浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 128-137.DOI: 10.3969/j.issn.1004-1524.2023.01.14
收稿日期:
2022-01-19
出版日期:
2023-01-25
发布日期:
2023-02-21
通讯作者:
*樊霆,E-mail:fanting@ahau.edu.cn
作者简介:
季洋洋(1997—),女,江苏南通人,硕士,研究方向为重金属污染微生物修复。E-mail:1076249299@qq.com
基金资助:
JI Yangyang(), ZHANG Peng, LIU Xiaoqiang, DONG Zhenru, ZHANG Wei, FAN Ting(
)
Received:
2022-01-19
Online:
2023-01-25
Published:
2023-02-21
摘要:
为研究纳米银(AgNPs)胁迫下黄曲霉(Aspergillus flavus TL-F3)的氧化应激变化及其对AgNPs的吸附能力,通过序批式试验,探究不同浓度AgNPs对A. flavus TL-F3生长、细胞形态、胞外聚合物(EPS)分泌、抗氧化系统和吸附能力的影响。研究发现,AgNPs可抑制A. flavus TL-F3生长,且抑制效果与浓度正相关。AgNPs可致A. flavus TL-F3菌丝发育不完全,表面破损。与不加AgNPs的对照组相比,当AgNPs的质量浓度为80 mg·L-1时,胞外聚合物含量升至237.55 mg·g-1,丙二醛含量、超氧化物歧化酶活性、还原性谷胱甘肽含量均显著(P<0.05)提高,而Na+K+-ATP酶活性显著(P<0.05)降低了50.37%。A. flavus TL-F3对AgNPs有一定的吸附能力,当AgNPs的质量浓度为1、30、50、80 mg·L-1时,A.flavus TL-F3对AgNPs的吸附率可达68.54%以上。综上所述,A. flavus TL-F3可用于含Ag和AgNPs污染水体的修复。
中图分类号:
季洋洋, 张鹏, 刘小强, 董贞汝, 张伟, 樊霆. 纳米银胁迫下黄曲霉(Aspergillus flavus)TL-F3的氧化应激响应及其吸附能力[J]. 浙江农业学报, 2023, 35(1): 128-137.
JI Yangyang, ZHANG Peng, LIU Xiaoqiang, DONG Zhenru, ZHANG Wei, FAN Ting. Oxidative stress response and biosorption capacity of Aspergillus flavus TL-F3 under nano silver particles stress[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 128-137.
图3 AgNPs对A. flavus TL-F3形态的影响 A,未添加AgNPs的对照组的扫描电子显微镜(SEM)图像;B,添加80 mg·L-1 AgNPs的试验组的SEM图像;C,对照组的能谱图;D,试验组的EDS能谱图;E、F,对照组的元素映射分析图;G、H,试验组的元素映射分析图。
Fig.3 Influence of AgNPs on morphology of A. flavus TL-F3 A, Scanning electron microscope (SEM) image of control group without AgNPs; B, SEM image of experiment group with 80 mg·L-1 AgNPs; C, Energy spectra of control group; D, Energy spectra of experiment group; E, F, Element mapping analysis diagram of control group; G, H, Element mapping analysis diagram of experiment group.
图4 AgNPs释放的Ag+含量(A)及其对A. flavus TL-F3的毒性(B) 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.4 Content (A) and toxicity (B) of Ag+ released from AgNPs on A. flavus TL-F3 Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
图5 AgNPs对A. flavus TL-F3分泌EPS的影响(A)和AgNPs与A. flavus TL-F3作用前后粒径的变化(B)
Fig.5 Effect of AgNPs on secretion of EPS by A. flavus TL-F3 (A) and changes of particle size before and after interaction of AgNPs with A. flavus TL-F3 (B)
图6 AgNPs对A. flavus TL-F3中Na+K+-ATP酶活性(A)、MDA含量(B)、SOD活性(C)和GSH含量(D)的影响
Fig.6 Effect of AgNPs on activity of Na+K+-ATP enzyme (A), MDA content (B), SOD activity (C) and GSH content (D) of A. flavus TL-F3
图7 AgNPs与A. flavus TL-F3作用前后紫外吸收峰强度的变化(A)和A. flavus TL-F3对AgNPs的吸附率(B) 1-0和1-7分别表示1 mg·L-1的AgNPs作用0和7 d,其他依此类推。
Fig.7 Changes of ultraviolet absorption peak intensity before and after the interaction of A. flavus TL-F3 with AgNPs (A) and adsorption rate of AgNPs by A. flavus TL-F3 (B) 1-0 and 1-7 indicated interaction of 1 mg·L-1 AgNPs with A. flavus for 0 and 7 days, respectively. The rest may be deduced by analogy.
[1] |
BANO A, HUSSAIN J, AKBAR A, et al. Biosorption of heavy metals by obligate halophilic fungi[J]. Chemosphere, 2018, 199: 218-222.
DOI PMID |
[2] |
YIN Y G, TAN Z Q, HU L G, et al. Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications[J]. Chemical Reviews, 2017, 117(5): 4462-4487.
DOI PMID |
[3] | 叶成红, 奚廷斐. 纳米技术在医用材料领域中的应用[J]. 中国组织工程研究与临床康复, 2008, 12(45): 8897-8900. |
YE C H, XI T F. Application of nanotechnology in the field of biomedical materials[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(45): 8897-8900. (in Chinese with English abstract) | |
[4] | 谢晓俊, 羊桂英, 周琪欢, 等. 纳米银的绿色合成、杀虫活性和作用机制研究进展[J]. 农药学学报, 2021, 23(6): 1046-1054. |
XIE X J, YANG G Y, ZHOU Q H, et al. Advances on green synthesis, the insecticidal activity and mechanism of silver nanoparticles[J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1046-1054. (in Chinese with English abstract) | |
[5] | 卢雪蓉, 冯晓丽, 刘朝莹, 等. 纳米银的迁移转化对环境微生物毒性的影响[J]. 生态毒理学报, 2018, 13(5): 49-57. |
LU X R, FENG X L, LIU Z Y, et al. Impact of migration and transformation of AgNPs on its toxicity towards environmental microorganism[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 49-57. (in Chinese with English abstract) | |
[6] |
COLMAN B P, ESPINASSE B, RICHARDSON C J, et al. Emerging contaminant or an old toxin in disguise?:silver nanoparticle impacts on ecosystems[J]. Environmental Science & Technology, 2014, 48(9): 5229-5236.
DOI URL |
[7] | 江红生. 纳米银对水生植物的毒性机制及其生态效应[D]. 武汉: 中国科学院武汉植物园, 2017. |
JIANG H S. The toxicity mechanisms of silver nanoparticles to aauatic plants and their effects to a quatic ecosystem[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. (in Chinese with English abstract) | |
[8] | 杨青青. 纳米银及硝酸银的迁移分布与生物摄入: 以水稻和池塘微宇宙为研究模型[D]. 焦作: 河南理工大学, 2016. |
YANG Q Q. The transport, fate and biouptake of silver nanoparticle and silver nitrate in the model of rice plant (Oryza sativa L.) and pond microcosm[D]. Jiaozuo: Henan Polytechnic University, 2016. (in Chinese with English abstract) | |
[9] | 易峰. 纳米银颗粒的迁移、转化及微生物毒性作用的研究[D]. 长沙: 湖南大学, 2017. |
YI F. The fate and transportation of silver nanoparticles, and its toxicity to microorganism[D]. Changsha: Hunan University, 2017. (in Chinese with English abstract) | |
[10] |
GEETHA N, BHAVYA G, ABHIJITH P, et al. Insights into nanomycoremediation: secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification[J]. Journal of Hazardous Materials, 2021, 409: 124541.
DOI URL |
[11] | 左亚男. 银纳米颗粒对黄孢原毛平革菌去除重金属镉的影响及其自身在体系中的迁移转化研究[D]. 长沙: 湖南大学, 2015. |
ZUO Y N. Impact of silver nanoparticles on the removal of Cd(Ⅱ) by Phanerochaete chrysosporium and its transport and transformation in aqueous solutions[D]. Changsha: Hunan University, 2015. (in Chinese with English abstract) | |
[12] |
WU L L, ZHU G S, ZHANG X X, et al. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri[J]. Science of the Total Environment, 2020, 706: 135711.
DOI URL |
[13] |
LOO S L, KRANTZ W B, FANE A G, et al. Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles[J]. Environmental Science & Technology, 2015, 49(4): 2310-2318.
DOI URL |
[14] | 王小壮. 黄酒酿造中黄酒酵母与黄曲霉的定量分析及相互作用研究[D]. 无锡: 江南大学, 2021. |
WANG X Z. Quantitative analysis and interaction between Saccharomyces cerevisiae and Aspergillus flavus in Huangjiu brewing[D]. Wuxi: Jiangnan University, 2021. (in Chinese with English abstract) | |
[15] |
FOROUTAN R, ESMAEILI H, RISHEHRI S D, et al. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: a dataset[J]. Data in Brief, 2017, 12: 485-492.
DOI URL |
[16] |
MAHMOUD M E, EL ZOKM G M, FARAG A E M, et al. Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd(II), Hg(II), and Pb(II) from water[J]. Environmental Science and Pollution Research International, 2017, 24(22): 18218-18228.
DOI URL |
[17] | QAYYUM S, KHAN I, BHATTI Z A, et al. Fungal strain Aspergillus flavus F3 as a potential candidate for the removal of lead (II) and chromium (VI) from contaminated soil[J]. Main Group Metal Chemistry, 2016, 39: 93-104. |
[18] | 樊霆, 刘如, 潘丹丹, 等. 黄曲霉TL-F3强化黑麦草修复重金属污染土壤的方法: 202010623709.2[P]. 2020-06-30. |
[19] | 樊霆, 周娜, 刘云国, 等. 黑曲霉对重金属Cu(Ⅱ)和Zn(Ⅱ)的抗性及富集特性[J]. 农业环境科学学报, 2012, 31(9): 1836-1841. |
FAN T, ZHOU N, LIU Y G, et al. Resistance to Cu(Ⅱ) and Zn(Ⅱ) and bioaccumulation characteristics of Aspergillus niger[J]. Journal of Agro-Environment Science, 2012, 31(9): 1836-1841. (in Chinese with English abstract) | |
[20] |
刘如, 董畅茹, 张祎雯, 等. 镉胁迫下黑曲霉TL-F2的促生特征及其对黑麦草种子萌发、幼苗生长和镉含量的影响[J]. 浙江农业学报, 2021, 33(2): 326-334.
DOI |
LIU R, DONG C R, ZHANG Y W, et al. Growth-promoting characteristics of Aspergillus niger TL-F2 and its effect on seed germination and cadmium content in seedlings of ryegrass under cadmium stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 326-334. (in Chinese with English abstract)
DOI |
|
[21] | 刘子森, 肖恩荣, 张丽萍, 等. EPS及其测定方法分析[J]. 膜科学与技术, 2015, 35(4): 103-109. |
LIU Z S, XIAO E R, ZHANG L P, et al. Analysis on the determination methods of EPS[J]. Membrane Science and Technology, 2015, 35(4): 103-109. (in Chinese with English abstract) | |
[22] | 李定心. Cu(Ⅱ)和Zn(Ⅱ)对黑曲霉TL-F2抗氧化系统的影响[D]. 合肥: 安徽农业大学, 2015. |
LI D X. Effects of Cu(Ⅱ) and Zn(Ⅱ) on antioxidant system of Aspergillus niger TL-F2[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese with English abstract) | |
[23] | 蔡群虎, 刘石磊, 袁敏惠, 等. 三七多糖含量测定方法比较[J]. 云南中医中药杂志, 2020, 41(8): 59-62. |
CAI Q H, LIU S L, YUAN M H, et al. Comparison of determination methods of polysaccharide content in Panax notoginseng[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2020, 41(8): 59-62. (in Chinese with English abstract) | |
[24] | 陈惠萍. 活性氧的检测方法[J]. 华南热带农业大学学报, 2000(2): 14-17. |
CHEN H P. Detection method of active oxygen species[J]. Journal of South China University of Tropical Agriculture, 2000(2): 14-17. (in Chinese) | |
[25] | 丁文东, 崔康平, 郭志, 等. 纳米银在诺氟沙星胁迫下对黄孢原毛平革菌的毒物兴奋效应[J]. 生态毒理学报, 2020, 15(6): 141-150. |
DING W D, CUI K P, GUO Z, et al. Hormesis of silver nanoparticles on Phanerochaete chrysosporium under norfloxacin stress[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 141-150. (in Chinese with English abstract) | |
[26] |
ANEKTHIRAKUN P, IMYIM A. Separation of silver ions and silver nanoparticles by silica based-solid phase extraction prior to ICP-OES determination[J]. Microchemical Journal, 2019, 145: 470-475.
DOI URL |
[27] | 王燕, 周少华, 邵永珍, 等. 胶体纳米银对白假丝酵母菌的抑制作用[J]. 中国微生态学杂志, 2019, 31(10): 1147-1150. |
WANG Y, ZHOU S H, SHAO Y Z, et al. The inhibitory effect of colloidal silver nanoparticles on Candida albicans[J]. Chinese Journal of Microecology, 2019, 31(10): 1147-1150. (in Chinese with English abstract) | |
[28] |
ANUJ S A, GAJERA H P, HIRPARA D G, et al. The impact of bacterial size on their survival in the presence of cationic particles of nano-silver[J]. Journal of Trace Elements in Medicine and Biology, 2020, 61: 126517.
DOI URL |
[29] | 万正强. EPS在硫酸盐脱硫弧菌(Desulfovibrio desulfuricans)去除重金属Cd2+过程作用研究[D]. 合肥: 合肥工业大学, 2013. |
WAN Z Q. Study on the role of EPS in the removal of heavy metal Cd2+ by Desulfovibrio desulfuricans[D]. Hefei: Hefei University of Technology, 2013. (in Chinese with English abstract) | |
[30] | 刘滨, 殷学伟, 郭励劼, 等. ZnO纳米粒子通过线粒体通路抑制小鼠光感受器细胞Na+/K+-ATP酶表达和活性的作用研究[J]. 生态毒理学报, 2018, 13(3): 172-180. |
LIU B, YIN X W, GUO L J, et al. Inhibitory effects of zinc oxide nanoparticles on Na+/K+-ATP enzyme expression and activity via mitochondrial pathway in murine photoreceptor cells[J]. Asian Journal of Ecotoxicology, 2018, 13(3): 172-180. (in Chinese with English abstract) | |
[31] | 潘蒋娟, 李培骏, 苏东林, 等. 纳米银诱导微生物氧化应激及其抗菌机制[J]. 中国食品学报, 2021, 21(11): 389-396. |
PAN J J, LI P J, SU D L, et al. Microbial oxidative stress induced by silver nanoparticles and its antimicrobial mechanism[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 389-396. (in Chinese with English abstract) | |
[32] |
KUMAR V, SINGH S, SINGH G, et al. Exploring the cadmium tolerance and removal capability of a filamentous fungus Fusarium solani[J]. Geomicrobiology Journal, 2019, 36(9): 782-791.
DOI URL |
[33] | 刘亚楼, 樊霆, 刘如, 等. 一株耐盐菌的筛选、鉴定及对苯酚和镉耐性特征[J]. 安徽农业大学学报, 2020, 47(3): 402-408. |
LIU Y L, FAN T, LIU R, et al. Screening, identification and tolerance to phenol and cadmium of a salt-tolerant strain[J]. Journal of Anhui Agricultural University, 2020, 47(3): 402-408. (in Chinese with English abstract) |
[1] | 钟丽君, 邓嘉强, 古丛伟, 沈留红, 曹随忠, 余树民. MitoQ对犬骨髓间充质干细胞线粒体功能及抗氧化能力的影响[J]. 浙江农业学报, 2022, 34(5): 934-941. |
[2] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[3] | 石兆勇, 李珂, 王发园, 王旭刚, 徐晓峰. 纳米银和外源丛枝菌根真菌对甜高粱叶绿素荧光诱导动力学特性的影响[J]. 浙江农业学报, 2020, 32(2): 283-290. |
[4] | 李杨,高祝,荣茜,杨晓敏,张睿,李英伦*. “复方柴芩颗粒”防治鸭黄曲霉毒素B1慢性中毒的作用机理 [J]. 浙江农业学报, 2015, 27(8): 1337-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 388
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||