 17.41±17.70 d | 0.29±0.19 c |
<5 | 21.43±5.93 c | 6.01±0.77 a | 528±157 d | 24.11±13.91 d | 0.29±0.15 c |
5~<10 | 27.51±9.49 ab | 5.83±0.80 ab | 690±166 cd | 46.79±26.64 c | 0.58±0.34 c |
10~<20 | 27.57±8.08 ab | 5.55±0.67 ab | 894±226 bc | 67.43±28.86 bc | 1.24±1.37 b |
20~<30 | 29.99±7.80 a | 5.23±0.92 bc | 1 083±512 ab | 85.44±27.31 ab | 1.72±1.78 ab |
≥30 | 30.09±7.13 a | 4.99±0.39 c | 1 392±752 a | 99.09±35.74 a | 2.93±2.52 a |
表2 不同茭白种植年限农田土壤的基本理化性状
Table 2 Physicochemical properties of soils with different plantation years of Zizania latifolia
种植年限 | OM/(g·kg-1) | pH值pH value | TP/(g·kg-1) | Olsen-P/(mg·kg-1) | CaCl2-P/(mg·kg-1) |
---|---|---|---|---|---|
Plantation years/a | |||||
0(CK) | 25.45±7.79 bc | 5.59±0.55 ab | 522±146 d | 17.41±17.70 d | 0.29±0.19 c |
<5 | 21.43±5.93 c | 6.01±0.77 a | 528±157 d | 24.11±13.91 d | 0.29±0.15 c |
5~<10 | 27.51±9.49 ab | 5.83±0.80 ab | 690±166 cd | 46.79±26.64 c | 0.58±0.34 c |
10~<20 | 27.57±8.08 ab | 5.55±0.67 ab | 894±226 bc | 67.43±28.86 bc | 1.24±1.37 b |
20~<30 | 29.99±7.80 a | 5.23±0.92 bc | 1 083±512 ab | 85.44±27.31 ab | 1.72±1.78 ab |
≥30 | 30.09±7.13 a | 4.99±0.39 c | 1 392±752 a | 99.09±35.74 a | 2.93±2.52 a |
种植年限 | H2O-Pi | NaHCO3-Pi | NaOH-Pi | HCl-Pi | NaHCO3-Po | NaOH-Po | R-P | TPo | TPi |
---|---|---|---|---|---|---|---|---|---|
Plantation years/a | |||||||||
0(CK) | 3.73 ±4.21 c | 64.50 ±35.17 c | 65.89 ±51.19 c | 63.71 ±32.83 b | 20.87 ±10.13 ab | 90.75 ±40.14 bc | 212.05 ±21.89 b | 111.62 ±44.56 cd | 409.88 ±120.13 c |
<5 | 5.49 ±4.77 c | 49.81 ±38.75 c | 67.55 ±54.95 c | 82.73 ±30.45 ab | 12.17 ±9.55 b | 72.05 ±48.29 c | 240.89 ±31.18 ab | 84.22 ±53.24 d | 444.1 ±109.17 c |
5~<10 | 10.59 ±6.07 bc | 89.03 ±42.61 bc | 125.36 ±74.53 b | 91.71 ±34.99 a | 17.99 ±9.81 b | 126.50 ±63.46 b | 228.77 ±25.75 ab | 144.49 ±69.34 cd | 545.46 ±109.77 bc |
10~<20 | 16.92 ±6.93 b | 128.52 ±42.80 b | 214.58 ±113.61 b | 107.07 ±68.48 a | 23.13 ±10.87 ab | 162.90 ±55.19 b | 240.46 ±26.86 ab | 186.03 ±61.71 bc | 707.56 ±183.09 ab |
20~<30 | 22.35 ±14.07 ab | 159.67 ±58.77 ab | 303.93 ±236.06 ab | 119.08 ±126.49 a | 27.50 ±9.03 ab | 203.69 ±103.76 ab | 246.83 ±39.07 ab | 231.2 ±107.84 ab | 851.86 ±418.75 ab |
≥30 | 30.70 ±19.35 a | 212.73 ±148.40 a | 470.96 ±376.41 a | 110.66 ±71.63 a | 32.74 ±15.59 a | 254.5 ±112.33 a | 279.73 ±74.47 a | 287.23 ±124.52 a | 1 104.77 ±638.91 a |
表3 不同茭白种植年限农田土壤各形态磷的含量
Table 3 Contents of different forms of phosphorus in soils with different plantation years of Zizania latifoliamg·kg-1
种植年限 | H2O-Pi | NaHCO3-Pi | NaOH-Pi | HCl-Pi | NaHCO3-Po | NaOH-Po | R-P | TPo | TPi |
---|---|---|---|---|---|---|---|---|---|
Plantation years/a | |||||||||
0(CK) | 3.73 ±4.21 c | 64.50 ±35.17 c | 65.89 ±51.19 c | 63.71 ±32.83 b | 20.87 ±10.13 ab | 90.75 ±40.14 bc | 212.05 ±21.89 b | 111.62 ±44.56 cd | 409.88 ±120.13 c |
<5 | 5.49 ±4.77 c | 49.81 ±38.75 c | 67.55 ±54.95 c | 82.73 ±30.45 ab | 12.17 ±9.55 b | 72.05 ±48.29 c | 240.89 ±31.18 ab | 84.22 ±53.24 d | 444.1 ±109.17 c |
5~<10 | 10.59 ±6.07 bc | 89.03 ±42.61 bc | 125.36 ±74.53 b | 91.71 ±34.99 a | 17.99 ±9.81 b | 126.50 ±63.46 b | 228.77 ±25.75 ab | 144.49 ±69.34 cd | 545.46 ±109.77 bc |
10~<20 | 16.92 ±6.93 b | 128.52 ±42.80 b | 214.58 ±113.61 b | 107.07 ±68.48 a | 23.13 ±10.87 ab | 162.90 ±55.19 b | 240.46 ±26.86 ab | 186.03 ±61.71 bc | 707.56 ±183.09 ab |
20~<30 | 22.35 ±14.07 ab | 159.67 ±58.77 ab | 303.93 ±236.06 ab | 119.08 ±126.49 a | 27.50 ±9.03 ab | 203.69 ±103.76 ab | 246.83 ±39.07 ab | 231.2 ±107.84 ab | 851.86 ±418.75 ab |
≥30 | 30.70 ±19.35 a | 212.73 ±148.40 a | 470.96 ±376.41 a | 110.66 ±71.63 a | 32.74 ±15.59 a | 254.5 ±112.33 a | 279.73 ±74.47 a | 287.23 ±124.52 a | 1 104.77 ±638.91 a |
图2 不同深度土壤有效磷含量随茭白种植年限的变化
Fig.2 Variation of available phosphorus content in different depth soils with increasing plantation years of Zizania latifolia
图3 不同深度土壤磷吸持指数(PSI)随茭白种植年限的变化
Fig.3 Variation of phosphorus sorption index (PSI) in different depth soils with increasing plantation years of Zizania latifolia
图4 不同深度土壤磷吸持饱和度(DPSS)随茭白种植年限的变化
Fig.4 Variation of degree of P sorption saturation in different depth soils with increasing plantation years of Zizania latifolia
[1] | 张苏江, 夏浩东, 唐文龙, 等. 中国磷矿资源现状分析及可持续发展建议[J]. 中国矿业, 2014, 23(S2): 8-13. |
ZHANG S J, XIA H D, TANG W L, et al. Current status and sustainable development of phosphorite resources in China[J]. China Mining Magazine, 2014, 23(S2): 8-13. (in Chinese with English abstract) | |
[2] | 王莹, 熊先孝, 东野脉兴, 等. 中国磷矿资源预测模型及找矿远景分析[J]. 中国地质, 2022, 49(2): 435-454. |
WANG Y, XIONG X X, DONGYE M X, et al. Prediction model and exploration prospect analysis of phosphate mineral resources in China[J]. Geology in China, 2022, 49(2): 435-454. (in Chinese with English abstract) | |
[3] | 周杨. 不同菜地土壤中磷积累形态变化特征研究[J]. 农学学报, 2016, 6(7): 34-40. |
ZHOU Y. Change characteristics of phosphorus accumulated form in different types of vegetable soil[J]. Journal of Agriculture, 2016, 6(7): 34-40. (in Chinese with English abstract) | |
[4] | 杨洁, 郑龙, 邵霜霜, 等. 海南省陵水县蔬菜种植区土壤磷素的积累、固定特性及流失风险评估[J]. 生态与农村环境学报, 2020, 36(11): 1453-1459. |
YANG J, ZHENG L, SHAO S S, et al. The accumulation and adsorption of phosphorus in vegetable soils and the risk of soil phosphorus loss in Lingshui County of Hainan, China[J]. Journal of Ecology and Rural Environment, 2020, 36(11): 1453-1459. (in Chinese with English abstract) | |
[5] | 许琛, 沈素素, 何竹, 等. 长期施无机磷肥对黄泥土稻田土壤磷库的影响[J]. 农业环境科学学报, 2022, 41(11):2506-2514. |
XU C, SHEN S S, HE Z, et al. Effects of long-term application of inorganic phosphate fertilizer to soil phosphorus pools in yellow-mud soil paddy fields[J]. Journal of Agro-Environment Science, 2022, 41(11):2506-2514. (in Chinese with English abstract) | |
[6] | 汪玉, 赵旭, 王磊, 等. 太湖流域稻麦轮作农田磷素累积现状及其环境风险与控制对策[J]. 农业环境科学学报, 2014, 33(5): 829-835. |
WANG Y, ZHAO X, WANG L, et al. Accumulation, environmental risk and control of phosphorus in rice/wheat rotation farmland in Taihu Lake watershed[J]. Journal of Agro-Environment Science, 2014, 33(5): 829-835. (in Chinese with English abstract) | |
[7] | 汪玉, 袁佳慧, 陈浩, 等. 太湖流域典型农田土壤磷库演变特征及环境风险预测[J]. 土壤学报, 2022, 59(6): 1640-1649. |
WANG Y, YUAN J H, CHEN H, et al. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake region[J]. Acta Pedologica Sinica, 2022, 59(6): 1640-1649. (in Chinese with English abstract) | |
[8] | 柳冬青, 张金茜, 李红瑛, 等. 基于地理探测器的流域土壤磷流失影响因素分析[J]. 环境科学学报, 2018, 38(12): 4814-4822. |
LIU D Q, ZHANG J X, LI H Y, et al. Impact factors of soil phosphorus loss in watershed based on geographical detector[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4814-4822. (in Chinese with English abstract) | |
[9] | 王瑞, 仲月明, 李慧敏, 等. 高投入菜地土壤磷素环境与农学阈值研究进展[J]. 土壤, 2022, 54(1): 1-8. |
WANG R, ZHONG Y M, LI H M, et al. Research progresses on environmental and agriculture thresholds of soil phosphorus in high-input vegetable fields[J]. Soils, 2022, 54(1): 1-8. (in Chinese with English abstract) | |
[10] | 陶忠富. 浙江茭白种植现状及发展建议[J]. 中国果菜, 2020, 40(8): 73-76. |
TAO Z F. Planting situation and development suggestions of Zizania latifolia in Zhejiang Province[J]. China Fruit & Vegetable, 2020, 40(8): 73-76. (in Chinese with English abstract) | |
[11] | 徐颖菲, 姚玉才, 章明奎. 全年淹水种植茭白对水田土壤性态的影响[J]. 土壤通报, 2019, 50(1): 15-21. |
XU Y F, YAO Y C, ZHANG M K. Effects of Zizania latifolia plantation with the whole year water-logging on soil properties of paddy fields[J]. Chinese Journal of Soil Science, 2019, 50(1): 15-21. (in Chinese with English abstract) | |
[12] | 余晓莉. 岳西县茭白产业发展存在的问题及对策建议[J]. 安徽农学通报, 2021, 27(2): 43. |
YU X L. Problems existing in the development of water bamboo industry in Yuexi County and countermeasures and suggestions[J]. Anhui Agricultural Science Bulletin, 2021, 27(2): 43. (in Chinese) | |
[13] | 童文彬, 邱志腾, 章明奎. 植物有效磷与水溶性磷对土壤磷素积累的响应研究[J]. 农学学报, 2020, 10(1): 37-42. |
TONG W B, QIU Z T, ZHANG M K. Response of bio-available phosphorus and water-soluble phosphorus to phosphorus accumulation in soil[J]. Journal of Agriculture, 2020, 10(1): 37-42. (in Chinese with English abstract) | |
[14] | 丁效东, 张士荣, 娄金华, 等. 有机肥与磷肥配施对滨海盐渍化土壤磷素淋洗风险的影响[J]. 生态环境学报, 2016, 25(7): 1169-1173. |
DING X D, ZHANG S R, LOU J H, et al. Effects of combined organic manure and phosphorus fertilizer on the phosphorus leaching risk in coastal saline soil[J]. Ecology and Environmental Sciences, 2016, 25(7): 1169-1173. (in Chinese with English abstract) | |
[15] | 王艳玲, 章永辉, 何园球. 红壤基质组分对磷吸持指数的影响[J]. 土壤学报, 2012, 49(3): 552-559. |
WANG Y L, ZHANG Y H, HE Y Q. Effect of soil matrix components on phosphate sorption index in red soil[J]. Acta Pedologica Sinica, 2012, 49(3): 552-559. (in Chinese with English abstract) | |
[16] | 颜晓, 卢志红, 魏宗强, 等. 几种典型酸性旱地土壤磷吸附的关键影响因素[J]. 中国土壤与肥料, 2019(3): 1-7. |
YAN X, LU Z H, WEI Z Q, et al. Key factors influencing phosphorus sorption for several acid upland soils[J]. Soil and Fertilizer Sciences in China, 2019(3): 1-7. (in Chinese with English abstract) | |
[17] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[18] | 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. |
[19] | SUI Y B, THOMPSON M L, SHANG C. Fractionation of phosphorus in a Mollisol amended with biosolids[J]. Soil Science Society of America Journal, 1999, 63(5): 1174-1180. |
[20] | 周慧平, 高超, 王登峰, 等. 巢湖流域农田土壤磷吸持指数及吸持饱和度特征[J]. 农业环境科学学报, 2007, 26(B10): 386-389. |
ZHOU H P, GAO C, WANG D F, et al. Phosphorus sorption and saturation in topsoil of Chaohu Lake watershed[J]. Journal of Agro-Environment Science, 2007, 26(B10): 386-389. (in Chinese with English abstract) | |
[21] | VAN DER ZEE S E A T M, VAN RIEMSDIJK W H. Model for long-term phosphate reaction kinetics in soil[J]. Journal of Environmental Quality, 1988, 17(1): 35-41. |
[22] | HECKRATH G, BROOKES P C, POULTON P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment[J]. Journal of Environmental Quality, 1995, 24(5): 904-910. |
[23] | 詹秋丽, 张黎明, 周碧青, 等. 福建耕地土壤磷素富集空间差异及其影响因素[J]. 中国生态农业学报, 2018, 26(2): 274-283. |
ZHAN Q L, ZHANG L M, ZHOU B Q, et al. Spatial variation in phosphorus accumulation and the driving factors in cultivated lands in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 274-283. (in Chinese with English abstract) | |
[24] | 黄敏, 梁荣祥, 尹维文, 等. 典型设施环境条件对土壤活性磷变化的影响[J]. 中国环境科学, 2018, 38(5): 1818-1825. |
HUANG M, LIANG R X, YIN W W, et al. Effects of typical greenhouse factors on labile phosphorus in soil[J]. China Environmental Science, 2018, 38(5): 1818-1825. (in Chinese with English abstract) | |
[25] | 申艳, 段英华, 黄绍敏, 等. 潮土CaCl2-P含量对磷肥施用的响应及其淋失风险分析[J]. 植物营养与肥料学报, 2018, 24(6): 1689-1696. |
SHEN Y, DUAN Y H, HUANG S M, et al. Response of CaCl2-P to phosphorus fertilization and leaching risk in fluvo-aquic soils[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1689-1696. (in Chinese with English abstract) | |
[26] | 章明奎, 周翠, 方利平. 水稻土磷环境敏感临界值的研究[J]. 农业环境科学学报, 2006, 25(1): 170-174. |
ZHANG M K, ZHOU C, FANG L P. Environmentally sensitive thresholds of phosphorus of paddy soils[J]. Journal of Agro-Environment Science, 2006, 25(1): 170-174. (in Chinese with English abstract) | |
[27] | 张慧敏, 章明奎. 稻田土壤磷淋失潜力与磷积累的关系[J]. 生态与农村环境学报, 2008, 24(1):59-62. |
ZHANG H M, ZHANG M. Relationship between leaching potential and accumulation of phosphorus in paddy soils[J]. Journal of Ecology and Rural Environment, 2008, 24(1):59-62. (in Chinese with English abstract) | |
[28] | 钟雄, 张丽, 张乃明, 等. 滇池流域坡耕地土壤氮磷流失效应[J]. 水土保持学报, 2018, 32(3):42-47. |
ZHONG X, ZHANG L, ZHANG N M, et al. Soil N and P loss in slope farmland of Dianchi watershed[J]. Journal of Soil and Water Conservation, 2018, 32(3):42-47. (in Chinese with English abstract) |
[1] | 袁太艳, 严正娟, 黄成东, 张志业, 王辛龙. 聚磷酸铵在紫色土壤中的吸附-解吸特征[J]. 浙江农业学报, 2023, 35(2): 403-416. |
[2] | 朱伟成, 郜海燕, 韩延超, 李大祥, 陈杭君. 不同预冷方式对茭白采后降温速度和贮藏品质的影响[J]. 浙江农业学报, 2020, 32(10): 1873-1879. |
[3] | 吴春艳, 刘晓霞, 陈义, 李艳, 唐旭, 陆若辉. 不同施肥管理下水旱轮作水稻土磷含量的演变[J]. 浙江农业学报, 2019, 31(7): 1128-1137. |
[4] | 陈小娟, 陈煜林, 林净净, 杨依彬, 胡克纬, 张承林. 不同聚合度的聚磷酸铵对土壤磷动态转化及有效性的影响[J]. 浙江农业学报, 2019, 31(10): 1681-1688. |
[5] | 罗书吉1,2,3,王钫2,3,陈文学1,王伟2,3,胡桂仙2,3,王强1,2,3,*. 离子色谱法测定茭白中总亚硫酸盐的应用研究[J]. 浙江农业学报, 2016, 28(5): 870-. |
[6] | 周锦连1,陈建明2,*,王来亮3,张珏锋2,马雅敏3,王斌4,钟海英2. 敌磺钠对单季茭白产量和效益的影响[J]. 浙江农业学报, 2016, 28(4): 624-. |
[7] | 陈贵1,赵国华2,张红梅1,沈亚强1,杨继锋3,冯四海4,陈小忠3,程旺大1,*. 沼液浇灌对茭白氮磷钾养分吸收利用特性的影响[J]. 浙江农业学报, 2016, 28(3): 474-. |
[8] | 詹乃才, 刘云根, 王妍, 梁启斌, 侯磊, 王书锦, 张慧娟. 滇东南典型岩溶湿地沉积物不同形态磷分布特征[J]. 浙江农业学报, 2016, 28(10): 1772-1780. |
[9] | 钱仲仓,杨泉灿*. 添加乳酸菌对茭白叶青贮品质的影响[J]. 浙江农业学报, 2015, 27(9): 1541-. |
[10] | 陈建明1, 庞英华2,张珏锋1,朱徐燕2,黄锡志2,冯帆1,朱建杰2. 不同灌溉方式对双季茭白(秋茭)生长和产量的影响[J]. 浙江农业学报, 2015, 27(2): 148-. |
[11] | 于国光,张志恒,杨桂玲,汪雯,蔡铮,郑蔚然,徐丽红. 茭白的焦亚硫酸钠浸泡试验及其风险评估[J]. 浙江农业学报, 2015, 27(11): 2011-. |
[12] | 刘毛欣1,2,李玲1,2,王教瑜1,*,王艳丽1,孙国昌1,*. 稻瘟病菌与禾谷镰刀菌对茭白的致病性及侵染过程 [J]. 浙江农业学报, 2014, 26(6): 1546-. |
[13] | 奚辉;薛智勇;*;陈喜靖;姜丽娜;王卫平. 沼液不同灌溉量对茭白产量、品质及土壤肥力的影响[J]. , 2013, 25(6): 0-1341. |
[14] | 张雅;*;周航;李丹;杨文叶. 土壤有效磷对茄子(Solanun melongena L.)品质的影响[J]. , 2013, 25(6): 0-1347. |
[15] | 符长焕;郑许松;翁丽青;郑春龙 . 双季茭白新品种‘余茭4号’的特征和特性[J]. , 2012, 24(1): 0-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||