浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 403-416.DOI: 10.3969/j.issn.1004-1524.2023.02.18
袁太艳1(), 严正娟1,*(
), 黄成东2, 张志业1, 王辛龙1
收稿日期:
2022-01-29
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
严正娟
作者简介:
*严正娟,E-mail: zjyan@scu.edu.cn基金资助:
YUAN Taiyan1(), YAN Zhengjuan1,*(
), HUANG Chengdong2, ZHANG Zhiye1, WANG Xinlong1
Received:
2022-01-29
Online:
2023-02-25
Published:
2023-03-14
Contact:
YAN Zhengjuan
摘要:
以两种聚磷酸铵(APP1,低聚合度;APP2,高聚合度)为研究对象,基于吸附-解吸试验,运用等温方程模型,并结合不同聚合度的磷素形态分析,探讨水溶性聚磷酸铵(APP)在典型酸性和石灰性紫色土壤中的吸附-解吸特征及其与磷酸一铵(MAP)的差异,为其在紫色土壤中的合理高效利用提供理论依据。结果表明,随着磷添加量(1~300 mg·L-1)的增加,酸性紫色土壤对APP的吸附呈先增加后降低的趋势,而石灰性紫色土壤对APP的吸附则始终呈上升趋势。当磷添加量为1~100 mg·L-1,酸性紫色土壤对APP1和APP2的吸附分别更符合Langmuir方程(R2=0.961)和Freundlich方程(R2=0.947),石灰性紫色土壤对两种APP的吸附均符合Freundlich方程(R2分别为0.995和0.950)。两种紫色土壤对APP的吸附均以聚磷酸盐为主,且APP1和APP2中焦磷酸盐对磷吸附的贡献率分别超过76%和36%。在较高磷添加量下,APP中正磷酸盐在酸性紫色土壤中出现负吸附。同时,在两种紫色土壤中,APP中正磷酸盐的解吸率均高于聚磷酸盐,在酸性紫色土壤中正磷酸盐的解吸率在较高磷吸附条件下甚至超过100%。与MAP相比,在较低磷添加量下,两种紫色土壤对APP的吸附量更大。APP增加了吸附平衡液中Fe、Al和溶解有机碳的含量,但会降低Ca的含量。综上,含多种形态磷的APP施入土壤后,并不是降低了其本身被土壤的吸附固定,而是通过促进土壤中原有正磷酸盐的释放,进而保持正磷酸盐的有效供应。此外,APP自身磷素形态的分布特点也决定了其施入土壤后的有效性。
中图分类号:
袁太艳, 严正娟, 黄成东, 张志业, 王辛龙. 聚磷酸铵在紫色土壤中的吸附-解吸特征[J]. 浙江农业学报, 2023, 35(2): 403-416.
YUAN Taiyan, YAN Zhengjuan, HUANG Chengdong, ZHANG Zhiye, WANG Xinlong. Adsorption-desorption characteristics of ammonium polyphosphate in purple soils[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 403-416.
指标 Index | 酸性紫色土壤 Acid purple soil | 石灰性紫色土壤 Calcareous purple soil |
---|---|---|
pH | 4.36 | 8.05 |
CaCO3/(g·kg-1) | — | 39.08 |
有机质 | 4.49 | 8.73 |
Organic matter/(g·kg-1) | ||
全磷Total P/(g·kg-1) | 0.46 | 0.85 |
全氮Total N/(g·kg-1) | 0.48 | 0.86 |
有效磷Olsen-P/(mg·kg-1) | 85.4 | 7.2 |
黏粒 | 37.2 | 196.8 |
Clay/(<0.002 mm,g·kg-1) | ||
游离态铁氧化物 | 1.95 | 4.63 |
Free Fe oxides/(g·kg-1) | ||
游离态铝氧化物 | 4.22 | 2.54 |
Free Al oxides /(g·kg-1) | ||
无定型铁氧化物 | 0.11 | 0.11 |
Amorphous Fe oxides/(g·kg-1) | ||
无定型铝氧化物 | 0.12 | 0.12 |
Amorphous Al oxides/(g·kg-1) |
表1 供试土壤的基本性质
Table 1 Properties of soils used in experiment
指标 Index | 酸性紫色土壤 Acid purple soil | 石灰性紫色土壤 Calcareous purple soil |
---|---|---|
pH | 4.36 | 8.05 |
CaCO3/(g·kg-1) | — | 39.08 |
有机质 | 4.49 | 8.73 |
Organic matter/(g·kg-1) | ||
全磷Total P/(g·kg-1) | 0.46 | 0.85 |
全氮Total N/(g·kg-1) | 0.48 | 0.86 |
有效磷Olsen-P/(mg·kg-1) | 85.4 | 7.2 |
黏粒 | 37.2 | 196.8 |
Clay/(<0.002 mm,g·kg-1) | ||
游离态铁氧化物 | 1.95 | 4.63 |
Free Fe oxides/(g·kg-1) | ||
游离态铝氧化物 | 4.22 | 2.54 |
Free Al oxides /(g·kg-1) | ||
无定型铁氧化物 | 0.11 | 0.11 |
Amorphous Fe oxides/(g·kg-1) | ||
无定型铝氧化物 | 0.12 | 0.12 |
Amorphous Al oxides/(g·kg-1) |
磷源 P source | 分子量 Molecular weight | pH | 磷形态分布Mass fraction distribution of P forms/% | ||||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | |||
MAP | 115.0 | 5.4 | 100.00 | — | — | — | — | — | — |
APP1 | 168.3 | 6.5 | 41.99 | 58.01 | — | — | — | — | — |
APP2 | 272.6 | 7.0 | 23.59 | 30.14 | 22.23 | 12.87 | 6.57 | 2.86 | 1.75 |
表2 供试磷源的分子量、pH值和磷形态分布
Table 2 Molecular weight, pH and mass fraction distribution of different P forms used in experiment
磷源 P source | 分子量 Molecular weight | pH | 磷形态分布Mass fraction distribution of P forms/% | ||||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | |||
MAP | 115.0 | 5.4 | 100.00 | — | — | — | — | — | — |
APP1 | 168.3 | 6.5 | 41.99 | 58.01 | — | — | — | — | — |
APP2 | 272.6 | 7.0 | 23.59 | 30.14 | 22.23 | 12.87 | 6.57 | 2.86 | 1.75 |
图1 酸性紫色土壤(A)和石灰性紫色土壤(B)对不同磷源全磷的吸附等温曲线
Fig.1 Adsorption isotherm of total P of different P sources in acid purple soil (A) and calcareous purple soil (B)
土壤 Soil | 磷源 P source | Langmuir方程参数 Parameters of Langmuir equation | Freundlich方程参数 Parameters of Freundlich equation | ||||||
---|---|---|---|---|---|---|---|---|---|
Smax | KL | R2 | DPS | PBC | KF | n | R2 | ||
酸性紫色土壤 | MAP | 337 | 0.069 | 0.860 | 20.24 | 23.22 | 47.66 | 0.395 | 0.986 |
Acid purple soil | APP1 | 499 | 0.104 | 0.961 | 14.63 | 51.95 | 61.89 | 0.499 | 0.872 |
APP2 | 532 | 0.079 | 0.891 | 13.84 | 42.26 | 72.99 | 0.423 | 0.947 | |
石灰性紫色土壤 | MAP | 494 | 0.069 | 0.831 | 1.437 | 34.25 | 91.87 | 0.289 | 0.922 |
Calcareous purple soil | APP1 | 2664 | 0.032 | 0.680 | — | 84.55 | 94.82 | 0.749 | 0.995 |
APP2 | 3507 | 0.023 | 0.213 | — | 81.05 | 112.84 | 0.693 | 0.950 |
表3 不同磷源处理下土壤中磷素(1~100 mg·L-1)吸附的Langmuir和Freundlich方程拟合结果
Table 3 Fitting result of P (1-100 mg··L-1) sorption of soils under different phosphorus sources by Langmuir and Freundlich equations
土壤 Soil | 磷源 P source | Langmuir方程参数 Parameters of Langmuir equation | Freundlich方程参数 Parameters of Freundlich equation | ||||||
---|---|---|---|---|---|---|---|---|---|
Smax | KL | R2 | DPS | PBC | KF | n | R2 | ||
酸性紫色土壤 | MAP | 337 | 0.069 | 0.860 | 20.24 | 23.22 | 47.66 | 0.395 | 0.986 |
Acid purple soil | APP1 | 499 | 0.104 | 0.961 | 14.63 | 51.95 | 61.89 | 0.499 | 0.872 |
APP2 | 532 | 0.079 | 0.891 | 13.84 | 42.26 | 72.99 | 0.423 | 0.947 | |
石灰性紫色土壤 | MAP | 494 | 0.069 | 0.831 | 1.437 | 34.25 | 91.87 | 0.289 | 0.922 |
Calcareous purple soil | APP1 | 2664 | 0.032 | 0.680 | — | 84.55 | 94.82 | 0.749 | 0.995 |
APP2 | 3507 | 0.023 | 0.213 | — | 81.05 | 112.84 | 0.693 | 0.950 |
图3 APP中不同形态磷对紫色土壤磷素吸附的贡献 正磷酸盐,n=1;聚磷酸盐,n≥2。下同。A,APP1,酸性紫色土壤;B,APP2,酸性紫色土壤;C,APP1,石灰性紫色土壤;D,APP2,石灰性紫色土壤。
Fig.3 Contribution of different forms of P in ammonium polyphosphate (APP) to P adsorption in purple soil Ortho-P, n=1; Poly-P, n≥2. The same as below.A, APP1, acid purple soil; B, APP2, acid purple soil; C, APP1, calcareous purple soil; D, APP2, calcareous purple soil.
图4 不同浓度APP在紫色土壤中吸附平衡时的磷素去向 A,APP1,酸性紫色土壤;B,APP2,酸性紫色土壤;C,APP1,石灰性紫色土壤;D,APP2,石灰性紫色土壤。a,吸附前;b,吸附后。P1,正磷酸盐;P2,焦磷酸盐;P3,三聚磷酸盐;P4,四聚磷酸盐;P5,五聚磷酸盐;P6,六聚磷酸盐;P7,七聚磷酸盐。
Fig.4 P fate at adsorption equilibrium of ammonium polyphosphate (APP) in purple soil A, APP1, acid purple soil; B, APP2, acid purple soil; C, APP1, calcareous purple soil; D, APP2, calcareous purple soil. a, Before adsorption; b, After adsorption. P1, Orthophosphate; P2, Pyrophosphate; P3, Tripolyphosphate; P4, Tetraphosphate; P5, Pentaphosphate; P6, Hexaphosphate; P7, Heptaphosphate.
图5 不同磷源对酸性紫色土壤(A)和石灰性紫色土壤(B)吸附平衡液pH值的影响 相同磷添加量下,柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.5 Effects of different P sources on pH of adsorption equilibration of acid purple soil (A) and calcareous purple soil (B) Bars marked without the same letters indicated significant difference at P<0.05 under the same P addition amount. The same as below.
图6 不同磷源下酸性紫色土壤(A、C、E)和石灰性紫色土壤(B、D、F)磷素吸附平衡液中的Ca(A、B)、Fe(C、D)、Al(E、F)含量
Fig.6 Concentrations of Ca (A, B), Fe (C, D) and Al (E, F) in adsorption equilibration solutions of acid purple soil (A, C, E) and calcareous purple soil (B, D, F) with different P sources
图7 不同磷源下酸性紫色土壤(A)和石灰性紫色土壤(B)磷素吸附平衡液中的溶解有机碳(DOC)含量
Fig.7 Concentrations of dissolved organic carbon (DOC) in adsorption equilibration solutions of acid purple soil (A) and calcareous purple soil (B) with different P sources
图8 不同磷源下酸性紫色土壤(A)和石灰性紫色土壤(B)上全磷的解吸等温曲线
Fig.8 Desorption isotherms of total P on acid purple soil (A) and calcareous purple soil (B) of total P in different soils with different P sources
图9 APP1(A、C)和APP2(B、D)中不同形态磷在酸性紫色土壤中的解吸量(A、B)和解吸率(C、D)
Fig.9 Desorption amount (A, B) and rate (C, D) of different forms of P in APP1 (A, C) and APP2 (B, D) in acid purple soil
图10 APP1(A、C)和APP2(B、D)中不同形态磷在石灰性紫色土壤中的解吸量(A、B)和解吸率(C、D)
Fig.10 Desorption amount (A, B) and rate (C, D) of different forms of P in APP1 (A, C) and APP2 (B, D) in calcareous purple soil
[1] | KUO S, HUANG B, BEMBENEK R. Effects of long-term phosphorus fertilization and winter cover cropping on soil phosphorus transformations in less weathered soil[J]. Biology and Fertility of Soils, 2005, 41(2): 116-123. |
[2] | 王雪薇, 王冲, 褚贵新. 短链聚磷酸磷肥对土壤无机磷转化及铁锰锌有效性的影响[J]. 应用生态学报, 2018, 29(9): 2970-2978. |
WANG X W, WANG C, CHU G X. Effects of short-chain polyphosphate fertilization on inorganic P transformation and mobilization of Fe, Mn and Zn in soils[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2970-2978. (in Chinese with English abstract) | |
[3] | 汪家铭. 新型肥料聚磷酸铵的发展与应用[J]. 杭州化工, 2009, 39(4): 1-4. |
WANG J M. Development and application of ammonium polyphosphate[J]. Hangzhou Chemical Industry, 2009, 39(4): 1-4. (in Chinese) | |
[4] | 谢天镳, 李玉纯. 液体肥料[M]. 北京: 化学工业出版社, 1992. |
[5] | 程凤娴, 黄旅文, 蓝奕斌, 等. 原位法磷酸一铵与原位法聚磷酸铵对香蕉生长的影响[J]. 广东农业科学, 2020, 47(8): 74-79. |
CHENG F X, HUANG L W, LAN Y B, et al. Effects of in situ monoammonium phosphate and in situ ammonium polyphosphate on the growth of banana[J]. Guangdong Agricultural Sciences, 2020, 47(8): 74-79. (in Chinese with English abstract) | |
[6] | 王越. 含聚磷酸铵液体肥料在番茄上的应用效果[J]. 磷肥与复肥, 2018, 33(2): 39-41. |
WANG Y. Application effect of ammonium polyphosphate liquid fertilizer on tomato[J]. Phosphate & Compound Fertilizer, 2018, 33(2): 39-41. (in Chinese with English abstract) | |
[7] | WEEKS J J JR, HETTIARACHCHI G M. Source and formulation matter: new insights into phosphorus fertilizer fate and transport in mildly calcareous soils[J]. Soil Science Society of America Journal, 2020, 84(3): 731-746. |
[8] | MCBEATH T M, LOMBI E, MCLAUGHLIN M J, et al. Polyphosphate-fertilizer solution stability with time, temperature, and pH[J]. Journal of Plant Nutrition and Soil Science, 2007, 170(3): 387-391. |
[9] | 陈小娟, 陈煜林, 林净净, 等. 不同聚合度的聚磷酸铵对土壤磷动态转化及有效性的影响[J]. 浙江农业学报, 2019, 31(10): 1681-1688. |
CHEN X J, CHEN Y L, LIN J J, et al. Conversion dynamics and effectiveness of ammonium polyphosphate with different polymerization degrees to soil phosphorus[J]. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1681-1688. (in Chinese with English abstract) | |
[10] | AL-KANANI T, MACKENZIE A F. Sorption and desorption of orthophosphate and pyrophosphate by mineral fractions of soils, goethite, and kaolinite[J]. Canadian Journal of Soil Science, 1991, 71(3): 327-338. |
[11] | BLANCHAR R W, HOSSNER L R. Hydrolysis and sorption of ortho-, pryo-, tripoly-, and trimetaphosphate in 32 Midwestern soils[J]. Soil Science Society of America Journal, 1969, 33(4): 622-625. |
[12] | MCBEATH T M, LOMBI E, MCLAUGHLIN M J, et al. Pyrophosphate and orthophosphate addition to soils: sorption, cation concentrations, and dissolved organic carbon[J]. Soil Research, 2007, 45(4): 237. |
[13] | HAMILTON J G, HILGER D, PEAK D. Mechanisms of tripolyphosphate adsorption and hydrolysis on goethite[J]. Journal of Colloid and Interface Science, 2017, 491: 190-198. |
[14] | TORRES-DORANTE L O, CLAASSEN N, STEINGROBE B, et al. Fertilizer-use efficiency of different inorganic polyphosphate sources: effects on soil P availability and plant P acquisition during early growth of corn[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 509-515. |
[15] | SINGH Y, DARTIGUES A. Efficiency of polyphosphates and orthophosphate in zinc-deficient soils[J]. Plant and Soil, 1970, 32(1/2/3): 397-411. |
[16] | 兰国志. 水溶性聚磷酸铵与金属离子螯合制取螯合物实验研究[D]. 昆明: 昆明理工大学, 2016. |
LAN G Z. Experimental study on preparation of chelate by chelation of water-soluble ammonium polyphosphate with metal ions[D]. Kunming: Kunming University of Science and Technology, 2016. (in Chinese with English abstract) | |
[17] | 高艳菊, 亢龙飞, 褚贵新. 不同聚合度和聚合率的聚磷酸磷肥对石灰性土壤磷与微量元素有效性的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1294-1302. |
GAO Y J, KANG L F, CHU G X. Polymerization degree and rate of polyphosphate fertilizer affected the availability of phosphorus, Fe, Mn and Zn in calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1294-1302. (in Chinese with English abstract) | |
[18] | 许德军. 中微量元素在水溶性聚磷酸铵溶液中的螯合及溶解规律研究[D]. 成都: 四川大学, 2020. (in Chinese with English abstract) |
XU D J. Study on the chelation and dissolution of medium and trace elements in water-soluble ammonium polyphosphate solution[D]. Chengdu: Sichuan University, 2020. (in Chinese with English abstract) | |
[19] | BORNØ M L, MÜLLER-STÖVER D S, LIU F L. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types[J]. Science of the Total Environment, 2018, 627: 963-974. |
[20] | 李祖荫. 关于石灰性土壤固磷强度与固磷基质问题[J]. 土壤通报, 1992, 23(4): 190-193. |
LI Z Y. On the problem of phosphorus fixation strength and phosphorus fixation matrix in calcareous soil[J]. Chinese Journal of Soil Science, 1992, 23(4): 190-193. (in Chinese) | |
[21] | 杨旭, 张承林, 胡义熬, 等. 农用聚磷酸铵在土壤中的有效性研究进展及在农业上的应用[J]. 中国土壤与肥料, 2018(3): 1-6. |
YANG X, ZHANG C L, HU Y A, et al. Research progress on the availability of ammonium polyphosphate in soil and its application in agriculture[J]. Soil and Fertilizer Sciences in China, 2018(3): 1-6. (in Chinese with English abstract) | |
[22] | SAVANT N K, TAMBE K N. The Langmuir parameters of orthophosphate and pyrophosphate sorption for ammoniated tropical soils[J]. Communications in Soil Science and Plant Analysis, 1979, 10(3): 503-511. |
[23] | MNKENI P N S, MACKENZIE A F. Retention of ortho-and polyphosphates in some Quebec soils as affected by added organic residues and calcium carbonate[J]. Canadian Journal of Soil Science, 1985, 65(3): 575-585. |
[1] | 季洋洋, 张鹏, 刘小强, 董贞汝, 张伟, 樊霆. 纳米银胁迫下黄曲霉(Aspergillus flavus)TL-F3的氧化应激响应及其吸附能力[J]. 浙江农业学报, 2023, 35(1): 128-137. |
[2] | 杨依彬, 陈小娟, 邓兰生, 林净净, 程凤娴, 胡克纬, 张承林, 涂攀峰. 聚磷酸铵对砖红壤和石灰性土壤上磷素吸附解吸行为的影响[J]. 浙江农业学报, 2021, 33(4): 697-703. |
[3] | 张春荣, 单凌燕, 郭钤, 许振岚, 何红梅, 吴珉, 赵学平. 异恶唑草酮在环境介质中的挥发、土壤吸附和水-沉积物系统降解特性[J]. 浙江农业学报, 2019, 31(6): 930-937. |
[4] | 陈小娟, 陈煜林, 林净净, 杨依彬, 胡克纬, 张承林. 不同聚合度的聚磷酸铵对土壤磷动态转化及有效性的影响[J]. 浙江农业学报, 2019, 31(10): 1681-1688. |
[5] | 王代懿, 张丰松, 潘娟, 刘登璐, 苟体忠. 水稻秸秆生物炭对雄烯二酮在土壤中吸附与降解行为的影响[J]. 浙江农业学报, 2018, 30(4): 632-639. |
[6] | 尹明华, 刘燕, 郁雪婷, 李远芳, 周榕, 范亚红, 罗玉婕, 万小霞. 怀玉山高山马铃薯茎尖再生苗6种病毒的DAS-ELISA检测与分析[J]. 浙江农业学报, 2017, 29(10): 1699-1705. |
[7] | 詹乃才, 刘云根, 王妍, 梁启斌, 侯磊, 王书锦, 张慧娟. 滇东南典型岩溶湿地沉积物不同形态磷分布特征[J]. 浙江农业学报, 2016, 28(10): 1772-1780. |
[8] | 曹雪丹1,方修贵1,周伟东2,戚行江3,赵凯1. 澄清工艺对蓝莓果汁品质的影响[J]. 浙江农业学报, 2014, 26(4): 1042-. |
[9] | 袁菊红;胡绵好;*;秦慧媛. 烧烤竹炭表面结构特征及其对水体中铵氮的吸附行为[J]. , 2014, 26(1): 0-170. |
[10] | 曹维强;吕艺秀;余裕娟;叶青;佘永新;王静;*. 丁烯氟虫腈在土壤中的吸附—解吸行为研究[J]. , 2013, 25(1): 0-118. |
[11] | 金彩霞;皮云清;吴春燕;薛万新;陈秋颖;刘军军. 环境中尿素等4种物质对土壤中磺胺间甲氧嘧啶吸附的影响[J]. , 2013, 25(1): 0-134. |
[12] | 崔慧瑛;梁成华*;杜立宇;王楠. 水铁矿对As(Ⅲ)的吸附性能的研究[J]. , 2012, 24(3): 0-493. |
[13] | 王阳;章明奎;*. 畜禽粪对抗生素的吸持作用[J]. , 2011, 23(2): 0-377. |
[14] | 韩巍;梁成华;*;杜立宇;刘丽;吴玉梅;安宁. 不同pH值条件下人工合成铁氧化物对磷的吸附特性[J]. , 2010, 22(1): 0-80. |
[15] | 毛文杰;陈宁;曲健;唐宇龙;方维焕;*. 不同猪瘟疫苗类型及剂量的抗体反应特性研究[J]. , 2010, 22(1): 0-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||